JPS58116134A - Porous molded body and manufacture thereof - Google Patents

Porous molded body and manufacture thereof

Info

Publication number
JPS58116134A
JPS58116134A JP21167881A JP21167881A JPS58116134A JP S58116134 A JPS58116134 A JP S58116134A JP 21167881 A JP21167881 A JP 21167881A JP 21167881 A JP21167881 A JP 21167881A JP S58116134 A JPS58116134 A JP S58116134A
Authority
JP
Japan
Prior art keywords
linear
extrudates
molded body
extrusion die
spirally wound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21167881A
Other languages
Japanese (ja)
Other versions
JPS6331372B2 (en
Inventor
Koichi Kobayashi
小林 恒一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP21167881A priority Critical patent/JPS58116134A/en
Publication of JPS58116134A publication Critical patent/JPS58116134A/en
Publication of JPS6331372B2 publication Critical patent/JPS6331372B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/20Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 for porous or cellular articles, e.g. of foam plastics, coarse-pored
    • B29C67/205Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 for porous or cellular articles, e.g. of foam plastics, coarse-pored comprising surface fusion, and bonding of particles to form voids, e.g. sintering

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)

Abstract

PURPOSE:To obtain the titled molded body with simple operation which is more uniform and whose resistance to air permeation is low, by extruding linearly a viscoelastic material such as an inorganic material from a plurality of nozzle openings of an extrusion die to wind spirally the extrudates in layers by a specific method. CONSTITUTION:A viscoelastic material (A) comprising an inorganic material (e.g. a zeolite, etc.) or a synthetic resin (preferably phenolic resins or the like) to which a binder is usually added is extruded linearly from the nozzle openings in the extrusion die 2 to descend vertically, and at the same time for example an item receiving table 4 is lowered gradually such that the distance (L) between the top of layers of the linear extrudates (B) and the outlet end of the extrusion die 2 is kept constant and the linear extrudates (B) are spirally wound in layers thereby providing the intended molded body wherein the adjacent spiral surfaces of the linear extrudates (B) are abutted on or eutangled in each other. EFFECT:The pressure drop is less and the performance is high.

Description

【発明の詳細な説明】 本発明は、無機物質又は合成樹脂を主原料とする多孔質
成形体及びその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a porous molded article whose main raw material is an inorganic substance or a synthetic resin, and a method for producing the same.

近年多孔性無機物質や多孔性合成樹脂の用過開発が急速
に展開され、f過材、吸着剤、吸音材、断熱材、触媒担
体等の分野を中心にして広範Hに使用されている。この
様な広範な分野への適用が検討される様になると、素材
のままの形状では堆扱いの便や作用効果に対する影響郷
の面において問題が生じ、ペレット状、ビーズ状、リン
グ状、更にはハニカム状等に成形して使用することが多
くなった。これらの成形体は夫々用途に応じて最適のも
のが選択されるが、ガス体等の反応で使用される触媒担
体の様に圧損を嫌う用途では、ハニカム状のものが賞用
されている。ところがハニカム構造体は製造技術の面か
らみて大きな制約を受けており、ダイスや成形ロー2等
の加工技術そのものに限界があるから、ある程度以上の
微細構造は涛られない。例えばダイスを用いる成形手段
ではセルウオールの厚さは約1oo#Enが限度であり
、スローツ成形手段でも約50μ謹以下とすることは困
峻であり、結局セル数についても1平方インチ当り10
00i1![が限界とされている。
In recent years, the use of porous inorganic substances and porous synthetic resins has been rapidly developed, and they are used in a wide range of fields, such as filter materials, adsorbents, sound absorbing materials, heat insulating materials, and catalyst carriers. As application to such a wide range of fields is being considered, the raw shape of the material poses problems in terms of ease of handling in compost and influence on its effects, so it has to be used in the form of pellets, beads, rings, etc. It is now often used by forming it into a honeycomb shape or the like. The most suitable molded bodies are selected depending on the application, and honeycomb-shaped molded bodies are preferred in applications where pressure loss is averse, such as catalyst carriers used in reactions involving gaseous bodies. However, honeycomb structures are subject to major restrictions from the viewpoint of manufacturing technology, and because there are limits to the processing technology itself such as dies and forming rows 2, it is not possible to form a fine structure beyond a certain level. For example, in a molding method using dies, the cell wall thickness is limited to approximately 1oo#En, and even in throat molding methods, it is difficult to achieve a thickness of less than approximately 50μ, and in the end, the number of cells is 10mm per square inch.
00i1! [is considered to be the limit.

