JPS58116506A - Preparation of color filter - Google Patents

Preparation of color filter

Info

Publication number
JPS58116506A
JPS58116506A JP56212341A JP21234181A JPS58116506A JP S58116506 A JPS58116506 A JP S58116506A JP 56212341 A JP56212341 A JP 56212341A JP 21234181 A JP21234181 A JP 21234181A JP S58116506 A JPS58116506 A JP S58116506A
Authority
JP
Japan
Prior art keywords
resin
color
color filter
resin layer
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56212341A
Other languages
Japanese (ja)
Other versions
JPH0237581B2 (en
Inventor
Kazuo Shirakawa
白川 和男
Yoshikatsu Sawada
沢田 佳克
Takeo Sugiura
杉浦 猛雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP56212341A priority Critical patent/JPS58116506A/en
Publication of JPS58116506A publication Critical patent/JPS58116506A/en
Publication of JPH0237581B2 publication Critical patent/JPH0237581B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02162Coatings for devices characterised by at least one potential jump barrier or surface barrier for filtering or shielding light, e.g. multicolour filters for photodetectors

Abstract

PURPOSE:To obtain a color filter superior in dying density, uniformity of film thickness, resolution, etc., by using a water-soluble photosensitive a specified cattle bone peptide resin obtained from a cattle bone collagen, and a photosensitive agent causing photocross-linking on irradiation of active rays. CONSTITUTION:A cattle bone collagen is hydrolyzed in specified conditions to give a peptide resin having 10,000-50,000wt. average mol.wt. (Mw) and <=2 mol.wt. dispersion degree (Dzw=Mz/Mw, Mz being Z average mol.wt.). A photosensitive layer contg. said resin and a water-soluble photosensitive agent, such as bichromate or diazonium salt, capable of coordinating COOH, NH2, OH, and CO groups of the peptide resin is formed on a glass base 6. It is patternwise exposed, developed, and dyed with a first color dye to obtain a relief pattern 7 of the first color. Then, a dyeing-resistant film 8 of transparent polyester is formed on the pattern 7, and a photosensitive layer is again formed in contact with the film 8 likewise to form a pattern 9 dyed to a second color and a dyeing-resistant film 10, and further likewise a pattern dyed to a third color, and finally, an overcoat layer 12 is formed, thus permitting dyeability, etc. to be enhanced as compared with the conventional filter.

Description

【発明の詳細な説明】 色分解用フィルターを形成して成るカラーフィルターの
製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a color filter by forming a color separation filter.

従来、カラーテレビジョンカメラに使用するカラーフィ
ルターの製造方式としては、ガラス基板上に蒸着法によ
り着色物質Z付着してパターン加工する無機系フィルタ
ーと、ガラス基板上に樹脂層を設け、#柳脂層を選択的
に染色及び脱色する工程乞繰り返して異なる着色樹脂層
を形成するか、あるいはガラス基板上にレリーフパター
ン状の樹脂層を設け、該樹脂層を染料等にて染色して着
色樹脂j一ヲ形成していく工程を、フィルターが必要と
する色数だけ複数回繰り返して作る(この方法を一部で
はレリーフ染色法と称している)有機系フィルターがあ
る。一般に有機系フィルターの製造において、樹脂層の
染色に使用する染料とじては染色された着色樹脂層の色
純度、濃度等の分光波長特性から酸性、直接及び塩基性
のような水溶性染料が使用される。また樹脂層の材料と
しても労働衛生上の問題からあるいは材料価格等の点か
ら、水溶性高分子物から!茂る感光材料が使用され、従
来からこれら水溶性高分子物としてはゼラチン、カゼイ
ン、フィンシュブルー、卵白等の水溶性天然高分子、ま
たポリビニルアルコール、ポリビニルピロリドン、ポリ
アクリルアミド等の水溶性合成高分子が知られている。
Traditionally, the manufacturing methods for color filters used in color television cameras include inorganic filters in which a coloring substance Z is deposited on a glass substrate using a vapor deposition method and patterned; The process of selectively dyeing and decolorizing layers is repeated to form different colored resin layers, or a resin layer in a relief pattern is provided on a glass substrate, and the resin layer is dyed with a dye or the like to form a colored resin. There are organic filters that are made by repeating the process of forming one color multiple times as many times as the number of colors required by the filter (this method is sometimes referred to as the relief dyeing method). Generally, in the production of organic filters, water-soluble dyes such as acidic, direct, and basic dyes are used to dye the resin layer, depending on the spectral wavelength characteristics such as color purity and concentration of the colored resin layer. be done. In addition, the material for the resin layer should be water-soluble polymers due to occupational health issues and material costs. Traditionally, these water-soluble polymers include water-soluble natural polymers such as gelatin, casein, Finsch blue, and egg white, as well as water-soluble synthetic polymers such as polyvinyl alcohol, polyvinylpyrrolidone, and polyacrylamide. It has been known.

しかしながら、水溶性染料に対する着色層としての染着
力を考えた場合、水溶性染料に対する染着層、すなわち
水浴性高分子物体の吸着座席、例えば分子中にスルフォ
ン酸基を有する直接及び酸性染料に対してはアミン基、
また分子中にアミノ基を有する塩基性染料に対してはカ
ルボキシル基が関与するが、水浴性高分子物中に存在す
るこれらアミノ基及びカルボキシル基の数を着目したと
き、天然高分子がそれぞれはぼtOmeq/を保有する
一方、水溶性合成高分子は0. 1 meq/ P程度
の保有のため、合成物は天然物の約1710のイオン結
合による染色濃度しか期待できないことがわかる。この
ため水溶性でかつ天然高分子より成る感光材料が望まれ
るが、天然高分子はその製造工程上の問題等からロフト
毎のバラツキが大きく、その結果としてこれらより成る
感光材料では感光度、解像性等の感光特性上での安定性
を保持することは非常に困難である。またゼラチン、カ
ゼイン等においては、それらの平均分子量が大きいこと
からゲル化温度( Settingpoint )が高
く水への溶解性が低いため、“加温条件下での取り扱い
が必要と−され作業性に問題が生じてくる。しかしなが
ら、以上ケ満足されたとしてもカラーフィルターとして
の分光波長特性を得ろために着色樹脂層の膜厚を増加さ
せた結果としてパターンのシャープ性、解像性、あるい
は感光度等の感光特性を低下させ適正な感光度により微
細なパターンを得ることが非常に困難であった。
However, when considering the dyeing power of a coloring layer for water-soluble dyes, the dyeing layer for water-soluble dyes, that is, the adsorption seat of a water-bathable polymer object, for example, for direct and acid dyes having sulfonic acid groups in the molecule. is an amine group,
In addition, carboxyl groups are involved in basic dyes that have amino groups in the molecule, but when we look at the number of these amino groups and carboxyl groups that exist in water bathable polymers, we find that each natural polymer has a While the water-soluble synthetic polymer has 0. It can be seen that the synthetic product has a staining density of about 1710 meq/P due to ionic bonds of about 1710 compared to the natural product. For this reason, photosensitive materials made of water-soluble natural polymers are desired, but natural polymers have large variations from loft to loft due to problems in their manufacturing process, and as a result, photosensitive materials made of these materials have low sensitivity and It is extremely difficult to maintain stability in terms of photosensitive characteristics such as image quality. In addition, gelatin, casein, etc. have a high average molecular weight and therefore have a high gelling temperature (setting point) and low solubility in water. However, even if the above are satisfied, the sharpness, resolution, or photosensitivity of the pattern may be affected as a result of increasing the thickness of the colored resin layer in order to obtain the spectral wavelength characteristics as a color filter. It has been extremely difficult to obtain fine patterns with appropriate photosensitivity due to the deterioration of the photosensitivity.

