JPS58117405A - Pattern measuring method - Google Patents

Pattern measuring method

Info

Publication number
JPS58117405A
JPS58117405A JP70882A JP70882A JPS58117405A JP S58117405 A JPS58117405 A JP S58117405A JP 70882 A JP70882 A JP 70882A JP 70882 A JP70882 A JP 70882A JP S58117405 A JPS58117405 A JP S58117405A
Authority
JP
Japan
Prior art keywords
pattern
positions
scanning
values
specified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP70882A
Other languages
Japanese (ja)
Other versions
JPS642201B2 (en
Inventor
Takao Namae
生江 隆男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd, Nihon Denshi KK filed Critical Jeol Ltd
Priority to JP70882A priority Critical patent/JPS58117405A/en
Publication of JPS58117405A publication Critical patent/JPS58117405A/en
Publication of JPS642201B2 publication Critical patent/JPS642201B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
    • G01B15/04Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons for measuring contours or curvatures

Abstract

PURPOSE:To compute the size of the width of a pattern based on the angle formed with each cursor, by approximating the values of a plurality of positions obtained from an edge part, among the values of the positions corresponding to the width measuring positions to the values forming a straight line by a least square method. CONSTITUTION:The cursors K1 and K2 are moved to approximately intermediate points E and F of the lower part of the pattern. These positions are specified as width size position of the mark. The following operation is automatically performed. The specified positions of a point Po and cursors K1 and K2 are automatically read by the electronic computer 4. Relations between the specified positions and the peak to peak value a/b and a'/b are computed and memorized. Then the scanning position P1 is scanned at a minute interval. Curves theta and theta' formed by coordinate values from the edge part are approximated to a straight line by the least square method. The angle theta and theta' formed by the resulting straight lines and the cursors K1 and K2 are computed, and the product of the value of the size and costhetac is computed. The vaue is made to be the width size of the pattern at the scanning position.

Description

【発明の詳細な説明】 本発明は電子ビーム走査によるパターン測定法に関し、
特に、基準方向に対し成る角度を持ち且つエツジ部が一
直線状でないパタ゛−ンの幅を測定するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a pattern measurement method using electron beam scanning.
In particular, it measures the width of a pattern that has an angle with respect to a reference direction and whose edges are not straight.

近年、ICからLSI及び超L8Iへと集積化が進んで
おり、それに伴いパターンの微小化がなされている。さ
て、ウェハ或はマスクブランクへのパターン描画に右い
て、パターンが(実際にはパターンの幅が)小さくなる
に伴い、ウェハへのパターン作成プロセス技術、例えば
、エツチング時のガス濃度(プラズマエツチングを行な
う場合)も変わって来る。従ってパターン寸法(パター
ンの幅寸法)に応じた作成プロセス条件を決める為に、
又、微小化されるパターン寸法に応じた作成プロセス技
術の開発の為に、パターンの形状、実質的にはパターン
の幅寸法を知る必要がある。
In recent years, integration has progressed from ICs to LSIs and ultra-L8Is, and patterns have become smaller accordingly. Now, when drawing a pattern on a wafer or mask blank, as the pattern (actually the width of the pattern) becomes smaller, the process technology for creating the pattern on the wafer, for example, the gas concentration during etching (plasma etching) becomes smaller. ) will also change. Therefore, in order to determine the creation process conditions according to the pattern dimensions (pattern width dimensions),
In addition, in order to develop a manufacturing process technology that corresponds to miniaturized pattern dimensions, it is necessary to know the shape of the pattern, essentially the width dimension of the pattern.

所で、一般に描画されたパターンは、第4図に示す様に
、裾部Sを持つので、パターンの幅寸法を測定する場合
、頂部間し、裾部の適宜点の間L〜裾部と平地部の境界
点間すの何れを測定するのかに依って値が異なるので、
予め何れを測定するのかを決めておかねばならない。
By the way, generally drawn patterns have a hem S, as shown in Figure 4, so when measuring the width dimension of the pattern, measure between the top and appropriate points of the hem from L to hem. Since the value differs depending on which distance between the boundary points of the flat area is measured,
It is necessary to decide in advance which one to measure.

