JPS58117815A - Steel making method by converter - Google Patents

Steel making method by converter

Info

Publication number
JPS58117815A
JPS58117815A JP21092681A JP21092681A JPS58117815A JP S58117815 A JPS58117815 A JP S58117815A JP 21092681 A JP21092681 A JP 21092681A JP 21092681 A JP21092681 A JP 21092681A JP S58117815 A JPS58117815 A JP S58117815A
Authority
JP
Japan
Prior art keywords
nozzle
furnace
blowing
converter
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21092681A
Other languages
Japanese (ja)
Inventor
Miki Kai
甲斐 幹
Naonori Moriya
森谷 尚玄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP21092681A priority Critical patent/JPS58117815A/en
Publication of JPS58117815A publication Critical patent/JPS58117815A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing
    • C21C5/35Blowing from above and through the bath

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)

Abstract

PURPOSE:To improve a stirring effect and to operate a converter with good efficiency in a converter wherein top blowing and bottom blowing are used in combination by providing a bottom nozzle having a specific angle of upward inclination in a position deviated from the furnace center and giving turning motion to the molten metal. CONSTITUTION:Oxygen is blown through a top blowing lance 1 into the steel bath 4 in a converter, and a gas or a gas and a slag forming agent are blown through a bottom nozzle 6. The nozzle 6 is of double pipe tuyere construction consisting of an inside pipe 7 and an outside pipe 8, and has 30-70 deg. angle alpha of upwad inclination with respect to the furnace bottom. Said nozzle is installed in the position deviated from the furnace center and one or plural pieces of the nozzles are used. Thus the molten metal 4 is turned and moved in the furnace by the bottom blowing from the nozzles 6, and the time for mixing uniformly is reduced considerably.

Description

【発明の詳細な説明】 本発明は、酸素上吹き転炉において、ランスによる酸素
の上吹きと炉底に対して角度をつけて設置され友炉底ノ
ズルによる底吹きとを併用する溶銑の精錬法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a method for refining hot metal in an oxygen top-blowing converter using a combination of oxygen top-blowing by a lance and bottom-blowing by a companion bottom nozzle installed at an angle to the bottom of the furnace. Regarding the law.

溶銑、スクラップ、副原料などを炉に装入し、ランスに
よって浴面に酸素を吹付けて精錬する酸素上吹き転炉法
が普及しているが、この精錬法の大きな問題は、精錬終
期における溶鋼の攪拌低下である。
The oxygen top-blown converter method is popular, in which hot metal, scrap, auxiliary materials, etc. are charged into a furnace and refined by blowing oxygen onto the bath surface using a lance, but a major problem with this refining method is that This is a decrease in stirring of molten steel.

すなわち、この上吹き精錬における溶湯の攪拌は主とし
て溶鋼中の炭素pと酸素との反応によって生じる9酸化
炭素ガスによって竹なわれるのであるが、9含有畦の多
い精錬初期や中期ではこの9酸化炭素カスによる攪拌が
効果的に行ない得ても、9含有量の低くなった精錬終期
(C(1,2係)では−酸化炭素ガス発生量が少なくな
り、これに伴って攪拌が弱くなる。
In other words, the stirring of the molten metal in this top-blown refining is mainly caused by carbon 9 oxide gas generated by the reaction between carbon p and oxygen in the molten steel, but in the early and middle stages of refining where there are many 9-containing ridges, this carbon 9 oxide Even if the stirring by the scum can be performed effectively, at the final stage of refining (C (1st and 2nd stage)) where the 9 content is low, the amount of -carbon oxide gas generated decreases, and the stirring becomes weaker accordingly.