本発明はかかる水溶性感光材料の欠点を改良した室温で
の作業環境下においても塗布膜厚均一性、高解像性を有
し、かつ薄膜においても水溶性染料に対し染色性が優れ
た水溶性感光材料ケ用いるものであり、必要に応じて透
明でかつ耐染色性の良好な中間膜と組み合せるか、染色
樹脂層を硬膜化するなどの耐染色処理を付加したレリー
フ染色法のカラーフィルターの製造方法に関するもので
ある。
The present invention provides a water-soluble photosensitive material that improves the drawbacks of such water-soluble photosensitive materials, has uniform coating thickness and high resolution even in a working environment at room temperature, and has excellent dyeing properties against water-soluble dyes even in thin films. A color relief dyeing method that uses photosensitive materials, and if necessary, is combined with a transparent interlayer film with good stain resistance, or is treated with stain resistance treatment such as hardening the dyed resin layer. The present invention relates to a method for manufacturing a filter.

本発明をさらに詳しく説明すると使用される水溶性感光
材料は、先に本発明者らが提案した特願昭55−162
141号に述べた分子鎖中にべブタイド結合を有する天
然タンパク質でペブタイド結合を酸、アルカリ、酵素等
により加水分解し、その数平均分子貴官nを2000〜
30000かつ40C, 0. 1 5 moleクエ
ン酸緩衝液中の固有粘度〔η〕(以下単に固有粘度と称
する))10.060〜0.155d1/f!−の間に
設定した領域にお(・でも分子鎖が強固に巻き戻る性能
(以下コラーゲンホールド形成能と称す)を維持できる
咄乳動物コラーゲンの加水分解物から成る水溶性ペブタ
イド乞樹脂分とする感光材料をさらに鋭意に研究した結
果得られたものである。膜厚均一性、高解像性、高コン
トラスト、かつ高染色性等の特性を有し、パターン露光
により、基板上で精度の良いレリーフパターンを室温で
の作業環境下において全く問題3なく安定して得るため
に企画された水溶性ペブタイド樹脂感光材料であり、分
子鎖中にベグタイド結合ヶ有する牛骨コラーゲンを酸、
アルカリ、酵素等により加水分解し、その重量平均分子
量Mwが1ooo。
To explain the present invention in more detail, the water-soluble photosensitive material to be used is disclosed in Japanese Patent Application No. 55-162, which was previously proposed by the present inventors.
141, the peptide bonds are hydrolyzed with acids, alkalis, enzymes, etc., and the number average molecular weight n is 2000 to 2000.
30000 and 40C, 0. Intrinsic viscosity [η] in 15 mole citrate buffer (hereinafter simply referred to as intrinsic viscosity)) 10.060 to 0.155 d1/f! A water-soluble peptide resin made from a hydrolyzate of mammalian collagen that can maintain the ability to firmly unwind molecular chains (hereinafter referred to as collagen hold-forming ability) in the region set between - This material was obtained as a result of intensive research into photosensitive materials.It has characteristics such as uniform film thickness, high resolution, high contrast, and high dyeability, and can be printed with high precision on the substrate by pattern exposure. This is a water-soluble peptide resin photosensitive material designed to stably obtain a relief pattern in a working environment at room temperature without any problems.
Hydrolyzed by alkali, enzymes, etc., and its weight average molecular weight Mw is 1ooo.

〜500001’2m設定され、さらに好ましくはその
分子量分布曲線において高分子量側における分子量分布
の広さを示す指標Dzw (Dzw = Mz / l
uw但し、Mz : Z平均分子量、ワw:重量平均分
子量)が2以下である牛骨ベブタイド樹脂から成る水溶
性牛骨ペグタイド樹脂感光材料である。
~500001'2m, more preferably an index Dzw (Dzw = Mz / l) indicating the breadth of the molecular weight distribution on the high molecular weight side in the molecular weight distribution curve.
It is a water-soluble bovine bone pegtide resin photosensitive material made of a bovine bone bebutide resin having a weight average molecular weight (Mz: Z average molecular weight, W: weight average molecular weight) of 2 or less.

ここで用いられる牛骨ペプタイド樹脂は牛の骨から得ら
れるコラーゲンのペプタイド結合を加水分解して得られ
るものであるが、加水分解条件として温度80C1時間
3 hrs 、常圧下で牛骨コラーゲン濃度20%に対
し、次のように塩酸添加濃度を設定することにより、各
種牛骨ペプタイド樹脂を得ることができる(表1)。
The bovine bone peptide resin used here is obtained by hydrolyzing the peptide bonds of collagen obtained from bovine bones, and the hydrolysis conditions are a temperature of 80C for 1 hour and 3 hrs under normal pressure and a bovine bone collagen concentration of 20%. However, various bovine bone peptide resins can be obtained by setting the concentration of hydrochloric acid added as follows (Table 1).

表  1 また上記牛骨ペブタイド樹脂サンプルの物性値を表2に
示す。
Table 1 Table 2 also shows the physical property values of the bovine bone pebutide resin sample.