そこで、パターンの何処から何処迄を幅寸法と度に測定
出来るよ引こした新しいパターン幅寸法測定方法が考え
られている。該方法は、電子ビームによるパターン上の
走査により該パターンの像を、輝度変調により例えばY
方向に二本のカーソルとX方向に一本のマーカを表示し
た陰極線管画面上に表示し、第2図に示す様に、該パタ
ーンP上の任意のX方向の位置P@cマーカMを移動さ
せ、該パターン上で幅寸法として測定すべき位置(図で
は裾部Sの大略中間点)Rf、FをカーソルKl。
Therefore, a new pattern width measurement method has been devised that allows measurement of the width from anywhere to anywhere in the pattern at the same time. In this method, an image of the pattern is scanned by an electron beam, and the image of the pattern is converted into, for example, Y
Two cursors in the direction and one marker in the X direction are displayed on the cathode ray tube screen, and as shown in FIG. Move the cursor Kl to the position Rf, F on the pattern to be measured as the width dimension (approximately the midpoint of the hem S in the figure).

Klで指定し、皺指定した位置上のライン走査により検
出された信号の中で、絨指定位置に対応した信号とピー
ク値との関係値を演算して記憶し、以後、パターン上の
走査により検出された信号と前記関係値とから各々の走
査における指定位置間の距離を測定する方法である。
Among the signals detected by line scanning on the wrinkle-specified position, the relation value between the signal corresponding to the carpet specified position and the peak value is calculated and stored, and thereafter, by scanning on the pattern, the relationship value is calculated and stored. This is a method of measuring the distance between specified positions in each scan from the detected signal and the relationship value.

さて、前記方法において、陰極線管画面上に表示された
パターンが、基準方向(例えばパターンのX方向の幅を
測定する場合にはY方向)に対し、即ちカーソルに対し
、成る角度を持っている場合、ウェハステージを回転さ
せるか、ビームの走査方向を回転させるかしてカーソル
をパターンエツジ番こ合わせるようにしている。しかし
、この様な方法は、何れも測定者の個人差が入ってしま
い、極微の測定だけに大きな誤差を産むことになる。更
に、前述した様に、一般にパターンは裾部を持ち、該裾
部は一直線状ではなく凹凸があるので、益々測定者の個
人差が入ってしまう。
Now, in the above method, the pattern displayed on the cathode ray tube screen has an angle with respect to the reference direction (for example, the Y direction when measuring the width of the pattern in the X direction), that is, with respect to the cursor. In this case, the cursor is aligned with the pattern edge number by rotating the wafer stage or by rotating the scanning direction of the beam. However, all of these methods incorporate individual differences among the measurers, resulting in large errors even in minute measurements. Furthermore, as mentioned above, the pattern generally has a hem, and since the hem is not linear but uneven, individual differences among the measurers are more likely to occur.

本発明はこの様な点に鑑みてなされたもので、電子ビー
ムによるパターン上の走査化より蚊パターンの像を表示
装置上に表示し、該パターン儂の裾部の適宜な位置上で
幅寸法として測定すべき位置を指定し、該指定した位置
上のライン走査により検出された信号の中で、該指定位
置に対応した信号とピーク値との関係値を演算して記憶
し、次に、パターン幅寸法を測定すべき走査位置の近傍
複数の走査位置を走査することにより検出された夫々の
信号と前記関係値とから各々の走査に怠ける指定位置間
の距離を算出し、前記幅寸法測定位置に対応した位置の
値の中、パターンの一方のエツジ部から得られた複数の
位置の値と他方のエツジ部から得られた複数の位置の値
夫々を最小自乗法により成る直線を形成する値に近似し
、該各々の直線と前記各々のカーソルとのなす角を夫々
求め、それらの角度に基づいて、パターンの幅寸法を算
出するようkした新規なパターン測定方法を提供するも
のである。
The present invention has been made in view of these points, and the image of a mosquito pattern is displayed on a display device by scanning the pattern with an electron beam, and the width dimension is measured at an appropriate position on the bottom of the pattern. A position to be measured is specified as , and a relationship value between a signal corresponding to the specified position and a peak value is calculated and stored among the signals detected by line scanning at the specified position, and then, From each signal detected by scanning a plurality of scanning positions in the vicinity of the scanning position where the pattern width dimension is to be measured and the relationship value, the distance between the specified positions missed in each scanning is calculated, and the width dimension measurement is performed. Among the position values corresponding to the positions, a straight line is formed using the method of least squares using the plurality of position values obtained from one edge part of the pattern and the plurality of position values obtained from the other edge part. The present invention provides a novel pattern measuring method in which the angles formed by each of the straight lines and each of the cursors are determined by approximating the value, and the width dimension of the pattern is calculated based on these angles. .