この様なところから成形体にバインダーを加えてプレス
成形したものが注目を集めている。この様なプレス成形
体には極めて微細な空隙が存在しており、例えば触媒担
体として用いたと色の有効表面積がハニカム構造体に比
べて相当広いという利点がある。ところが無機物質を素
材とする場合は、ペレット自体の成形段階及び2次成形
段階の21Lに亘ってバインダーを使用する必要があり
、製品の多孔質性にmsを辱えるだけでなく機械的強度
に悪影響を与えるという懸念もある。又通常の手段では
、一旦成形したベレットを粉砕し篩分けてからプレス成
形を行なっているので、成形操作だけでも2倍必要であ
り、加工コストが高騰するという欠点もあった。
For this reason, press-molded products made by adding a binder to molded products are attracting attention. Such a press-formed body has extremely fine voids, and has the advantage that, when used as a catalyst carrier, for example, the effective surface area of the color is considerably larger than that of a honeycomb structure. However, when using an inorganic material as a material, it is necessary to use a binder for 21L during the pellet molding stage and the secondary molding stage, which not only affects the porosity of the product but also reduces its mechanical strength. There are also concerns that it may have a negative impact. In addition, in the conventional method, the formed pellet is crushed and sieved before press molding, which requires twice as much molding operation alone, resulting in an increase in processing cost.

本発明者等は上記の様な事情に着目し、成形操作を一段
階で済ませることかで龜、しかもハニカム構造体を陵駕
し上記プレス成形体に匹敵す為様な微細空隙構造を有す
る多孔質成形体壷開発すべく研究を進めて龜た。その結
果、無機物質を線状に押出成形してこれを所定形状に集
積させ、これを乾燥・焼成して得られる多孔質成形体は
上記目的にかなう緒特性を具備するものであることを確
認した。また有機質の合成樹脂からで4rIJ11にし
て線状押出成形物の集積塊を得、ヒれを炭化JI!&理
することによって実質の多孔質成形体が得られることを
知り、夫々光に特許出願を行なった。
The present inventors focused on the above-mentioned circumstances, and by completing the molding operation in one step, the present inventors created a porous structure with various fine pore structures that surpassed the honeycomb structure and were comparable to the above-mentioned press-formed structure. I continued my research to develop a quality molded jar. As a result, it was confirmed that the porous molded product obtained by extruding an inorganic material into a linear shape, accumulating it into a predetermined shape, drying and firing it has the properties that meet the above purpose. did. In addition, a linear extrusion molded mass was obtained by making 4rIJ11 from an organic synthetic resin, and the fin was carbonized by JI! After learning that it was possible to obtain a substantially porous molded body by processing, they filed a patent application with Hikari.

本発明は上記先願発明の成形体及び躾造法壱更に改善し
、一層均質で通気抗抗04%さい多孔質成形体及びその
製造方法を提供するものであって、該成形体の構成とは
、無機物*’xは合成樹脂よりなる多数本の線状押出物
が夫々#旋状に巻回製層されると、埃に、該螺線状巻回
積層物が夫々隣接面で相互に接合されるか又は絡み合っ
てなるところに費旨が存在する。またこの多孔質成形体
を製造する方法として最適の手段は、無機物質又は合成
樹脂よりなる粘弾性材料を、押出ダイスに設けた多数の
ノズル穴から線状に押出して垂直方向に降下させると共
に、押出された線状押出物の積層上向と押出ダイス出口
端との距離を略一定に保持しつつ線状押出物を積層上向
へ螺旋状に巻回しつつ積着させることを骨子とするもの
で、上記押出ダイスとしては任意の形状が利用され、選
択された押出ダイスの形状に応じた集積塊が得られる。
The present invention further improves the molded product and the molding method of the prior invention, and provides a porous molded product that is more homogeneous and has a ventilation resistance of 0.4%, and a method for producing the same. is an inorganic material *'x is a synthetic resin when a large number of linear extrudates are wound and layered in a spiral shape, and the spirally wound laminates mutually interact with each other on adjacent surfaces due to dust. There is a cost when they are joined or intertwined. The most suitable method for manufacturing this porous molded body is to linearly extrude a viscoelastic material made of an inorganic substance or synthetic resin through a number of nozzle holes provided in an extrusion die, and to drop the material in a vertical direction. The main idea is to stack the linear extrudates while spirally winding them upward while keeping the distance between the upward layer of extruded linear extrudates and the exit end of the extrusion die approximately constant. Any shape can be used as the extrusion die, and an aggregate can be obtained according to the shape of the selected extrusion die.