表  2 なお、これらの測定は次の方法で行った。Table 2 Note that these measurements were performed using the following method.

〔測定項目1〜3〕 重量平均分子量1;?w、Z平均分子量Mz、及びDz
w 。
[Measurement items 1 to 3] Weight average molecular weight 1;? w, Z average molecular weight Mz, and Dz
lol.

りん酸緩衝液(0,I M Na、 HPO4+ 0.
1 M KH,PO,、PH6,8、により各牛骨ペプ
タイド樹脂をサンプル濃度としてiomy/mβ(ベブ
タイド樹脂mP/緩衝液酩 )に調整し、0.22μフ
イルターによりf通抜、次の条件で分子量分布を測定し
た。
Phosphate buffer (0, IM Na, HPO4+ 0.
The sample concentration of each bovine bone peptide resin was adjusted to iomy/mβ (bebutide resin mP/buffer solution) using 1 M KH, PO, pH 6, 8, filtered through a 0.22μ filter, and filtered under the following conditions. The molecular weight distribution was measured.

測定機器 東洋曹達工業■製高速液体クロマトクラフィ
ー HLC−802UR 検査方法 示差屈折計 IR−864X10−1lRI
UFSカ  ラ  ム  プレカラムGSWP+G40
008W+G3000SW流     速  1. O
Om8/m1nチャート速度 5.0H/min サンプル注入量  100μ! 測定温度 40C また保持時間と、分子量の関係を求めるための検量線は
標準物質としてポリエチレングリコールを便用し、上記
条件と同様の方法により求めた。
Measuring equipment High performance liquid chromatography manufactured by Toyo Soda Kogyo ■ HLC-802UR Inspection method Differential refractometer IR-864X10-11RI
UFS column precolumn GSWP+G40
008W+G3000SW flow speed 1. O
Om8/m1n Chart speed 5.0H/min Sample injection amount 100μ! Measurement temperature: 40C A calibration curve for determining the relationship between retention time and molecular weight was determined using polyethylene glycol as a standard substance and using the same method as the above conditions.

このようにして得られた分子量分布曲線を第一図に示す
。この第1図の分子量分布曲線を次の方法により解析す
ることによりMw、富2及びDZW)  を求める。
The molecular weight distribution curve thus obtained is shown in Figure 1. By analyzing the molecular weight distribution curve shown in FIG. 1 by the following method, Mw, wealth 2 and DZW) are determined.

西−」」卦住 ΣH1 凱=XH泪”′ ΣHIMI Z DZW =  − Mw ここでMl:分子量 Hl:分子量M1における分子量分布曲線の高さ〔測定
項目4〕 数平均分子量 Mn ■aH5lyke法によって行なった。
Nishi-'''' 卦州ΣH1 凱 = .

〔測定項目5〕 固有粘度〔グ〕 0、15 moleクエン酸緩衝液(クエン酸ノーダ+
クエン酸)PHs、 yにより各種牛骨ペプタイド樹脂
サンプル溶液(4otl:’)Y作成し、次の関係から
固有粘度〔η〕を得た。
[Measurement item 5] Intrinsic viscosity [g] 0, 15 mole citrate buffer (citric acid +
Various bovine bone peptide resin sample solutions (4otl:')Y were prepared using citric acid) PHs and y, and the intrinsic viscosity [η] was obtained from the following relationship.

〔η〕= lim +7−η/ □  C C10η0 ここで η :牛骨ペプタイド樹脂溶液粘度η0:クエ
ン酸緩衝液帖度 C:牛骨ペグタイド樹脂溶液濃度P/de〔測定項目6
〕 ゲル化温度(setting point)各種牛
骨ペグタイド樹脂10重量パーセント溶液のゲル化温度
(setting point )を測定した。
[η] = lim +7-η/ □ C C10η0 where η: Bovine bone peptide resin solution viscosity η0: Citrate buffer solution concentration C: Bovine bone peptide resin solution concentration P/de [Measurement item 6
] Gelation temperature (setting point) The gelation temperature (setting point) of various 10 weight percent solutions of bovine bone pegtide resins was measured.

〔測定項目7〕 感光液粘度 各種牛骨ペグタイド樹脂感光液組成として、ペグタイド
樹脂/ 1 mole 11%度重クロム酸アンモニウ
ム水溶液/純水: 50 、!i’/ 40 m13/
 25 Qm4がら成る感光液の23Cにおける粘度の
経時変化であり、感光液調合時と23C環境化6日間放
置した後の粘摩値を示した。
[Measurement item 7] Viscosity of photosensitive liquid Various bovine bone pegtide resin Photosensitive liquid composition: Pegtide resin/1 mole 11% ammonium dichromate aqueous solution/pure water: 50,! i'/ 40 m13/
This is a change over time in the viscosity at 23C of a photosensitive solution consisting of 25Qm4, and the viscosity values are shown at the time of preparing the photosensitive solution and after being left in a 23C environment for 6 days.

測定装置  B型粘度計 〔測定項目8〕 旋光度 〔α〕9 クエン酸緩衝液(クエン酸ソーダ+クエン酸PH6,8
)により約1重量%濃度に調整された各種牛骨ペグタイ
ド樹脂溶液i40・C雰囲気から2C雰囲気に急激に変
化させ、180分後の値を読みとり旋光度〔α〕Dを測
定した。
Measuring device B-type viscometer [Measurement item 8] Optical rotation [α] 9 Citrate buffer (sodium citrate + citric acid pH 6,8
) Various bovine bone pegtide resin solutions adjusted to a concentration of about 1% by weight were rapidly changed from an i40.C atmosphere to a 2C atmosphere, and the value after 180 minutes was read to measure the optical rotation [α]D.

〔α〕ゎ−(皿凹・”)。〔α〕ゎ−(counter-sunk・”).

    p C:牛骨ベグタイド溶液績度 (wt%)13 : 2
0011  (optical path )X:回転
角 (degree ) 使用されるD線 λ−589nm 〔α〕0の値は絶対値が太き(なるに従い、コラーゲン
ホールド形成能は増大することを意味する。
pC: Bovine bone vegtide solution performance (wt%) 13: 2
0011 (optical path)

〔測定項目9〕 沈黙光度 測定項目7に示された牛骨ペグタイド感光液の光架橋性
を示す光量の指数であり、数値の小さい方が感光度が高
いことを示す。
[Measurement item 9] Silent photometry is an index of the amount of light indicating the photocrosslinking property of the bovine bone pegtide photosensitive solution shown in measurement item 7, and a smaller value indicates a higher photosensitivity.