第3図は本発明のパターン測定方法を実施した装置例を
示したものである。
FIG. 3 shows an example of an apparatus implementing the pattern measuring method of the present invention.

図中1は電子銃で、該電子銃から射出された電子ビーム
は集束レンズ2i(より前行程でパターンが描画された
ウェハ3上に集束される。又、該電子線は電子計算機4
の指令により作動する走査信号発生回路5からの走査信
号に従って作動する偏向器6により、前記ウェハ3上を
走査する。該走査番こより前記ウェハ3から発生した反
射電子は、反射電子検出器1に検出される。該検出器の
出力は増幅器8を介して前記電子計算機4へ送られるの
と同時に、前記走査信号発生回路5から前記偏向器6へ
の出力と同期した出力(走査信号)が供給されている陰
極線管9にも送られる。該陰極線管はその輝度変調によ
り画面上に、例えばY方向に二本のカーソルKl、Km
vX方向に一本のマーカMを出せるようになって右り、
各々のカーソルとマーカは、夫々X方向、Y方向に夫々
外部操作により移動可能となっている。又、該陽極線管
のマーカMの位置は前記電子計算機4により記憶される
ようになっており、前記二本のカーソル間の距離は該電
子計算機により演算される。尚、前記の様にY方向に二
本のカーソル、X方向に一本のマーカを出したのは、パ
ターンのX方向の幅寸法を測定する為で、Y方向の幅寸
法を測定する場合は、X方向に二本のカーソル、Y方向
に一本のマーカを゛出す。当然の事乍ら、何れの方向の
幅寸法を測定する場合に右いても、カーソルやマーカを
前記本数に限定する事は無い。
In the figure, 1 is an electron gun, and the electron beam emitted from the electron gun is focused onto a focusing lens 2i (a wafer 3 on which a pattern has been drawn in a previous step).
The wafer 3 is scanned by a deflector 6 that operates in accordance with a scanning signal from a scanning signal generating circuit 5 that operates in response to a command. Reflected electrons generated from the wafer 3 due to the scanning number are detected by a reflected electron detector 1. The output of the detector is sent to the electronic computer 4 via the amplifier 8, and at the same time, the cathode ray is supplied with an output (scanning signal) synchronized with the output from the scanning signal generating circuit 5 to the deflector 6. It is also sent to tube 9. The cathode ray tube displays, for example, two cursors Kl and Km in the Y direction on the screen by its brightness modulation.
You can now put out a single marker M in the vX direction, and go to the right.
Each cursor and marker can be moved in the X and Y directions by external operations. Further, the position of the marker M on the anode ray tube is stored by the electronic computer 4, and the distance between the two cursors is calculated by the electronic computer. The reason why two cursors are displayed in the Y direction and one marker in the X direction as described above is to measure the width dimension of the pattern in the X direction. , displays two cursors in the X direction and one marker in the Y direction. Naturally, the number of cursors and markers is not limited to the above number, regardless of which direction the width dimension is to be measured.

では、第4図に示す如き基準走査方向(例えばX方向)
に対し成る角度をなし且つ裾部ぎに凹凸を持つパターン
〆の走査位置21部のパターン幅寸法の測定法を次に説
明する。
Now, the reference scanning direction (for example, the X direction) as shown in FIG.
Next, a method of measuring the pattern width dimension at the scanning position 21 of the pattern finish forming an angle with respect to the pattern and having unevenness at the bottom edge will be explained.