また押出ダイスに設けるノズル穴の間隔や口径を調整す
ることによって集積坑内の通気空間の大小等を任意にa
SSすることがで色、目的に応じた空隙密度の多孔質成
形体を簡単な装置で生産性良く製造することができる。
In addition, by adjusting the interval and diameter of the nozzle holes provided in the extrusion die, the size of the ventilation space in the accumulation pit can be adjusted as desired.
By performing SS, a porous molded body having a color and void density depending on the purpose can be manufactured with high productivity using a simple device.

更に本発明において素材として非多孔性無機物質を使用
する場合は上記集積塊をそのまま製品化すればよく、ま
た情成処理により多孔質化する無機物質を素材とすると
f!は、集積塊を乾燥・焼成して各線状押出物1体を多
孔質化することにより、極めて微細な空隙を有する多孔
質成形体を帰ることがで龜る。更に合成樹脂を素材とし
て使用する場合は、前記集積塊を非酸化性雰囲気下で熱
処理して炭化し或いは更に賦活化処理を行なうことによ
り、吸着剤等として卓越した性能の多孔質成形体を得る
仁とができる。
Furthermore, in the case of using a non-porous inorganic substance as a material in the present invention, the above-mentioned aggregate may be made into a product as it is, and if an inorganic substance that becomes porous through a chemical treatment is used as a material, f! By drying and firing the aggregate to make each linear extrudate porous, it is possible to produce a porous molded body having extremely fine voids. Furthermore, when a synthetic resin is used as a material, the agglomerated mass is heat treated in a non-oxidizing atmosphere to carbonize it, or further subjected to an activation treatment to obtain a porous molded body with excellent performance as an adsorbent, etc. I can do it with Jin.

前述の様に本発明で使用される成形用素材としては無機
物質(多孔性無機物質、&び非多孔性無機物質)及び合
成樹脂が挙げられゐが、更に具体的に示せば下記の通り
である。
As mentioned above, the molding materials used in the present invention include inorganic substances (porous inorganic substances, non-porous inorganic substances) and synthetic resins, but more specifically, they are as follows. be.

まず多孔性無機物質としては、ゼオライト(合成及び天
然の如何を問わない)、r−アレ電す、シリカゲル、シ
リカ・アルンナ、ベーマイト、活性チタニア、活性炭、
モレキJLッシービνプカーボン等が例示される。また
非多孔性無機物質としてはムライト(3A1□j・ff
ijHOm)、コクンダム(暮−^1*Os)、コージ
ェライト(2A!意03・2Mgo・5810a)等の
金属酸化物含有鉱物が例示される。これらの無機物質は
一般に粉粒体として入手することがで咎、これを線状に
押出すに当っては、後述する様なバインダーを添加して
混練し粘稠状に調整する。
First, porous inorganic substances include zeolite (whether synthetic or natural), r-allele, silica gel, silica arunna, boehmite, activated titania, activated carbon,
For example, Molex JL Chibip Carbon is exemplified. Mullite (3A1□j・ff
Examples include metal oxide-containing minerals such as ijHOm), kokundum (kure-^1*Os), and cordierite (2A!I03.2Mgo.5810a). These inorganic substances are generally available in the form of powder or granules, and when extruding them into linear shapes, a binder as described below is added and kneaded to make them viscous.

また合成樹脂としては非酸化性雰囲気下で炭化して値組
気孔を形成するものが好ましく、その様な樹脂としては
櫃弐基(飽和炭素環式基、飽和複本環式基、芳香族基、
不飽和複素項弐基等)等を含む合成樹脂が挙げられ、中
でもフェノール系樹脂、アニリン系樹脂、キシレン・ホ
ルムアルデヒド樹脂、メライン樹脂等の熱硬化性樹脂が
最適である。これらの合成樹脂も、使用に当っては粉粒
状に粉砕した後、1当なノ(インダーと混線して線状に
押出される。
In addition, the synthetic resin is preferably one that carbonizes in a non-oxidizing atmosphere to form pores, and examples of such resins include sulfur groups (saturated carbocyclic groups, saturated polycyclic groups, aromatic groups, etc.).
Among them, thermosetting resins such as phenolic resins, aniline resins, xylene/formaldehyde resins, and melain resins are most suitable. When these synthetic resins are used, they are pulverized into powder, mixed with an inder, and extruded into a linear shape.