また、活性光照射にまり牛骨ペグタイド樹脂と光架橋反
応を生じさせる感光剤としては重クロム酸塩、たとえば
重クロム酸アンモニウム、重クロム酸ナトリウム、重ク
ロム酸カリウム等、またジアゾニウム塩;たとえばP−
ジアゾフェニルアミン、1−ジアゾ−4−ジメチルアミ
ノベンゼン・ヒドロフルオボレート、1−ジアゾ−3−
メチル−4−ジメチルアニリン・サルフェート、1−ジ
アゾ−3−モノエチルナフチルアミン等及びそれらのバ
ラホルムアルデヒド縮合物が挙げられるが、これらに限
ったものではなく感光剤として水への溶解性があり、か
つ、活性光によりペグタイド樹脂中の−C’OOH,−
NH,、−0H1−CONH,、) Co等の非共有電
子対乞もつ基との配位結合が可能なものであればよい。
Photosensitizers that cause a photocrosslinking reaction with the bovine bone pegtide resin upon irradiation with actinic light include dichromates such as ammonium dichromate, sodium dichromate, potassium dichromate, etc., and diazonium salts such as P −
Diazophenylamine, 1-diazo-4-dimethylaminobenzene hydrofluoroborate, 1-diazo-3-
Examples include, but are not limited to, methyl-4-dimethylaniline sulfate, 1-diazo-3-monoethylnaphthylamine, etc., and their paraformaldehyde condensates. , -C'OOH,- in the pegtide resin by actinic light
Any material that can form a coordinate bond with a group having a lone pair of electrons such as Co (NH,, -0H1-CONH,, -0H1-CONH,, ) may be used.

一般に感光材料の光架橋特性は感光材料中の高分子物質
の平均分子量に依存する。すなわち平均分子量が大きい
程、感光度は上昇することは周知の通りであるが、天然
タンパク、特にコラーゲンのように特異的な構造、すな
わちコラーゲンホールド形成能を有する高分子物はさら
にその構造的な9素が加わり複雑な挙動2示す。
Generally, the photocrosslinking properties of a photosensitive material depend on the average molecular weight of the polymeric substance in the photosensitive material. In other words, it is well known that the higher the average molecular weight, the higher the photosensitivity; however, natural proteins, especially polymers with a specific structure such as collagen, which has the ability to form collagen hold, have an even higher structural strength. With the addition of 9 elements, complex behavior 2 is exhibited.

rfいかえればコラーゲンから得られる高分子物から成
る感光材料の感光特性を議論する場合は、その高分子物
の平均分子量ばかりでなく、コラーゲンホールド形成能
についても着目する必要がある。すなわち、表2かられ
かるように強固なコラーゲンホールド形成能を有するペ
グタイド樹脂は感光剤との分子架橋の他にコラーゲンホ
ールド構造から生ずるみかけの架橋が多く存在するため
、より小さい平均分子量のペグタイド樹脂により適切な
感光度を得ることが可能となる。また単位体積当りの架
橋密度をより大きくすることができるため、かつコラー
ゲンホールド構造の巻き戻りからの強固な分子間結合を
有することから解像力、画線のきれにおいて優れた、か
つ膜として強固なレリーフ像の形成が可能である。しか
しながら、コラーゲンホールド構造の巻き戻りがより強
く起こる結果として感光液としての粘度は時間依存性を
有して増加する傾向がある。このことは感光液の塗布工
程において感光液塗布条件を全く同様に施した場合にお
いても、感光液作製時からの経時変化により塗布膜厚が
異なる傾向にあり、その結゛果としてレリーフパターン
の解像性においても微妙な変化が生じることを意味する
ものである。このため牛骨ペグタイド樹脂をさらに詳細
に検討するためにそれらの分子量分布を測定し解析した
結果、表2かられかるように骨子量分布曲線のピークの
位置に対応し、また牛骨ベグタイド樹脂の粘度流動特性
を意味する重量平均分子を富Wにお(・てioo、oo
〜50000に設定された、かつ好ましくは分子量分布
曲線の高分子量側の分散度2表わf DZW (=Mz
/Mw )が2以下の小さい分子量分布を有する牛骨ベ
ブタイド樹脂から成る感光材料は粘度の経時変化が非常
に小さく(測定項目7参照)優れた特性を有するものが
得られることがわかった。また染色性においては前述し
たように直接、酸性、塩基性のような親水性染料に対し
、高分子物中の結合基としてアミノ基あるいはカルボキ
シル基の存在が必要とされるが、牛骨ペプタイド旬4脂
は牛の骨のコラーゲンのペプタイド結合を加水分解して
得るため分子鎖末端のアミン基及びカルボキシル基が増
加され、染着が容易に行なわれるようになる。このこと
は一般の天然タンパク賓と比較しても牛骨ペブタイド樹
脂が染色性において優れていることZ示すものであると
同時に薄膜パターンでの染色性が優れてし・ることを意
味するものである。以上のことよQN量平均分子量Mw
が10000〜5ooooに設定されかつ好ましくはそ
のDZWが2以下の牛骨ペプタイド樹脂から成る水溶性
感光材料により謹厚均−性、高解像性、高コントラスト
かつ高染色性等の特性を有するレリーフパターンを室温
での作業環境下において全く問題なく安定して得られる
ことがわかった。
In other words, when discussing the photosensitive characteristics of a photosensitive material made of a polymer obtained from collagen, it is necessary to pay attention not only to the average molecular weight of the polymer but also to its collagen hold-forming ability. In other words, as can be seen from Table 2, PEGTIDE resins with strong collagen hold-forming ability have many apparent crosslinks resulting from the collagen hold structure in addition to molecular crosslinks with the photosensitizer, so PEGTIDE resins with a smaller average molecular weight This makes it possible to obtain appropriate photosensitivity. In addition, because the crosslink density per unit volume can be increased, and the collagen hold structure has strong intermolecular bonds from unwinding, it has excellent resolution and sharpness of image lines, and has a strong relief as a film. Image formation is possible. However, as a result of stronger unwinding of the collagen hold structure, the viscosity of the photosensitive liquid tends to increase in a time-dependent manner. This means that even if the photosensitive liquid coating conditions are exactly the same in the photosensitive liquid coating process, the coating film thickness tends to vary due to changes over time from the time of photosensitive liquid preparation, and as a result, the resolution of the relief pattern will be different. This means that subtle changes occur in image quality as well. Therefore, in order to study bovine bone PEGTIDE resin in more detail, we measured and analyzed their molecular weight distribution, and as shown in Table 2, the peak position of the bone mass distribution curve corresponds to The weight average molecule, which means viscosity flow characteristics, is
~50000, and preferably represents the dispersity 2 on the high molecular weight side of the molecular weight distribution curve f DZW (=Mz
It has been found that a photosensitive material made of a bovine bone bebutide resin having a small molecular weight distribution with /Mw ) of 2 or less has excellent properties with very little change in viscosity over time (see measurement item 7). In addition, in terms of dyeability, as mentioned above, the presence of an amino group or carboxyl group as a bonding group in the polymer is required for direct, acidic, and basic hydrophilic dyes. Since 4 fat is obtained by hydrolyzing the peptide bonds of bovine bone collagen, the number of amine groups and carboxyl groups at the end of the molecular chain is increased, making dyeing easier. This shows that bovine bone peptide resin has superior dyeability compared to general natural protein, and at the same time, it also means that it has excellent stainability in thin film patterns. be. That's it QN weight average molecular weight Mw
is set to 10,000 to 5oooo, and preferably has a DZW of 2 or less, and is made of a water-soluble photosensitive material made of bovine bone peptide resin, and has characteristics such as uniform thickness, high resolution, high contrast, and high stainability. It was found that patterns could be stably obtained without any problems in a working environment at room temperature.