先ず、陰極線管9の画面上に表示されたパターン〆の走
査位置P・に、外部の操作によりマーカMを持って来る
。そして、マーク幅寸法を測定する位置をカーソルKs
、Ksで指定する。第4図では、パターンの裾部dの大
略中間点JPに夫々カーソルKg、Klを移動させ、こ
れらの位置をマーク幅寸法位置と指定する。以後の動作
は全て(電気的に)自動的に行なわれる。前記走査位置
P・及びカーソルKl、Klの指定位置は電子計算機4
に読み込まれる。該計算機は電子ビームが走査位置P・
を走査した時化、増幅器8を介して検出器7から送られ
て来る信号(第5図(a)参照)の、前記陰極線管の画
偉上で指定した位置に対する信号上での位置C、Diこ
対応したレベル値1.1′と前記検出器Tから送られて
来た信号の代表的な箇所のレベル値、例えばピークツー
ピーク値すとを検出し、指定位置と該ピーク塾ピーク値
との関係a/b 、 a’/bを演算してこれらを記憶
する。次に、走査位置Ps部内を微小間隔ずつずらして
走査する。即ち、該21部内の走査位置pH、Plm 
、 @ e @ 、 Fun 、PAllの各走査位置
を計算機4の指令により行なう。先ず、puを走査した
時に、計算機4に検出器7から第5図(b)に示す如き
信号が入って来たとすれば、該計算機は、該信号のピー
クツーピーク値す重を検出し、これと、前記関係値a/
b及びa’/b夫々との積am、 a’mを演算する。
First, the marker M is brought to the scanning position P of the pattern ending displayed on the screen of the cathode ray tube 9 by an external operation. Then, move the cursor Ks to the position where the mark width dimension is to be measured.
, Ks. In FIG. 4, the cursors Kg and Kl are respectively moved to the approximate midpoint JP of the bottom portion d of the pattern, and these positions are designated as mark width dimension positions. All subsequent operations are performed automatically (electrically). The scanning position P and the specified position of the cursor Kl, Kl are determined by the electronic computer 4.
is loaded into. The computer calculates the scanning position P of the electron beam.
, the position C on the signal of the signal sent from the detector 7 via the amplifier 8 (see FIG. 5(a)) relative to the specified position on the picture plane of the cathode ray tube, The corresponding level value 1.1' and the level value at a representative location of the signal sent from the detector T, for example, the peak-to-peak value, are detected, and the specified position and the corresponding peak peak value are detected. The relationships a/b and a'/b are calculated and stored. Next, the inside of the scanning position Ps is shifted by minute intervals and scanned. That is, the scanning position pH, Plm within the 21 parts
, @e@, Fun, and PAll are scanned according to instructions from the computer 4. First, when scanning pu, if a signal as shown in FIG. 5(b) is input from the detector 7 to the computer 4, the computer detects the peak-to-peak value of the signal, In addition to this, the relationship value a/
The products am and a'm of b and a'/b are calculated.

これらの積am、 a−はパターンPの走査位置Puに
おける指定マーク幅寸法測定位置に対応している。そし
て、計算機は値11.jlが得られた信号上での位置0
.b間の距離lxを測定し、この測定値を走査位置P−
どおけるパターンPの幅寸法と仮定する。この距離11
は、走査開始点を原点とし、信号上の検出位置Cm、I
kの夫々のX座標をCI、 daとし、該座標の差を計
算機が演算することにより求められる。この様にして、
計算機番ζ走査位置Pus 、 @・・、 Rm 、 
Panの各走査により、各走査位置pu 、 ga @
 @ 、 Psm、Psn 1cmける指定マーク幅寸
法測定位置に対応した積am、 ム、・* * 、 t
n 、 an(、am、an’が得られた位置の座標c
m。
These products am and a- correspond to the specified mark width measurement position at the scanning position Pu of the pattern P. Then, the calculator calculates the value 11. Position 0 on the signal where jl was obtained
.. Measure the distance lx between b and use this measurement value as the scanning position P-
Assume that the width dimension of the pattern P is This distance 11
The scanning start point is the origin, and the detection positions Cm and I on the signal are
The X coordinates of k are set as CI and da, and a computer calculates the difference between the coordinates. In this way,
Computer number ζ scanning position Pus, @..., Rm,
By each scan of Pan, each scan position pu, ga @
@ , Psm, Psn The product corresponding to the specified mark width measurement position by 1 cm am, m, * *, t
Coordinates c of the position where n, an(, am, an' are obtained
m.

d@、am拳、 cm、dm、co、dn及び板幅寸法
1@、@ @・、 1m、Inを測定し、記憶する。そ
して次の演算を行なう。
Measure and memorize d@, am fist, cm, dm, co, dn and board width dimensions 1@, @@・, 1m, In. Then, perform the following calculation.