バインダーについては%段の制限はなく、粉粒体に対し
て粘結機能を発揮するものであればすべて利用すること
かで色る。代表的なものとしては、MC,CMC,殿粉
、0M8(カルボキシメチルスターチ)、1(EC(ヒ
ドロキシエチルセルロース)、RPC(ヒドロキシプロ
ピルセルロース)、リグニンスルホン酸ナトリウ^、リ
グニンスルホン酸カルシウム、ポリビニシアルコール、
アクリル酸エステル、メタクリル酸エステ髪、フェノー
ル樹脂、メ2ンン樹脂等の有機系バインダー;水ガラス
、コロイダルシリカ、コロイダルアル電す、コロイダル
チタン、ベントナイト、燐酸プル建ニウム等の無機系バ
インダーが例示され、勿論これらは2櫨以上を併用して
もかまわない。貨バインダーの配合率は、乾保菫量で3
5%(対全滉練物)以下とするのが好ましく、この値を
越えると竣成製品の強度が低下してくるので推奨で趣な
い。
There is no limit on the percentage of binders, and it depends on whether you use any binder that exhibits a caking function for powder or granules. Typical examples include MC, CMC, starch, 0M8 (carboxymethyl starch), 1 (EC (hydroxyethyl cellulose), RPC (hydroxypropyl cellulose), sodium lignin sulfonate, calcium lignin sulfonate, polyvinic acid). alcohol,
Organic binders such as acrylic acid ester, methacrylic acid beauty salon hair, phenolic resin, and membrane resin; Inorganic binders such as water glass, colloidal silica, colloidal aluminum, colloidal titanium, bentonite, and plutonium phosphate are exemplified. Of course, two or more of these may be used together. The blending ratio of the binder is 3 in terms of dry violet content.
It is preferable that the amount is 5% or less (based on the whole refined product); if it exceeds this value, the strength of the finished product will decrease, so it is not recommended.

そしてこれらの混合・混練手段についても制限はなく公
昶の装置峻び機器を利用すればよいが、線状物の押出し
に当ってスクリュ一式押出成形機を用いる場合は、該成
形機のスクリューを利用して混線することもできる。こ
うしてfijllllれた索材は、上記スクリュ一式押
出成形機又はプランジャ一式押出成形機等を用い、線状
物の押出しを行なう。この線状物の押出しから積層成形
に亘る一連の工程は本発明における最も特徴的な部分で
あり、それにより通気抵抗の小さい多孔質成形体を得る
ことかで龜る。
There are no restrictions on these mixing and kneading means, and Koyo's equipment and equipment may be used. However, when using a screw extrusion molding machine for extruding a linear material, the screw of the molding machine must be You can also use it to mix lines. The rope material thus produced is extruded into a linear material using the above-mentioned screw set extrusion molding machine or plunger set extrusion molding machine. This series of steps from extrusion of the linear material to lamination molding is the most characteristic part of the present invention, and is the key to obtaining a porous molded product with low ventilation resistance.

即ち第1図は本発明における線状物の押出し、横1一工
程を例示する概略縦断面図であり、図中1tよ押出用シ
リンダ、2は吐出ダイス、3は成形用金型、4は成形物
受台を夫々示す。本発明では垂1直に、投置した押出用
シリンダ1の先1惜に、多数のノズル5を設けた吐出ダ
イス2を取付け、その下方には成形用金型3を配置する
と決に該金型3内には成形物受台4が舛呻可能に配置さ
れている。
That is, FIG. 1 is a schematic vertical cross-sectional view illustrating the horizontal 1-step process of extruding a linear object in the present invention, and in the figure, 1t is an extrusion cylinder, 2 is a discharge die, 3 is a molding die, and 4 is a Each molded product holder is shown. In the present invention, a discharge die 2 with a large number of nozzles 5 is installed vertically at the tip of the extrusion cylinder 1 placed therein, and a molding die 3 is placed below it. A molded product holder 4 is disposed within the mold 3 so as to be movable.

そして該シリンダl内に前記混線物Aを装填し、ラム6
により押圧することによって混線物^を各ノズル5から
一斉に吐出させて線状物Bを成形する。この−状物Bは
ノズル5から出た後垂直方向に落下し、図示した様に成
形体受台4の上面に当った後夫々略円形の螺旋を描咎な
がら積層される。
Then, the mixer A is loaded into the cylinder l, and the ram 6
By pressing, the mixed wire material ^ is discharged all at once from each nozzle 5, and a linear material B is formed. After coming out of the nozzle 5, the --shaped materials B fall vertically and hit the upper surface of the molded body holder 4, as shown, and are stacked one on top of the other, each drawing a substantially circular spiral.