本発明の水溶性感光材料は牛骨ベグタイド樹脂に対して
感光剤を重量比として5〜50%、好ましくは10〜3
0%添加してなる水溶液であるが、該ペブタイド樹脂感
光材料をガラス基板及び撮像素子の受光面上に回転塗布
機、ローラーコーター等の方法により薄膜(0,3〜2
.0μ厚)を形成し原版マスクを介して、光源として水
銀灯、超高圧水銀灯あるいはメタルハブイドランプ等に
より活性光露光ンし、次いで水現像を行なうことにより
基板上に得られたレリーフパターンを染料により染色す
る樹脂層として使用するものである。
In the water-soluble photosensitive material of the present invention, the weight ratio of the photosensitizer to the bovine vegtide resin is 5 to 50%, preferably 10 to 3%.
The pebutide resin photosensitive material is coated in a thin film (0.3 to 2
.. The relief pattern obtained on the substrate is exposed to active light using a mercury lamp, ultra-high pressure mercury lamp, metal halide lamp, etc. as a light source through an original mask, and then water development is performed. It is used as a resin layer for dyeing.

また、染色工程においては、所定の分光特性を有する染
料により該−レリーフ染色層ケ染色するものであるが、
使用される染料としては酸性、直接及び塩基性のような
水溶性染料があり、例えばカヤノールミーリングイエロ
ーO,カヤノールサイ了ニンG1カヤノールミーリング
レッドR8,カヤク了シトオレンジ■(以上日本化薬■
製)、ミツイナイロンファーストイエロー5G、  ミ
ツイブリリアントミーリンググリーンB、ミツイアシト
ミー II yゲスカイブルーPSE (以上 三井東
圧化学1+h 製) 、スミノールミーリングブリリア
ントグリーン5G、アンドブリリアントミーリンググリ
ーンB1スミノールミーリングレッドPG(以上住友化
学工業■製)、ダイアシトファーストルビノール31”
)200%、ダイアシトファーストオレンジN)−’2
00(以上三菱化成工業(作製)、ギニアグリーン(東
京化成(作製)等が挙げられる。また染色条件としては
所定の分光濃度に応じてその温度、時間等が決定される
ものである。
In addition, in the dyeing process, the relief dye layer is dyed with a dye having predetermined spectral characteristics;
The dyes used include acidic, direct, and basic water-soluble dyes, such as Kayanol Milling Yellow O, Kayanol Sairyonin G1, Kayanol Milling Red R8, Kayakuryoshito Orange (all Nippon Kayaku).
), Mitsui Nylon Fast Yellow 5G, Mitsui Brilliant Milling Green B, Mitsui Cytomy II y Gesky Blue PSE (manufactured by Mitsui Toatsu Kagaku 1+H), Suminol Milling Brilliant Green 5G, And Brilliant Milling Green B1 Suminol Milling Red PG (manufactured by Sumitomo Chemical), Diacitophers Rubinol 31”
)200%, Diacitfast Orange N)-'2
00 (manufactured by Mitsubishi Chemical Industries, Ltd.), Guinea Green (manufactured by Tokyo Chemical Industry Co., Ltd.), etc. As the dyeing conditions, the temperature, time, etc. are determined according to a predetermined spectral density.

次に耐染色処理工程において、着色樹脂層上に被覆され
る透明樹脂皮膜について述べる。この樹脂皮膜は牛骨ペ
プタイド樹脂感光材料により得られたレリーフパターン
乞染色した着色樹脂中の染料が他の部分へ移行するのを
防ぎ、かつ着色樹脂層を保護するものであるから、染料
に染まりにくい耐染色性の他にパターン形成の繰り返し
工程に対する諸耐性、たとえば耐水性、耐熱性等を有す
ることが要請される。また当然のことながら光学的に透
明であり、かつ薄膜形成能を有することも重要な項目で
ある。この目的として使用できる樹脂トシてはポリエス
テル樹脂、アクリル樹脂、エポキシ樹脂等が挙げられ、
これら樹脂をア七トン、メチルエチルケトン等のケトン
類、酢酸エチル、酢酸ブチル等のエステル類、その他ト
ルエン、キシレン等から任意に選択された1種あるいは
2種以上の混合溶剤により稀釈して得た樹脂液を回転塗
布法等により膜厚として500八〜02μに塗布した後
加熱重合することにより使用されるものである。もちろ
ん、以上の目的を満足する透明樹脂であれば、上記の樹
脂に限ったものではない。
Next, the transparent resin film coated on the colored resin layer in the stain resistance treatment step will be described. This resin film prevents the dye in the colored resin from transferring to other parts of the relief pattern obtained using the bovine bone peptide resin photosensitive material, and protects the colored resin layer. In addition to poor dyeing resistance, it is also required to have various resistances such as water resistance and heat resistance against repeated pattern forming steps. Naturally, it is also important that the material be optically transparent and have the ability to form a thin film. Resins that can be used for this purpose include polyester resin, acrylic resin, epoxy resin, etc.
Resins obtained by diluting these resins with one or more mixed solvents arbitrarily selected from ketones such as a7tone and methyl ethyl ketone, esters such as ethyl acetate and butyl acetate, and other solvents such as toluene and xylene. It is used by coating the solution to a film thickness of 5008 to 02 μm by spin coating or the like and then heating and polymerizing it. Of course, any transparent resin that satisfies the above objectives is not limited to the above resins.