この攪拌が低下すると、酸素の利Ll効率が低下し、脱
炭速度も低下する、また、この攪拌力の低下によって、
上吹き酸素の火点付近で溶鋼が過酸化され、スラグ中の
酸化鉄含有量もこの低炭素域で著しく増大する結果を招
き、同時に溶鋼中の酸素レベルも急増して、棟々の問題
音生じる、例えば、スラグ中の認鉄含有隼(以下、%T
、Feと記す)の上昇に伴い、炉壁耐大物寿命の低下や
Fe、Mnなどの有価金属の歩留低下による資源ロスを
招くと共に、slやAtなどの合金元素の歩留低下や溶
鋼の汚染に起因する品質低下などの種々な問題が生ずる
When this stirring decreases, the oxygen efficiency decreases, and the decarburization rate also decreases. Also, due to this decrease in stirring power,
The molten steel becomes overoxidized near the flash point of the top-blown oxygen, and the iron oxide content in the slag increases significantly in this low carbon range.At the same time, the oxygen level in the molten steel also increases rapidly, causing problems in many buildings. For example, slag containing iron (hereinafter %T
, Fe) increases, leading to resource loss due to a decrease in the durability of large furnace wall materials and a decrease in the yield of valuable metals such as Fe and Mn. Various problems arise, such as quality deterioration due to contamination.

このようなことから、酸素上吹き転炉法において、溶湯
の攪拌を助成すべく他の攪拌手段の提案がなされている
。例えば、炉底近くに電磁攪拌装置を取付けたり、上吹
きランスを回転または旋回させ友すして溶湯の攪拌を助
成する方法などが提案されている。しかし、前者の方法
では設備が嵩む割りvcは効果があまり得られないので
ほとんど採用されていないし、後者の場合では、スラグ
の攪拌は強化され得ても鋼浴の攪拌を強化するまでには
至らない。
For this reason, other stirring means have been proposed to assist in stirring the molten metal in the oxygen top-blown converter method. For example, methods have been proposed in which an electromagnetic stirrer is installed near the bottom of the furnace, or a top blowing lance is rotated or swirled to assist in stirring the molten metal. However, the former method requires bulky equipment and VC is not very effective, so it is rarely used, and the latter method can strengthen the stirring of the slag, but it does not reach the level of strengthening the stirring of the steel bath. do not have.

他方、上吹きと共に底吹きを併用した酸素上吹き精錬法
が例えば、特開昭55−65313号公報、特開昭55
−138015号公報、特開昭55−158209号公
報、特開昭55−161014号公報において提案され
ている。これら公報に記載の方法は、上吹きのほかに底
吹きを併用するので上吹き単独の場合に比べて攪拌が強
化され、それなりの効果を発揮するものと考えられる。
On the other hand, an oxygen top-blowing refining method using both top-blowing and bottom-blowing is disclosed, for example, in JP-A No. 55-65313 and JP-A-55-1999.
This method has been proposed in Japanese Patent Application Laid-open No. 138015, Japanese Patent Application Laid-Open No. 158209-1982, and Japanese Patent Application Laid-Open No. 161014-1987. Since the methods described in these publications use bottom blowing in addition to top blowing, agitation is strengthened compared to the case of top blowing alone, and it is thought that they exhibit a certain effect.

しかし、これら公報記載の方法および転炉構造において
は、その底吹き用σ)ノズルとして、ストレート型(炉
底に対して直角方向)のノズルの使用が開示されており
、この底吹きノズルから吹込まれる流体が浴中全垂直方
向に上昇するようになっている。こρような吹込み流体
の上昇流によっても湯の攪拌はある程度強化されるが、
本発明者らのモデル実験(後述する)ではなお十分とは
言い得す、均一混合を得るには多量の吹込ガス量を必要
とする。
However, in the methods and converter structures described in these publications, the use of a straight nozzle (perpendicular to the furnace bottom) is disclosed as the bottom blowing nozzle. The injected fluid rises vertically throughout the bath. Although the stirring of the hot water is strengthened to some extent by this upward flow of the blown fluid,
A large amount of blown gas is required to obtain uniform mixing, which can be said to be sufficient in model experiments (described later) by the present inventors.