この場合−状物Bが成形体受台4の一上面で描く螺旋の
旋回径は、ダイス2の下面と積層、上面との間隔L1線
状物Bの断面径(ノズル5の径)及びノズル5の間隔を
等によって変わり、夫々第2〜4図に示す様な関係があ
る。即ち前記間隔りが入電くなる程、鵞た線状物Bの断
面径が大亀くなる程、更にノズル5の間隔tが入電くな
る程、螺廃の巻回径は大無くなる。ここで線状物Bの断
面径及びノズル50間隔tは使用する吐出ダイス5によ
って一義的に決まるので、線状物Bの断面値に応じて最
適の旋回径が得られる様にノズル60間隔りを設定すれ
ばよい。とζろが前記間隔りは、成形体受台4.hの巻
回積層量が増えるに従って短くなるので、該受台4を固
定しておくと旋回径が除々に変動し、積層下部では旋回
径が入電くなりす「る為に螺旋が互いに交錯し金って螺
旋ループが亀れる。一方墳層上部では旋回径が小さくな
りす「る為に隣り合った巻回物が離れて別々に形成され
成形体全体としての空隙率が入電くなったり、或いは独
立した巻回柱がある高さに達すると不規則な方向に傾倒
するので、成形体全体O充りIl書度が不均一になる。
In this case, the radius of the spiral that the --shaped object B draws on one upper surface of the molded object holder 4 is determined by the distance L1 between the lower surface of the die 2 and the upper surface of the stack, the cross-sectional diameter of the linear object B (the diameter of the nozzle 5), and the nozzle 5. 5, and the relationships shown in FIGS. 2 to 4, respectively. That is, as the distance becomes more current, as the cross-sectional diameter of the thin wire material B becomes larger, and as the distance t between the nozzles 5 becomes more energized, the winding diameter of the screw thread becomes smaller. Here, the cross-sectional diameter of the linear object B and the interval t between the nozzles 50 and 50 are uniquely determined by the discharge die 5 used. All you have to do is set . The above-mentioned spacing between and ζ is the length of the molded body holder 4. As the amount of laminated windings of h increases, the length becomes shorter, so if the pedestal 4 is fixed, the spiral diameter will gradually change, and at the bottom of the stack, the spiral diameter will change due to the incoming current, so the spirals will intersect with each other. The spiral loops of gold become distorted.On the other hand, in the upper part of the mound layer, the spiral diameter becomes smaller, so adjacent windings are separated and formed separately, and the porosity of the molded body as a whole becomes unstable. Alternatively, when the independent winding columns reach a certain height, they tilt in irregular directions, resulting in non-uniformity of the entire molded body.

そこで本発明では、線状部Bの押出成形速度に応じた連
綴で成形体受台4を除々に4下させ、前記間隔りを潜時
一定に保持しながら成形を行なう。
Therefore, in the present invention, the molded object holder 4 is gradually lowered four times in a continuous manner according to the extrusion molding speed of the linear portion B, and molding is performed while maintaining the above-mentioned interval at a constant latency.