また耐染色処理工程において、着色樹脂層乞化学的鉤に
硬膜化することによっても、耐染色性や耐水性等の緒特
性を着色樹脂qK与えることができる。これはレリーフ
膜中のアミノ基、アミド基等のカチオン性基とイオン的
に反応をさせることにより硬膜化するものである。この
結果として染色時湿潤効果が高められ、染料のマイグレ
ーション防止等に有効に働くものと考えられる。この目
的と使用できる処理剤(固着剤)としては多価フヱノー
ル誘導体としてナイロンフィックスTH(日本染化■)
、また多価フェノールスルホン酸誘導体としてナイロン
フィックスGL (日本染化■)−、カヤフィックスN
A (日本化薬@l)等が挙げられるが、これらに限定
されるものではない。これら固着剤は濃度0.5〜1.
0重量%、pE(3〜4、温度約50Cの水溶液に調整
され染色レリーフパターンケ約5分間、上記水溶液中に
浸漬することにより硬膜効果を得るものである。
Further, in the stain resistance treatment step, the colored resin qK can be given additional properties such as stain resistance and water resistance by chemically hardening the colored resin layer. This hardens the film by ionically reacting with cationic groups such as amino groups and amide groups in the relief film. As a result, the wetting effect during dyeing is enhanced, which is considered to be effective in preventing dye migration. The processing agent (fixing agent) that can be used for this purpose is Nylon Fix TH (Nippon Someka ■) as a polyvalent phenol derivative.
, and polyhydric phenol sulfonic acid derivatives such as Nylon Fix GL (Nihon Senka)-, Kaya Fix N
Examples include, but are not limited to, A (Nippon Kayaku @l). These fixing agents have a concentration of 0.5 to 1.
A hardening effect is obtained by immersing the dyed relief pattern into an aqueous solution of 0% by weight, pE (3 to 4, and temperature of about 50 C) for about 5 minutes.

以上述べた工程を経てカラーフィルターを製造するもの
であるが、たとえば第2図に示すようにガラス基板(6
)の上に最初のレリーフパターンを赤膜として耐染色被
膜(81′?:形成した後、その上に第1色目と同様に
牛骨ペプタイド樹脂感光材料を塗布し乾燥、マスク露光
、現象により第2色目用のレリーフパターンを得る。次
いで該レリーフパターン乞緑色に染色することにより、
第2色目の着色樹脂層(9)を得る。耐染色被膜0Iを
設けたあと、3色目用としても同様の方法により青色に
染色された着色樹脂層(印を得る。最後に着色樹脂層旧
)の上にオーバーコート層a21w施し、保護膜とする
Color filters are manufactured through the steps described above. For example, as shown in Figure 2, a glass substrate (6
) After forming a dye-resistant film (81'?) with the first relief pattern as a red film, a bovine bone peptide resin photosensitive material was applied on top of it in the same way as the first color, dried, mask exposed, and the phenomenon Obtain a relief pattern for a second color.Then, by dyeing the relief pattern in green,
A colored resin layer (9) of a second color is obtained. After providing the dye-resistant coating 0I, an overcoat layer A21W is applied on the colored resin layer (marked) dyed blue by the same method for the third color (to obtain the mark.Finally, the colored resin layer old) is applied to form a protective film. do.

オーバーコート層021の材料は、前述した耐染色被膜
f81 Qlの材料と同等のものでよい。
The material of the overcoat layer 021 may be the same as the material of the dye-resistant coating f81 Ql described above.

第2図の実施例では三色のものケ示したが、これに限定
されるものではなく、フィルターの色数には制限はない
In the embodiment shown in FIG. 2, only three colors are shown, but the filter is not limited to this, and there is no limit to the number of colors of the filter.

本発明による製造方法により製造されたカラーフィルタ
ーは混色が皆無であり、分光特性が良好で、かつ膜厚が
薄いことから解像力が高く、画像のシャープ性に優れた
ことを特徴とするものである。
The color filter manufactured by the manufacturing method of the present invention is characterized by no color mixture, good spectral characteristics, high resolution due to its thin film thickness, and excellent image sharpness. .

次に本発明を実施例により説明する。Next, the present invention will be explained by examples.

〈実施例〉 牛骨コラーゲンを加水分解条件としてコラーゲン濃度2
0重量%に塩酸を濃度としてコラーゲン1Li−当り1
.14 X 10−” mole添加し、温度soc常
圧で3時間処理することにより、重量平均分子量Mwと
して26838かつDzwとして1.94のベグタイド
樹脂が得られた。このイブタイド樹脂20重量%と重ク
ロム酸アンモニウム4重量係から成るペプタイド樹脂感
光材料(水溶液)tガラス基板上に厚み1.0μになる
よう回転塗布機により、I Q OOrpmで塗布し乾
燥後、マスクアライナ−P 1.、’A−500,F 
(キャノン■11りにて20秒間アライメントg光し、
15〜25Cの冷水乞スプレーで40秒間の現像により
、樹脂層として厚み08μのストライプ状のレリーフッ
(ターンを得た。
<Example> Bovine bone collagen was hydrolyzed under collagen concentration 2.
1 per Li-collagen with hydrochloric acid at a concentration of 0% by weight.
.. By adding 14 x 10-" mole and treating at a temperature of soc and normal pressure for 3 hours, a vegtide resin having a weight average molecular weight Mw of 26838 and a Dzw of 1.94 was obtained. 20% by weight of this butide resin and dichromium Peptide resin photosensitive material (aqueous solution) consisting of 4 parts by weight of ammonium acid was coated on a glass substrate to a thickness of 1.0 μm using a rotary coater at IQOOrpm, and after drying, mask aligner-P1., 'A- 500,F
(Light the alignment g for 20 seconds with Canon ■11,
By developing with cold water spray at 15 to 25 C for 40 seconds, a striped relief turn with a thickness of 08 μm was obtained as a resin layer.