本発明は、これの一層の改善を目的としてなされたもの
で、前記公知のストレート型の底吹きノズルを使用する
場合に比べ、同一ガス流量でも均一混合時間を大巾に短
縮でき、大きな攪拌効果を伴って転炉操業が極めて効率
よ〈実施できる酸素上吹き転炉製鋼法を案出[−たもの
である。すなわち本発明は、炉内溶湯に対してランスに
よる酸素の上吹きと炉底ノズルによる気体または気体と
造滓剤の底吹きとを併用する転炉製鋼法であって、この
底吹きを実施するためのノズルとして、炉底面に対して
30〜70°の上向き傾斜角を有して炉心よりも偏心し
た位置の炉底に設置されかつその傾斜方向が溶湯に回転
運動を付与する方向に向けられた1個またに複数個の炉
底ノズルを使用し、この炉底ノズルからの気体または気
体と造滓剤の底吹きによって溶湯を炉内において自転(
回転)運動させることを特徴とするものである。ここで
、炉底ノズルから吹込む流体としては、精錬中は、酸素
単独、酸素と造滓材、酸素と造滓剤とさらに冷却ガスと
しての炭化水素類もしくは不活性ガス、酸素と炭化水素
類もしくは不活性ガス、そして、溶銑装入中もしくは出
鋼時には、空気および/″!たけ不活性ガス、などを使
用する。
The present invention was made with the aim of further improving this, and compared to the case of using the above-mentioned known straight bottom blowing nozzle, the uniform mixing time can be greatly shortened even with the same gas flow rate, and the stirring effect is large. We have devised an oxygen top-blown converter steel manufacturing method that allows extremely efficient converter operation. That is, the present invention is a converter steel manufacturing method that uses a combination of top blowing of oxygen using a lance and bottom blowing of gas or gas and slag forming agent from a bottom nozzle to the molten metal in the furnace, and the bottom blowing is carried out. As a nozzle for this purpose, it is installed at the bottom of the furnace at an angle of upward inclination of 30 to 70 degrees with respect to the bottom surface of the furnace, and is located eccentrically from the core, and the direction of inclination is directed in the direction that imparts rotational motion to the molten metal. One or more furnace bottom nozzles are used, and the molten metal is rotated (
It is characterized by rotational) movement. During refining, the fluid injected from the furnace bottom nozzle is oxygen alone, oxygen and slag-forming material, oxygen and slag-forming material, and hydrocarbons or inert gas as cooling gas, or oxygen and hydrocarbons. Alternatively, an inert gas is used, and air and an inert gas are used during hot metal charging or tapping.

以下、図面に従って本発明法を具体的に説明する。The method of the present invention will be specifically explained below with reference to the drawings.

第1図は、本発明法を実施するための転炉の例を示し友
もので、1は上吹きランス、2f′i炉体壁、3は炉底
、4は鋼浴、5はスラグを示している。
Figure 1 shows an example of a converter for carrying out the method of the present invention, in which 1 is a top blowing lance, 2 is a furnace wall, 3 is a furnace bottom, 4 is a steel bath, and 5 is a slag furnace. It shows.

炉底3vcおいて、この炉底3を貫通した炉底ノズル6
が設けられている。この炉底ノズル6は図示の場合は二
重管理目構造を有し、内管7と外管8とからなっている
。しかし、これは単管構造でもよい。図示の例において
この炉底ノズル6は炉底面に対して約45°の上向き傾
斜角をもって炉底内に設けられており、この炉底ノズル
6の噴射口(炉底表面にあられれる)の位置は炉心より
も偏心し文位置である。そして、この炉底ノズル6の傾
斜方向は、このノズル6からの流体の噴流によって溶鋼
4が回転するような方向に向けられている。
A furnace bottom nozzle 6 that penetrates the furnace bottom 3 at the furnace bottom 3vc
is provided. In the illustrated case, the hearth bottom nozzle 6 has a double control structure and consists of an inner tube 7 and an outer tube 8. However, it may also be of single tube construction. In the illustrated example, the hearth nozzle 6 is provided in the hearth with an upward inclination angle of approximately 45° relative to the hearth bottom surface, and the position of the injection port (located on the hearth bottom surface) of the hearth bottom nozzle 6 is is eccentric to the reactor core. The inclination direction of this furnace bottom nozzle 6 is directed in such a direction that the molten steel 4 is rotated by the jet of fluid from this nozzle 6.

内管7および外管8はそれぞれ流量計(図示せず)を経
て吹込み材料源に接続されている。
Inner tube 7 and outer tube 8 are each connected to a source of blowing material via a flow meter (not shown).