先ず、第6図1と示す様に、各走査位置Pu、Pa。First, as shown in FIG. 6, each scanning position Pu, Pa.

・・・、 Psm 、 PAllに対するパターンの一
方のエツジ部からの座標値Ct、 cm、・・・、 c
m、cn及び他方のエツジ部からの座標値da、 d−
・・・、dm、dnが夫々形成する曲線θ、θ′を夫々
最小自乗法により直線近似させる。T、イがこの結果得
られた直線を算出する。この平均角度−・?パターン〆
の走査位置1%部の基準方向(X方向)に対する角度と
する。又、各走査位置Pu、Pms、* e m 、 
ram 、Panにおける板幅寸法り、 h、・・・、
 1m 、Inの平均値値を走査位置R部の基準方向の
幅寸法とする。そして、該寸法値j・とaSa拳の積を
演算し、この値を走査位置21部のパターンの幅寸法と
する。更に1パターンの別の位JI Pa部分の幅寸法
を測定する場合も、前記と同様處該Ps部分内を微小間
隔ずつずらして順次走査し、前記関係a/b e a’
/bを用いて、各走査位置Psm、Pa・・・における
指定マーク幅寸法測定位置に対応した積(実質的にはカ
ウンタ値)及び板幅寸法を測定して、これらを記憶し、
前述の如き演算により、位置P噛分のパターンの幅寸法
を算出する。
..., Psm, coordinate values Ct from one edge part of the pattern for Pall, cm, ..., c
m, cn and the coordinate values da, d- from the other edge part
. . , dm, and dn form curves θ and θ′, respectively, which are linearly approximated by the method of least squares. T and A calculate the straight line obtained as a result. This average angle -? This is the angle of the 1% scanning position of the pattern finish with respect to the reference direction (X direction). Also, each scanning position Pu, Pms, * em ,
ram, board width dimension in Pan, h,...
1m, the average value of In is taken as the width dimension of the scanning position R section in the reference direction. Then, the product of the dimension value j· and aSa is calculated, and this value is set as the width dimension of the pattern at the scanning position 21. Furthermore, when measuring the width dimension of another position JI Pa part of one pattern, the inside of the Ps part is sequentially scanned by shifting minute intervals in the same way as above, and the above relationship a/b e a'
/b to measure the product (substantially a counter value) and plate width dimension corresponding to the specified mark width dimension measurement position at each scanning position Psm, Pa..., and store these;
The width dimension of the pattern at position P is calculated by the calculation as described above.

尚、前記実施例で、値a重が得られる信号上の位置はC
I、 Dtの他にC’S、DIもあるが、予め計算機に
、値J1mが得られる信号上の位置の内、内側の位置(
CI、DI)の間の距離を測定するように記憶させてお
く。
In the above embodiment, the position on the signal where the value a weight is obtained is C.
In addition to I and Dt, there are also C'S and DI, but in advance, enter the inner position (
CI, DI) to be memorized to measure the distance between them.

又、前記実施例では、マーク幅寸法を測定する位置をカ
ーソルKl、Klで指定したが、何れか一つのカーソル
で一つ位置を指定し、この指定位置化対応した信号上の
レベル値i″とピークツーピーク値bとの関係a7bを
、マーク幅寸法指定位置(二つの位置)の関係値として
用いてもよい。
Further, in the above embodiment, the position at which the mark width dimension is measured is specified by the cursors Kl, Kl, but by specifying one position with any one of the cursors, the level value i'' on the signal corresponding to this specified position is determined. The relationship a7b between and the peak-to-peak value b may be used as the relationship value of the mark width dimension designation positions (two positions).