これケ下記に示すような赤色染料液及び染料条件にて第
一色目の赤色に着色させて染色樹脂層とした。次に中間
膜として水酸基含有分岐ポリエステルであるDesmo
phen 651  (住友]くイニルウレタン■)1
0?と脂肪族ポリイノシアネートSumidurN75
 (同社)59−とケトン、エステル類の溶剤例えばメ
チルエチルケト/100CCの混合液乞回転塗布機にて
400 Orpmで塗布し乾燥した、膜厚は01μであ
った。これを160t:で4時間加熱処理し、熱硬化さ
せた。冷却後第一色目で使用した同様のベグタイド樹脂
感光材料をその上に同様に厚み0.8μに塗布し、乾燥
し、同様に露光、現像して、樹−脂層として厚みは0,
65μのし1J−7パターンを得た。これを緑染色液に
浸漬して第二色目である緑色の染色樹脂層を得た。
This was colored with a first color of red using a red dye solution and dye conditions as shown below to form a dyed resin layer. Next, Desmo, which is a branched polyester containing hydroxyl groups, was used as an interlayer film.
phen 651 (Sumitomo) quinyl urethane ■) 1
0? and aliphatic polyinocyanate SumidurN75
(Company) 59-, a ketone, and an ester solvent such as methyl ethyl keto/100 CC were coated at 400 Orpm using a rotary coating machine and dried, resulting in a film thickness of 01 μm. This was heat-treated at 160 t for 4 hours to thermally cure it. After cooling, the same Vegtide resin photosensitive material used for the first color was coated thereon to a thickness of 0.8 μm, dried, exposed and developed in the same manner, and a resin layer with a thickness of 0.8 μm was formed.
A 1J-7 pattern of 65μ was obtained. This was immersed in a green dyeing solution to obtain a second colored green dyed resin layer.

この第二色目の染色樹脂層のうえに前述の中間膜と同等
のポリニスデル樹脂を塗布し、同様にくり返し、第三色
目として青色用の樹脂層7厚み0.8μのレリーフパタ
ーンとして得、これを青色染色液にて青色に着色し、同
様にポリエステル樹脂を塗布して保護膜とした。ちなみ
に解像力として最少描写寸法を調べた結果、各色共に6
μのノ(ターンが得られていた。
On this dyed resin layer for the second color, a polynisder resin equivalent to the above-mentioned intermediate film is applied, and the same process is repeated to obtain a relief pattern with a thickness of 0.8μ for the resin layer 7 for blue as the third color. It was colored blue with a blue dyeing solution, and a polyester resin was applied in the same manner to form a protective film. By the way, as a result of investigating the minimum depiction size for resolution, it was 6 for each color.
μ's no(turn was obtained.

以下に染料液の一例として赤、緑、青の染色液の配合と
染色条件(温度および浸漬時間)を示すが、これはベブ
タイド樹脂感党材料による染色樹脂層を形成したものに
適するものである。
The composition and dyeing conditions (temperature and immersion time) of red, green, and blue dye solutions are shown below as an example of a dye solution, and these are suitable for products in which a dyed resin layer is formed using bebutide resin sensitizing material. .

赤   色 60C6分間 緑   色 60C2分30秒 青   色 5002分間 第1図は本発明に用いる牛骨コラーゲンの加水分解物を
横軸に分子量?とり、縦軸に量?高さとして示したグラ
フ図であり、第2図は本発明の製造方法により得られる
カラーフィルター〇一実施例を示す模式断面図である。
Red Color 60C 6 minutes Green Color 60C 2 minutes 30 seconds Blue Color 5002 minutes Figure 1 shows the molecular weight of the bovine bone collagen hydrolyzate used in the present invention on the horizontal axis. Quantity on the vertical axis? FIG. 2 is a graph showing the height, and FIG. 2 is a schematic cross-sectional view showing an embodiment of a color filter obtained by the manufacturing method of the present invention.

fll +21 +31 +41 +51・・・サンプ
ル番号(6)・・・ガラス基板   (7)・・・第一
色目の着色樹脂層(81QOl・・・耐染色被膜  (
9)・・・第二色目の着色樹脂層旧)・・・第三色目の
着色樹脂層 02・・・オーバーコート層 特許出願人 凸版印刷株式会社 代表者 鈴 木 和 夫
fll +21 +31 +41 +51...Sample number (6)...Glass substrate (7)...First color colored resin layer (81QOl...Dye-resistant coating (
9)...Second color colored resin layer Old)...Third color colored resin layer 02...Overcoat layer Patent applicant Kazuo Suzuki Representative of Toppan Printing Co., Ltd.

Claims (8)