第2図は、本発明に従う4本の炉底ノズル6を炉底4V
c設けた例を平面的に示し友もので、各炉底ノズル6は
炉心Cから炉底4の外周RIC至る距離(r)の約半分
の位置(1/2r)に相互に等間隔に配置され(炉口か
ら湯が流れ出す位置にまで炉を傾動しても各ノズル6が
湯面下にあるような位置に配置するへ第1図に示した傾
斜角αはそれぞれ約45°を有し、その傾斜方向は隣接
する他の炉底ノズルの方向に一様に向けられている。し
たがって、各炉底ノズル6から溶鋼内に吹込まれる流体
(粉体流を含む)は第2図の矢印で示される向きをもっ
て斜め上方に向けて噴出され、溶鋼に炉心Cを中心とし
た旋回(回転)運動を付与することになる。第3図は、
溶鋼の旋回運動を図解的に示したものである。このよう
に溶鋼に旋回(回転)運動を付与しながら上吹きランス
IVcよる上吹きと共に精錬する方法はこれまで例を見
ないと考えられるが、このようにして溶鋼に旋回運動を
付与すると攪拌効率が極めてよくなり、かつランス1が
旋回の中心に位置する場合に、スラグ4は火点から炉壁
2の側に移動しやすくなって、溶鋼4と上吹き酸素流と
の接触が良好となり、脱炭反応が好ましい状態で促進さ
れる。
FIG. 2 shows four furnace bottom nozzles 6 according to the invention at a furnace bottom 4V.
The bottom nozzles 6 are arranged at equal intervals (1/2r) about half the distance (r) from the core C to the outer periphery RIC of the bottom 4. The inclination angles α shown in Fig. 1 each have approximately 45 degrees. , its inclination direction is uniformly directed toward other adjacent furnace bottom nozzles. Therefore, the fluid (including powder flow) blown into the molten steel from each furnace bottom nozzle 6 is as shown in FIG. It is ejected obliquely upward in the direction indicated by the arrow, imparting a swirling (rotation) motion to the molten steel around the core C. Figure 3 shows
This diagram schematically shows the swirling motion of molten steel. This method of imparting swirling (rotational) motion to molten steel and refining with top blowing by top blowing lance IVc is thought to be unprecedented, but imparting swirling motion to molten steel in this way improves stirring efficiency. When the slag 4 becomes extremely good and the lance 1 is located at the center of rotation, the slag 4 easily moves from the fire point to the furnace wall 2 side, and good contact between the molten steel 4 and the top-blown oxygen flow is achieved. The decarburization reaction is promoted under favorable conditions.

第4図はモデル実験結果を示したものであるが、第2〜
3図の如き位置に4本の炉底ノズルを配置した場合(第
4図のA)と、4本の炉底ノズルを第4図のBで示した
ような位置関係で配置した場合とについて、各々の上向
き傾斜角(第1図のα)を変化きせ、均一混合時間(τ
と記す)vc及ぼす影響を調べたものである。これに流
体の流量に一定にして、均一混合が得られるまでの時間
(τ)を、上吹きのみの場合との比で示したものである
が、第4図への場合には、ノズル傾斜角変が従来の垂直
な場合(90°)に比べ、60〜70°の傾斜を与える
と、均一混合時間が半減することを示している。
Figure 4 shows the model experiment results;
Regarding the case where four hearth bottom nozzles are arranged in the position shown in Figure 3 (A in Figure 4) and the case where the four hearth bottom nozzles are arranged in the positional relationship as shown in Figure 4 B. , the upward inclination angle (α in Figure 1) of each is varied, and the uniform mixing time (τ
This study investigated the effects of VC. The time (τ) until uniform mixing is obtained when the fluid flow rate is kept constant is shown as a ratio compared to the case of only top blowing. It is shown that when the angle is tilted at 60 to 70 degrees, the uniform mixing time is halved compared to the conventional case where the angle is vertical (90 degrees).

実操業的i/CU、この均一混合時間(τ)ニ60〜4
0秒も、従来の垂直方向の炉底ノズル(90°)VC比
べて、同一底吹流量でも短縮できることがわかった。ま
た、底吹き流量を少なくしても均一混合時間の短縮を図
ることもでき、例えば底吹きガス流量が【1.1〜0.
2 (NTVmin−Ton )の如き低量であっても
均一混合時間はなお短縮できることが明らかとなった。
Actual operation i/CU, this uniform mixing time (τ) d60~4
It was found that 0 seconds can be shortened even with the same bottom blowing flow rate compared to the conventional vertical furnace bottom nozzle (90°) VC. Further, even if the bottom blowing gas flow rate is reduced, the uniform mixing time can be shortened. For example, if the bottom blowing gas flow rate is [1.1 to 0.
It has become clear that even with a low amount such as 2 (NTVmin-Ton), the uniform mixing time can still be shortened.