その結果線状物の螺旋4源は上下方向に亘って一定とな
り、全体に亘って充填率(叩ち空隙率)の一定な成形体
を得ることがで無る。しかも各螺旋を四柱の中央に形成
される空隙は、例えば第5図(*終成杉体の装部拡大平
面図)に示す如<−h下方向に貫通しているから、吸着
剤や触媒担体等として使用した場合の圧損を低レベルに
抑えることかで色る。向螺旋の旋回径がノズル5の穿設
ピッチ(4と略等しくなる様に前記間隔りを調節すれば
、各Al11lI7II!善回柱が相互に隣接し合った
成形体を得ることができ、一方旋回径がノズル5の穿設
ピッチよりも大無くなる様に前記間隔りをAl1fJす
れば、例えば第sIAに示す如く各螺旋が相互に絡み合
った状−の成形体が得られる。この場合螺旋の絡み合い
のaII/lが大会くなる橿各1g旋巻回柱の中央部の
空−は小さくなり、轍路成形体の圧損ば大無くなる。従
って前記間隔りを814# L[旋の絡み合いのtmF
ltを変えることによって、使用目的に応じた電通の通
気抵抗を有する成形体を得ることができる。但し前記間
隔りが大きすぎると規則的な螺旋径が得られなくなるの
で、該間隔りは螺旋径(即ちノズルピッチ)の10倍以
下にすべ教である。
As a result, the four helical sources of the linear material remain constant in the vertical direction, making it impossible to obtain a molded body with a constant filling rate (beating porosity) throughout. Moreover, the voids formed in the centers of the four pillars of each spiral penetrate downward <-h, as shown in Figure 5 (*enlarged plan view of the finished cedar body), so that adsorbents and catalysts can It depends on whether pressure loss can be kept to a low level when used as a carrier, etc. By adjusting the above-mentioned spacing so that the turning diameter of the spiral direction is approximately equal to the drilling pitch (4) of the nozzle 5, it is possible to obtain a molded body in which each Al11lI7II! If the above-mentioned spacing is set to Al1fJ so that the swirl diameter is smaller than the drilling pitch of the nozzle 5, a molded body in which the spirals are entwined with each other can be obtained, for example, as shown in No. sIA.In this case, the entanglement of the spirals The void in the center of each 1 g spiral column becomes small, and the pressure loss of the rutted road formed body is greatly reduced.Therefore, the above spacing is set to 814#L [tmF of spiral entanglement.
By changing lt, it is possible to obtain a molded article having electrical ventilation resistance depending on the purpose of use. However, if the spacing is too large, a regular helical diameter cannot be obtained, so the spacing should be 10 times or less the helical diameter (ie, nozzle pitch).

上記の様にして得た巻回積層体は、そのtまで乾燥・焼
成し或いは炭化処理して製品化してもよいが、このまま
では各螺職巻回柱の績金力が不十分であって強度が乏し
く、且つ空−率も大会くなりすぎる鎗らいがあるので、
巻回積層後#I7図に示す如く上下方向から加圧処理し
、横方向に押しひろげて相互の密着度を向上することが
望まれる。
The wound laminate obtained in the above manner may be dried and fired or carbonized to a temperature of t to produce a product, but if this is done, the metal strength of each screw-wound column will be insufficient. There are some spears that lack strength and empty rates that are too competitive, so
After winding and stacking, it is desirable to pressurize from the top and bottom as shown in Figure #I7, and spread it out in the lateral direction to improve mutual adhesion.

同第1図では成形用金車3を固定してお亀、会螺旋巻回
柱を垂直方向く形成する例を示したが、壱回積層工楊で
成形用金麺3及び成形体受台4を遍歯な速度で回転させ
れば、#A職轡回柱幽体を螺旋状に形成するCともで龜
、この螺旋OSmによって最終成形体の通気抵抗をlI
I!Iiすることもで龜る。
Fig. 1 shows an example in which the molding wheel 3 is fixed to form a spiral winding pillar in the vertical direction. If #4 is rotated at an uneven speed, #A will form the rotational body in a spiral shape, and this spiral OSm will reduce the ventilation resistance of the final molded body.
I! It is also difficult to do so.

また第五図の例では吐出ダイス20ノズル1五びノズル
ピッチを一定にして全体の充填密度を一定にする様に構
成したが、この他ノズル径及びノズルピッチを積極的に
変更し、最終成形体の品質を1に罵めることも可能であ
る。その様な具体例としては、例えば第8図(吐出ダイ
ス2の一部下rki図)及び第9図(嬉8図の■−■線
断面相当図)に示す様な構成が挙げられる。即ちこの例
では吐出ダイス2の最外周側に位置するノズル51を半
円形にし、中央部のノズル5bは円形に構成している。
In addition, in the example shown in Figure 5, the discharge die is configured to have 20 nozzles, 15 nozzles, and a constant nozzle pitch to maintain a constant overall packing density. It is also possible to curse the quality of the body to 1. Specific examples of such configurations include the configurations shown in FIG. 8 (lower Rki diagram of part of the discharge die 2) and FIG. 9 (corresponding to the cross-sectional view taken along the line ■-■ in FIG. 8). That is, in this example, the nozzle 51 located at the outermost circumference of the discharge die 2 is formed into a semicircular shape, and the nozzle 5b at the center is formed into a circular shape.