【特許請求の範囲】[Claims] (1)分子鎖中にベグタイド結合を有する牛骨コラーゲ
ンの主鎖ペプタイド結合を加水分解して重量平均分子量
ΩWが100’00〜50[100に設定された牛骨ペ
プタイド樹脂と、活性光照射により該牛骨ベグタイド樹
脂と光架橋反応を生じさせる感′/l、削とからなる水
浴性感光材料の感光膜を基体上に形成してなり、該感光
膜をパターン露光し現像(2て所望形状のレリーフパタ
ーン樹脂層を形成する工程、該レリーフパターン樹脂層
を染料にて染帥して所定の分光特性ケ有する着色樹脂層
とする工程、該着色樹脂層に対し染料により重ねて染色
されることを妨げる耐染色処理を行なう工程の各工程を
カラーフィルターに必要とされる色数だけ粘り返すこと
により、基体上に任意のパターンの色分解用フィルタ一
層を形成することを特徴とするカラーフィルターの製造
方法。
(1) A bovine bone peptide resin whose weight average molecular weight ΩW was set to 100'00 to 50 [100] by hydrolyzing the main chain peptide bonds of bovine bone collagen that has vegtide bonds in the molecular chain, and activated light irradiation. A photosensitive film of a water-bathable photosensitive material is formed on a substrate, and the photosensitive film is pattern-exposed and developed (2) to form a desired shape. a step of forming a relief pattern resin layer, a step of dyeing the relief pattern resin layer with a dye to obtain a colored resin layer having predetermined spectral characteristics, and a step of superimposing and dyeing the colored resin layer with a dye. A color filter characterized in that a single layer of color separation filter in an arbitrary pattern is formed on a substrate by repeating each step of the dye-resistant treatment process that prevents color separation by the number of colors required for the color filter. Production method.
(2)牛骨ペプタイド樹脂が、その分子敏分布における
高分子竜領域の分散度Dzw (−MZ /商W:但し
Ω2はZ平均分子量)の値が2以下kc設定された11
骨ペプタイド樹脂である特許請求の範囲第1項記載のカ
ラーフィルターの製造方法。
(2) The value of the dispersion degree Dzw (-MZ / quotient W: where Ω2 is the Z average molecular weight) of the polymer dragon region in the molecular sensitivity distribution of the bovine bone peptide resin is set to 2 or less kc11
The method for producing a color filter according to claim 1, wherein the color filter is a bone peptide resin.
(3)基体がガラス基板である特許請求の範囲第1項記
載のカラーフィルターの製造方法。
(3) The method for manufacturing a color filter according to claim 1, wherein the substrate is a glass substrate.
(4)基体が固体撮像素子の受光面である特許請求の範
囲第1項記載のカラーフィルターの製造方法。
(4) The method for manufacturing a color filter according to claim 1, wherein the substrate is a light-receiving surface of a solid-state image sensor.
(5)耐染色処理工程が着色樹脂層の上に透明な樹脂皮
膜層を被覆する工程である特許請求の範囲第1項記載の
カラーフィルターの製造方法。
(5) The method for producing a color filter according to claim 1, wherein the stain-resistant treatment step is a step of coating the colored resin layer with a transparent resin film layer.
(6)透明な樹脂皮膜がポリエステル樹1旨、アクリル
樹脂、エポキシ樹脂である特許請求の範囲第5項記載の
カラーフィルターの製造方法。
(6) The method for manufacturing a color filter according to claim 5, wherein the transparent resin film is made of polyester resin, acrylic resin, or epoxy resin.
(7)耐染色処理工程が染色樹脂層を化学的に硬膜化す
る工程である特許請求の範囲第1項記載のカラーフィル
ターの製造方法。
(7) The method for producing a color filter according to claim 1, wherein the stain-resistant treatment step is a step of chemically hardening the dyed resin layer.
(8)硬膜化する処理剤が多価フェノール誘導体また1
寥多価フェノールスルホン酸誘導体である特許請求の範
囲第7項記載のカラマフイルターの製造方法。
(8) The treatment agent for hardening is a polyhydric phenol derivative or 1
8. The method for producing a karama filter according to claim 7, wherein the kalam filter is a polyhydric phenol sulfonic acid derivative.
JP56212341A 1981-12-29 1981-12-29 Preparation of color filter Granted JPS58116506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56212341A JPS58116506A (en) 1981-12-29 1981-12-29 Preparation of color filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56212341A JPS58116506A (en) 1981-12-29 1981-12-29 Preparation of color filter

Publications (2)

Publication Number Publication Date
JPS58116506A true JPS58116506A (en) 1983-07-11
JPH0237581B2 JPH0237581B2 (en) 1990-08-24

Family

ID=16620928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56212341A Granted JPS58116506A (en) 1981-12-29 1981-12-29 Preparation of color filter

Country Status (1)

Country Link
JP (1) JPS58116506A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6079349A (en) * 1983-10-06 1985-05-07 Mitsubishi Chem Ind Ltd Water-soluble photosensitive composition and organic color filter
US5958610A (en) * 1996-02-22 1999-09-28 Denso Corporation El element having a color filter formed on an upper electrode

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5326120A (en) * 1976-08-21 1978-03-10 Hoechst Ag Photosensitive copy material and method of forming colored relief image
JPS57189133A (en) * 1981-05-18 1982-11-20 Matsushita Electric Ind Co Ltd Water-soluble photosensitive substance
JPS5830746A (en) * 1981-08-17 1983-02-23 Matsushita Electric Ind Co Ltd Water soluble photosensitive substance
JPS5833208A (en) * 1981-08-20 1983-02-26 Matsushita Electric Ind Co Ltd Photosensitive material for production of color filter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5326120A (en) * 1976-08-21 1978-03-10 Hoechst Ag Photosensitive copy material and method of forming colored relief image
JPS57189133A (en) * 1981-05-18 1982-11-20 Matsushita Electric Ind Co Ltd Water-soluble photosensitive substance
JPS5830746A (en) * 1981-08-17 1983-02-23 Matsushita Electric Ind Co Ltd Water soluble photosensitive substance
JPS5833208A (en) * 1981-08-20 1983-02-26 Matsushita Electric Ind Co Ltd Photosensitive material for production of color filter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6079349A (en) * 1983-10-06 1985-05-07 Mitsubishi Chem Ind Ltd Water-soluble photosensitive composition and organic color filter
US5958610A (en) * 1996-02-22 1999-09-28 Denso Corporation El element having a color filter formed on an upper electrode

Also Published As

Publication number Publication date
JPH0237581B2 (en) 1990-08-24

Similar Documents

Publication Publication Date Title
EP0225192B1 (en) Photosensitive resin composition and method of manufacturing color filter using the same
KR19980032695A (en) Color filters, their fabrication and optics
JPS58116506A (en) Preparation of color filter
US4828947A (en) Method for making a relief pattern of a cured resin on a transparent colored layer
JPS6063501A (en) Color filter element
JPH01130102A (en) Method for dyeing coating film
JP2696921B2 (en) Manufacturing method of color filter
JP2668782B2 (en) Color pattern manufacturing method
JPH0247727B2 (en) EKISHOKARAAHYOJOKARAAPANERUBANNOSEIZOHOHO
JP2652064B2 (en) Color filter
JPS5890603A (en) Manufacture of color filter
JPS6225171A (en) Blue dye composition
JPS58111906A (en) Manufacture of colored light separation filter
US1613515A (en) Method of producing chromophotographs on paper and chromodiapositives
JP2701168B2 (en) Color filter
JPH04218001A (en) Color filter
JPS58115433A (en) Water-soluble photosensitive material
JPS62153903A (en) Production of color filter for liquid crystal display body
JPH01142605A (en) Production of color filter for solid-state image pickup element
JPH04372905A (en) Anthraquinone compound and color filter using it
JPS6014204A (en) Formation of pattern for color filter
JPH0338601A (en) Color filter
JPS6289904A (en) Color filter
JPH01142606A (en) Production of color filter for solid-state image pickup element
JPH0644152B2 (en) Colored photosensitive resin composition