しかし、第4図Bのような配置でに、傾斜角をもたせて
も、旋回運動を与えるような方向に傾斜しないので、効
果が埃われない。
However, even if an angle of inclination is provided in the arrangement as shown in FIG. 4B, the effect will not be reduced because the inclination is not in a direction that would give a turning motion.

以下に本発明法金実施例VCより説明する。The method of the present invention will be explained below using Example VC.

実施例 1 第2図に示した本発明に従うノズル配置(4本対称型、
ノズル角度45°]の炉に対し、下記の主原料、副原料
を装入し、250 N7I?/minの酸素上吹きと1
ON1f/minの酸素底吹きを行い、終点旦が0.0
2〜0.15%までの鋼を精錬し几。
Example 1 Nozzle arrangement according to the invention shown in FIG. 2 (4-nozzle symmetrical type,
The following main raw materials and auxiliary raw materials were charged into a furnace with a nozzle angle of 45°, and 250 N7I? /min oxygen top blow and 1
Oxygen bottom blowing is performed at ON1f/min, and the end point is 0.0.
Refining steel up to 2-0.15%.

主原料 溶銑    85トン スクラップ 15トン 副原料 生石灰    5トン 螢石     1トン 焼結鉱   0.9 ドア ペレット  0.2トン 比較例 1 第2図の同様のノズル配置でノズル角度を90゜(スト
レート]とした炉を用い、上吹き、底吹きの送酸流量、
および厘料配合を実施例1と同一条件で精錬した。
Main raw material Hot metal 85 tons Scrap 15 tons Auxiliary raw materials Quicklime 5 tons Fluorite 1 ton Sintered ore 0.9 Door pellets 0.2 tons Comparative example 1 Same nozzle arrangement as shown in Figure 2 with nozzle angle of 90° (straight). Using a furnace with
And the raw material formulation was refined under the same conditions as in Example 1.

比較例 2 実施例1と同一条件で上吹き単独(送酸流量250 N
@/min )で精錬し友。     □これらの実施
例および比較例1.2における吹錬結果を第5図〜第8
図に示した。すなわち、第5図には、吹止め旦とスラグ
中の(%T、Fθ)、第6図vcは、吹止め時(7) 
(%T、Fe) ト(%P)、第7図には、吹止め時の
1Jc)と[%Mn ]、第8図には吹止め時の[1〕
とFree Oとの関係をそれぞれ示した。
Comparative Example 2 Top blowing alone under the same conditions as Example 1 (oxygen flow rate 250 N)
@/min) Refine your friends. □The blowing results in these Examples and Comparative Examples 1.2 are shown in Figures 5 to 8.
Shown in the figure. That is, Fig. 5 shows (%T, Fθ) in the slag at the end of the blowout, and vc in Fig. 6 shows the value at the time of the end of the blowout (7).
(%T, Fe) (%P), Fig. 7 shows 1Jc) and [%Mn] when the blow is stopped, and Fig. 8 shows [1] when the blow is stopped.
and Free O, respectively.

吹錬結果は、第5図より、酸素上吹き単独の場合(比較
例2)、底吹きを併用するがノズル角度は90°の場合
(比較例1)、およびノズル角度45°で底吹きを併用
する場合(本発明)の順に、吹錬後の(%T、Fe)が
低下していることがわかる。
From Figure 5, the blowing results are shown in the case of oxygen top blowing alone (Comparative Example 2), the case of bottom blowing combined with 90° nozzle angle (Comparative Example 1), and the case of bottom blowing with a nozzle angle of 45°. It can be seen that (%T, Fe) after blowing decreases in the order of combined use (in the present invention).