本発明によれば、パターンの幅寸法測定にセいて、何処
から何処迄を幅寸法として測定しているのかが明確にな
り、統一した指定位置の幅寸法を各パターンの各場所で
自動的に高速高精度に測定することが出来、特に基準方
向に対し成る角度を持ち且つエツジ部が一直線状でない
パターンの幅を測定する場合、全く測定者の個人差が入
らないので、精確な測定結果が得られる。
According to the present invention, when measuring the width dimension of a pattern, it becomes clear from where to where the width dimension is being measured, and the width dimension at a unified designated position is automatically measured at each location of each pattern. It can be measured at high speed and with high precision, and especially when measuring the width of a pattern that has an angle with respect to the reference direction and whose edges are not in a straight line, it does not take into account the individual differences of the measurer, so accurate measurement results can be obtained. can get.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はパターンの断面図、第2図は新しいパターン幅
寸法測定法の説明を補足する為の図、第3図は本発明の
パターン測定方法を実施した装置例を示したもの、第4
図乃軍第6図は本発明の詳細な説明を補足する為の図で
ある。 3:ウェハ、4:電子計算機、6:偏向器、1:反射電
子検出器、S:陰極線管、Kg 、 珍:力−ソル、M
:マーカ、1%m、Rm、e # @ 、 plrll
l、pHl:走査位置 p 、 N @パターン、P・
:走査位置%L:ピークッピーク値、11:距離。 特許出願人 日本電子株式全社 代表者加勢忠雄 、上 r r; 背ムロ −21−
Fig. 1 is a cross-sectional view of a pattern, Fig. 2 is a diagram to supplement the explanation of the new pattern width dimension measurement method, Fig. 3 shows an example of a device implementing the pattern measurement method of the present invention, and Fig. 4
Figure 6 is a diagram to supplement the detailed explanation of the present invention. 3: Wafer, 4: Electronic computer, 6: Deflector, 1: Backscattered electron detector, S: Cathode ray tube, Kg, Zhen: Force-Sol, M
: marker, 1%m, Rm, e #@, plrll
l, pHl: scanning position p, N @pattern, P・
: Scanning position %L: Peak peak value, 11: Distance. Patent applicant JEOL Ltd. representative Tadao Kase, upper r r; Semuro-21-

Claims (1)

【特許請求の範囲】 電子ビームによるパターン上の走査により該パターンの
儂を表示装置上屹表示し、賦パターン僚の裾部の適宜な
位置上で幅寸法として測定すべき位置を指定し、該指定
した位置上のライン走査により検出された信号の中で、
該指定位置に対応した信号とピーク値との関係値を演算
して記憶し、次に、パターン上幅寸法を測定すべき走査
位置の近傍複数の走査位置を走査することにより検出さ
れた夫々の信号と前記関係値とから各々の走査における
指定位置間の距離を算出し、前記幅寸法測定位置に対応
した位置の値の中、パターンの一方のエツジ部から得ら
れ複数の位置の値と他方のエツジ部から得られた複数の
位置の値夫々を最小自乗法により成る直線を形成する値
に近似し、該各各の直線と測定方向との各々がなす角を
夫々求め、メ′ それらの角度に基づいてパターンの幅寸法を算出するよ
う−こしたパターン測定方法。
[Scope of Claims] The image of the pattern is displayed on a display device by scanning the pattern with an electron beam, and the position to be measured as the width dimension is specified on an appropriate position of the bottom of the pattern. Among the signals detected by line scanning on the specified position,
The relationship value between the signal and the peak value corresponding to the specified position is calculated and stored, and then each of the detected values is The distance between designated positions in each scan is calculated from the signal and the relationship value, and among the position values corresponding to the width dimension measurement position, the values at multiple positions obtained from one edge portion of the pattern and the other are calculated. Approximate each of the values of a plurality of positions obtained from the edge part to the value forming a straight line by the method of least squares, find the angle between each of the straight lines and the measurement direction, and calculate the angle between each of the straight lines. A method of measuring a pattern in which the width dimension of the pattern is calculated based on the angle.
JP70882A 1982-01-05 1982-01-05 Pattern measuring method Granted JPS58117405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP70882A JPS58117405A (en) 1982-01-05 1982-01-05 Pattern measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP70882A JPS58117405A (en) 1982-01-05 1982-01-05 Pattern measuring method

Publications (2)

Publication Number Publication Date
JPS58117405A true JPS58117405A (en) 1983-07-13
JPS642201B2 JPS642201B2 (en) 1989-01-17

Family

ID=11481264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP70882A Granted JPS58117405A (en) 1982-01-05 1982-01-05 Pattern measuring method

Country Status (1)