ノズル5から押出される混線物Aの通過数はほぼ同一で
あるから、半円状のノズル5mを通過する混線物^の速
度は中央部の円形ノズル5bを通過する混練物Aの速度
よりも早くなり、しかも半円状押出物は第1O図(最外
周側ノズル51から押出される線状物の巻回積層状態を
示す説明図)に示す如く半円形のフラット部を内側にし
て旋回積層される。これは、フラット部を水平方向にし
て旋回するよりもフラット部を* ’+!方向にして旋
回する方が旋回抵抗が少ないことによるものである。鷺
の結果鍛外周側における螺旋巻回密度は中央部よりも上
下方向で密になり、外皮強度が強化される結果成形体全
体の強度を高めることができる。同様の趣旨で外周側の
ノズルピッチを小さくすることによって外局側の充填密
度を高めることも有効である。
Since the number of passages of the mixed material A extruded from the nozzle 5 is almost the same, the speed of the mixed material A passing through the semicircular nozzle 5m is higher than the speed of the mixed material A passing through the central circular nozzle 5b. Moreover, the semicircular extrudate is laminated in a spiral manner with the semicircular flat part inside, as shown in Figure 1O (an explanatory diagram showing the rolled and laminated state of the linear material extruded from the outermost nozzle 51). be done. This is better than turning the flat part horizontally. This is because there is less turning resistance when turning in the same direction. As a result of the forging, the helical winding density on the outer circumferential side is denser in the vertical direction than in the center, and the strength of the outer skin is strengthened, resulting in an increase in the strength of the entire molded body. For the same purpose, it is also effective to increase the packing density on the outer side by reducing the nozzle pitch on the outer circumferential side.

本発明は概略以、Eの様に構成されており、圧損の少な
い高性能の多孔質成形体を得ることがで龜るので、吸着
剤や触媒担体等としての適用範囲を大幅に拡大していく
ことがで龜る。淘添付0参考写真1〜3は本発明に係る
多孔質成形体を示したものである。
The present invention is roughly constructed as shown in E, and since it is difficult to obtain a high-performance porous molded body with low pressure loss, the range of application as an adsorbent or catalyst carrier can be greatly expanded. It's slow to go. Attached reference photographs 1 to 3 show porous molded bodies according to the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る多孔質成形体の製法を暗示する説
明図、第2〜4図は吐出ノズル下端と線状物の壱回積層
部との間隔L1線状物0断[11及び吐出ノズルの間隔
(ピッチ)Lが線状−〇IIIA旋々i!il径に4え
る影響を示すグラフ、1115.6図は本発明に係る多
孔質成形体を例示する一部拡大平1likTFiA1第
7図は巻回積層後の加圧状況を示す説明図、第8,9図
は本発明における好適なダイスを例示するもので、第8
図は一部下面図、@9図は第8図の■−■−断面図、第
10図は半円状線状物の螺旋巻回状態を示す説明図であ
る。 1・・・押出用シリンダー、2・・・ダイス、3・・・
成形用金型、4・・・成形体受台、5・・・ノズル、6
・・・ラム。
FIG. 1 is an explanatory diagram hinting at the manufacturing method of the porous molded body according to the present invention, and FIGS. 2 to 4 are the distance L1 between the lower end of the discharge nozzle and the once laminated portion of the linear material, the 0 cut of the linear material [11 and Discharge nozzle spacing (pitch) L is linear-〇IIIA whirling i! Figure 1115.6 is a partially enlarged graph showing the influence of il diameter on the porous molded body according to the present invention. , 9 illustrates a preferred die according to the present invention, and FIG.
9 is a partial bottom view, FIG. 9 is a cross-sectional view taken along the line ■--■ in FIG. 8, and FIG. 10 is an explanatory diagram showing a spirally wound state of a semicircular linear object. 1... Extrusion cylinder, 2... Dice, 3...
Molding mold, 4... Molded object holder, 5... Nozzle, 6
...Rum.

Claims (1)