本発明の場合、吹止め後〔%C) = 0.06での(
%T、Felば10チ前後であり、比較例2の15%〜
25%、比較例1の10%〜17%に比べ(%T、Fe
)が著しく低下しており、本発明による吹錬方法が優れ
念方法であることがわかる。底吹きガス流量は本発明、
比較例とも10 Nm/minと同一であるにもかかわ
らず、本発明の方が(%T、Fθ)は7%低下しており
、ノズル角度の効果が著しい。
In the case of the present invention, after blow-stopping [%C) = 0.06 (
%T, Fel is around 10cm, 15% of Comparative Example 2~
25%, compared to 10% to 17% in Comparative Example 1 (%T, Fe
), which shows that the blowing method according to the present invention is an excellent method. The bottom blowing gas flow rate is according to the present invention,
Although the comparative example is the same as 10 Nm/min, (%T, Fθ) is 7% lower in the present invention, and the effect of the nozzle angle is remarkable.

第6図には吹止め時の(%P)と(%T、Fe)の関係
を示した。本発明では(%T、Fe)が低下しているに
もかかわらず吹止め(%P)の値は成分規格値を十分満
足する範囲にある。また第7図に示したごとく、吹止め
〔%Mn)の値は本発明の場合最も高く、Mn歩留の大
巾な向上が達成されている。
FIG. 6 shows the relationship between (%P) and (%T, Fe) at the time of blow-off. In the present invention, although (%T, Fe) is reduced, the value of blowstop (%P) is within a range that fully satisfies the component specification values. Further, as shown in FIG. 7, the value of blow stop [%Mn] is the highest in the case of the present invention, and a significant improvement in the Mn yield has been achieved.

ま友、第8図に示し友ごとく、鋼浴中のFree Oの
レベルも低下しており、その結果合金歩留の向上などの
メリットが得られている。
As shown in Figure 8, the level of Free O in the steel bath has also decreased, resulting in benefits such as improved alloy yield.

以上の実施例から明らかなごとく、本発明法による吹錬
では、スラグ、鋼浴の過酸化が防止され、良好な冶金処
理特性が得られ、従来の酸素上吹き転炉法の冒頭に述べ
た諸欠点を大巾に改善でき几ことがわかる。
As is clear from the above examples, the blowing method according to the present invention prevents overoxidation of the slag and steel bath, and provides good metallurgical processing characteristics, compared to the conventional oxygen top-blown converter method mentioned at the beginning. It is clear that the various shortcomings can be greatly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明法を実施するための転炉の1例を示す縦
断面図、第2図は本発明に従う炉底ノズル配置を平面的
に示し九図、第3図は第2図の炉底ノズルによる溶湯の
回転挙動を示す概念図、第4図は炉底ノズルの傾斜角度
(ロ)と均一混合時間(τ)との関係図、第5図〜第8
図は実施例結果を示したもので、第5図は〔チC〕と(
チT、Fθ)との関係図、第6図は(%T、Fe)と〔
%P〕との関係図、第7図は〔%C〕と〔%Mn 1と
の関係図、第8図にC% C’ ]とF、ree Oと
の関係図である。 1・・・ランス 3・・・炉底 6・・・炉底ノズル α・・・傾斜角 出願人  日新製鋼株式会社 代理人  和 1)憲 糸玉:1 1、 −1 □+−−−2シ 第1図 第4図 ノズル傾斜角度(α)    ノズル傾斜角度(α)第
5図 〔%C)Ept 第6図 〔チT、Fθ〕F、pt
FIG. 1 is a vertical sectional view showing an example of a converter for carrying out the method of the present invention, FIG. 2 is a plan view showing the bottom nozzle arrangement according to the present invention, and FIG. A conceptual diagram showing the rotational behavior of molten metal by the furnace bottom nozzle, Figure 4 is a relationship diagram between the inclination angle (B) of the furnace bottom nozzle and the uniform mixing time (τ), Figures 5 to 8
The figure shows the results of the example, and Figure 5 shows [C] and (
Figure 6 shows the relationship between (%T, Fe) and [
%P], FIG. 7 is a diagram showing the relationship between [%C] and [%Mn 1, and FIG. 8 is a diagram showing the relationship between C%C'] and F, ree O. 1... Lance 3... Hearth bottom 6... Hearth bottom nozzle α... Inclination angle Applicant Nissin Steel Co., Ltd. Agent Kazu 1) Ken Yarn ball: 1 1, -1 □+---- Nozzle inclination angle (α) Nozzle inclination angle (α) Fig. 5 [%C) Ept Fig. 6 [T, Fθ] F, pt