Country Link
JP (1) JPS58117405A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63231205A (en) * 1987-03-19 1988-09-27 Osaka Daiyamondo Kogyo Kk Measuring method for contour shape
JPH0445046B2 (en) * 1984-09-28 1992-07-23 Tokyo Shibaura Electric Co
JP2002202115A (en) * 2000-11-09 2002-07-19 Samsung Electronics Co Ltd Method of automatically detecting measuring error of measuring apparatus
JP2007192594A (en) * 2006-01-17 2007-08-02 Horon:Kk Apparatus and method for acquiring pattern image
WO2011145338A1 (en) * 2010-05-21 2011-11-24 株式会社日立ハイテクノロジーズ Pattern dimension measurement method, pattern dimension measurement device, program for causing computer to execute pattern dimension measurement method, and recording medium having same recorded thereon

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54138467A (en) * 1978-04-19 1979-10-26 Hitachi Ltd Scanning type electron microscope or resembling apparatus
JPS56164902A (en) * 1980-05-23 1981-12-18 Kawasaki Steel Corp Thickness measuring device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54138467A (en) * 1978-04-19 1979-10-26 Hitachi Ltd Scanning type electron microscope or resembling apparatus
JPS56164902A (en) * 1980-05-23 1981-12-18 Kawasaki Steel Corp Thickness measuring device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0445046B2 (en) * 1984-09-28 1992-07-23 Tokyo Shibaura Electric Co
JPS63231205A (en) * 1987-03-19 1988-09-27 Osaka Daiyamondo Kogyo Kk Measuring method for contour shape
JP2002202115A (en) * 2000-11-09 2002-07-19 Samsung Electronics Co Ltd Method of automatically detecting measuring error of measuring apparatus
JP2007192594A (en) * 2006-01-17 2007-08-02 Horon:Kk Apparatus and method for acquiring pattern image
WO2011145338A1 (en) * 2010-05-21 2011-11-24 株式会社日立ハイテクノロジーズ Pattern dimension measurement method, pattern dimension measurement device, program for causing computer to execute pattern dimension measurement method, and recording medium having same recorded thereon
JP2011242352A (en) * 2010-05-21 2011-12-01 Hitachi High-Technologies Corp Method and apparatus for measuring pattern dimension, program for making computer execute method for measuring pattern dimension, and recording medium for recording the same
US9191628B2 (en) 2010-05-21 2015-11-17 Hitachi High-Technologies Corporation Pattern dimension measurement method, pattern dimension measurement device, program for causing computer to execute pattern dimension measurement method, and recording medium having same recorded thereon

Also Published As

Publication number Publication date
JPS642201B2 (en) 1989-01-17

Similar Documents

Publication Publication Date Title
US8107685B2 (en) Displacement sensor having a display data output
US8330104B2 (en) Pattern measurement apparatus and pattern measurement method
KR102392338B1 (en) Pattern measurement device and pattern measurement method
US20160056014A1 (en) Superposition Measuring Apparatus, Superposition Measuring Method, and Superposition Measuring System
JP2014001927A (en) Device for measuring overlay error and computer program
US20160261791A1 (en) Optical Displacement Measurement System, Imaging Condition Optimization Method, And Imaging Condition Optimization Program
US10977786B2 (en) Wafer observation device
KR102137454B1 (en) Overlay error measurement device, and computer program
KR880010457A (en) Convergence measurement and calibration determination method and apparatus
JPS58117405A (en) Pattern measuring method
KR100236862B1 (en) Convergence measuring apparatus
JP3265724B2 (en) Charged particle beam equipment
JPS58117404A (en) Pattern measuring method
US8605985B2 (en) Pattern measurement apparatus and pattern measurement method
JPS6321844A (en) Measuring method for contact hole
JPS63199416A (en) Mark for measuring positional displacement and measuring method for positional displacement using said mark
JPS61211935A (en) Convergence amount detective method of color cathode-ray tube
JPS5498577A (en) Correction method for electron beam scanning position
JPH06151564A (en) Wafer pattern device
JP2539530B2 (en) Sample image display
JPH0375046B2 (en)
JPH0646543B2 (en) How to measure the convergence of a picture tube
JPH10105719A (en) Optical measurement method for hole position
JPH01112649A (en) Measuring device using electron beam
JPH0372923B2 (en)