【特許請求の範囲】 11)無機物質又は合成IN脂よりなる多数本の線状押
出物が夫々螺旋状に巻回積層されると共に、該Ill旋
状巻回積層物が夫々隣接面で相互に接合されるか又は絡
み合ってなる多孔質成形体。 (211?vM請求の範囲第1項において、線状押出物
が異なる断面形状及び/又は異なる断面積のものである
多孔質成形体。 (3)特許請求の範囲第1又は2項において、螺旋状巻
回積層物の外皮側の積層密度が中央部より密である多孔
質積層体。 (4)%軒d〜求の範囲第1〜3項のいずれかにおいて
、螺旋状巻回積層物全体が螺旋状にひねられる様に成形
されている多孔質成形体。 (5)無機物質又は合成樹脂よりなる粘弾性材料を、押
出ダイスに設けた多数のノズル穴から線状に押出して垂
直方向に降下させると共に、押出された線状押出物の積
層上面と押出ダイス出口端との距離を略一定に保持しつ
つ、且つ線状押出物を積層−上面へ螺旋状に巻回しつつ
積層させていくことを特徴とする多孔質成形体の製造方
法。 (6)特許請求の範囲第6項において、線状押出物の積
層上面と押出ダイス出口端との距離が、ダイス穴の間隔
の10倍以下である多孔質成形体の製造方法。
[Scope of Claims] 11) A large number of linear extrudates made of an inorganic substance or synthetic IN resin are each spirally wound and laminated, and the Ill spirally wound laminates are connected to each other on adjacent surfaces. A porous molded body that is joined or intertwined. (211?vM In claim 1, a porous molded article in which the linear extrudate has a different cross-sectional shape and/or a different cross-sectional area. (3) In claim 1 or 2, a spiral A porous laminate in which the outer shell side of the spirally wound laminate has a higher lamination density than the central part. (5) A viscoelastic material made of an inorganic substance or synthetic resin is linearly extruded through a number of nozzle holes provided in an extrusion die in a vertical direction. While lowering the extruded linear extrudates, the distance between the stacked top surface of the extruded linear extrudates and the exit end of the extrusion die is kept approximately constant, and the linear extrudates are stacked while being spirally wound toward the stacking top surface. (6) In claim 6, the distance between the top surface of the stack of linear extrudates and the exit end of the extrusion die is 10 times or less the distance between the die holes. A method for producing a porous molded body.
JP21167881A 1981-12-29 1981-12-29 Porous molded body and manufacture thereof Granted JPS58116134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21167881A JPS58116134A (en) 1981-12-29 1981-12-29 Porous molded body and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21167881A JPS58116134A (en) 1981-12-29 1981-12-29 Porous molded body and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS58116134A true JPS58116134A (en) 1983-07-11
JPS6331372B2 JPS6331372B2 (en) 1988-06-23

Family

ID=16609772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21167881A Granted JPS58116134A (en) 1981-12-29 1981-12-29 Porous molded body and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS58116134A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62113528A (en) * 1985-11-13 1987-05-25 Kobe Steel Ltd Porous molded form and manufacture thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4918950A (en) * 1972-06-14 1974-02-19

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4918950A (en) * 1972-06-14 1974-02-19

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62113528A (en) * 1985-11-13 1987-05-25 Kobe Steel Ltd Porous molded form and manufacture thereof
JPH0443486B2 (en) * 1985-11-13 1992-07-16 Kobe Steel Ltd

Also Published As

Publication number Publication date
JPS6331372B2 (en) 1988-06-23

Similar Documents

Publication Publication Date Title
US4758253A (en) Adsorption process
JP2603449B2 (en) Method for producing hollow porous microspheres
JP3995060B2 (en) Single-mode or multi-mode catalyst support or catalyst, method for producing the same, and method for producing chlorine
GB2417921A (en) A method of fabricating a catalyst carrier
EP3849698A1 (en) Catalyst support
US20130058843A1 (en) Mass transfer packing element and method of making the same
CN101007270B (en) Composite material of micro-fiber encapsulated active carbon or active carbon catalyst and preparation method thereof
CN103896623A (en) Ceramic carrier material and preparation method thereof
JPS58116134A (en) Porous molded body and manufacture thereof
US20190062170A1 (en) Sound-absorbing material particle and preparation method thereof
CN112299851B (en) Ceramic wire mesh corrugated medium material with high thermal shock resistance and preparation method and application thereof
CN101309751B (en) Process for producing porous shaped bodies
CN109553111B (en) Silicon dioxide microsphere with core-shell structure and preparation method thereof
DE3826220A1 (en) METHOD FOR PRODUCING CERAMIC MOLDED BODIES
EP4255623A1 (en) Packing member
KR20130066916A (en) Method to improve catalytic activities by employing network-typed pore structure in formed-catalyst
JPH05146678A (en) Active carbon honeycomb structure and production thereof
JPS6228114B2 (en)
CN103721665B (en) Surface foam corrugated plate packing
JPS62113528A (en) Porous molded form and manufacture thereof
JPH0358883B2 (en)
JPS62202706A (en) Porous molded shape and manufacture thereof
JPH06206271A (en) Honeycomb structure and manufacture thereof
CN116551812B (en) Preparation method and preparation equipment of light flame-retardant building material
JPH11262673A (en) Production of flue gas denitrification catalyst and flue gas denitrification catalyst