Claims (1)

【特許請求の範囲】[Claims] 炉内溶湯に対してランスによる酸素の上吹きと炉底ノズ
ルによる気体または気体と造滓剤の底吹きとを併用する
転炉製鋼法において、前記の底吹きを実施するためのノ
ズルとして、炉底面に対して30〜70°の上向き傾斜
角を有して炉心よりも偏心した位置の炉底に設置されか
つその傾斜方向が溶湯に回転運動を付与する方向に向け
られた1個または複数個の炉底ノズルを使用し、この底
吹きによって溶湯を炉内において回転運動させることを
特徴とする転炉製鋼法。
In the converter steel manufacturing method, which uses a combination of top blowing of oxygen using a lance to the molten metal in the furnace and bottom blowing of gas or gas and slag forming agent from a bottom nozzle, the furnace is used as a nozzle for carrying out the bottom blowing. One or more units installed at the bottom of the furnace at an eccentric position relative to the core with an upward inclination angle of 30 to 70° with respect to the bottom surface, and whose inclination direction is oriented in a direction that imparts rotational motion to the molten metal. A converter steel manufacturing method characterized by using a furnace bottom nozzle and rotating the molten metal in the furnace by this bottom blowing.
JP21092681A 1981-12-29 1981-12-29 Steel making method by converter Pending JPS58117815A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21092681A JPS58117815A (en) 1981-12-29 1981-12-29 Steel making method by converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21092681A JPS58117815A (en) 1981-12-29 1981-12-29 Steel making method by converter

Publications (1)

Publication Number Publication Date
JPS58117815A true JPS58117815A (en) 1983-07-13

Family

ID=16597358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21092681A Pending JPS58117815A (en) 1981-12-29 1981-12-29 Steel making method by converter

Country Status (1)

Country Link
JP (1) JPS58117815A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63114915A (en) * 1986-11-04 1988-05-19 Nippon Steel Corp Production of extremely low carbon steel
CN112322840A (en) * 2020-11-23 2021-02-05 东北大学 Molten steel refining device and method
CN112501378A (en) * 2020-11-23 2021-03-16 东北大学 Top-bottom combined blown converter and steelmaking method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63114915A (en) * 1986-11-04 1988-05-19 Nippon Steel Corp Production of extremely low carbon steel
CN112322840A (en) * 2020-11-23 2021-02-05 东北大学 Molten steel refining device and method
CN112501378A (en) * 2020-11-23 2021-03-16 东北大学 Top-bottom combined blown converter and steelmaking method

Similar Documents

Publication Publication Date Title
US4426224A (en) Lance for powder top-blow refining and process for decarburizing and refining steel by using the lance
EP0328677B1 (en) PROCESS FOR MELT REDUCTION OF Cr STARTING MATERIAL AND MELT REDUCTION FURNACE
JPS58117815A (en) Steel making method by converter
US3672869A (en) Continuous metallurgical process
US4758269A (en) Method and apparatus for introducing gas into molten metal baths
EP0060305B1 (en) Method for smelting using top-and bottom-blown converter
JP2767674B2 (en) Refining method of high purity stainless steel
JP2005089839A (en) Method for refining molten steel
JP4980175B2 (en) Lance for molten iron refining and molten iron refining method
US4824080A (en) Apparatus for introducing gas into molten metal baths
JP4686880B2 (en) Hot phosphorus dephosphorization method
JP4686873B2 (en) Hot phosphorus dephosphorization method
JPS5816015A (en) Refining method for pig iron by oxygen top blown converter
JPS6056009A (en) Steel making method
JPH01156416A (en) Method for decarburizing high-chromium steel having excellent decarburizing characteristic under reduced pressure
JP2005146335A (en) Method for dephosphorizing molten pig iron
US4062531A (en) Ferruginous slag oxidizing apparatus
JP4686874B2 (en) Hot phosphorus dephosphorization method
JPH1192814A (en) Converter blowing for restraining generation of dust
JP6347199B2 (en) Hot metal refining method
JPH0431016B2 (en)
JPH1192815A (en) Converter blowing for restraining generation of dust
JP2556619Y2 (en) Smelting reduction furnace
JPS621445B2 (en)
JPS596311A (en) Blowing process for converter