JPH0358883B2 - - Google Patents

Info

Publication number
JPH0358883B2
JPH0358883B2 JP59120934A JP12093484A JPH0358883B2 JP H0358883 B2 JPH0358883 B2 JP H0358883B2 JP 59120934 A JP59120934 A JP 59120934A JP 12093484 A JP12093484 A JP 12093484A JP H0358883 B2 JPH0358883 B2 JP H0358883B2
Authority
JP
Japan
Prior art keywords
receiving surface
spiral
nozzle
extrusion
linear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59120934A
Other languages
Japanese (ja)
Other versions
JPS60262604A (en
Inventor
Koichi Kobayashi
Eiji Saura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP59120934A priority Critical patent/JPS60262604A/en
Publication of JPS60262604A publication Critical patent/JPS60262604A/en
Publication of JPH0358883B2 publication Critical patent/JPH0358883B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は粘弾性材料を主原料とする多孔成形体
の製造方法に関し、詳細には螺旋状に連続する形
状を有する線状物でなる多孔成形体を経済的に且
つ任意の大きさに製造する方法に関するものであ
る。
Detailed Description of the Invention [Industrial Field of Application] The present invention relates to a method for producing a porous molded article whose main raw material is a viscoelastic material. The present invention relates to a method for manufacturing a molded article economically and in any size.

〔従来の技術〕[Conventional technology]

多孔性無機物質や多孔合成樹脂等の粘弾性材料
にバインダーを加えて成形した板状あるいは塊状
の多孔成形体は、過材、吸着材、吸音材、断熱
材、触媒担体等として近年広く使用されている。
本発明者等はこの様な多孔成形体であつて微細空
隙構造を有する良質を成形体を経済的に製造する
方法について研究を重ねており、先に特許出願を
行なつた(特開昭58−116134号)。
In recent years, porous molded bodies in the form of plates or blocks made by adding a binder to a viscoelastic material such as a porous inorganic substance or a porous synthetic resin have been widely used as filter materials, adsorbents, sound absorbing materials, heat insulating materials, catalyst carriers, etc. ing.
The present inventors have been conducting research on a method for economically producing a high-quality porous molded product having a microporous structure, and have previously filed a patent application (Japanese Unexamined Patent Application Publication No. 1983-1993). −116134).

即ち上記出願に係る多孔成形体の製造方法とは
例えば第6図に示される様に、垂直に設置した押
出用シリンダ1の先端に、多数のノズル孔5を設
けた押出ダイス2を取付け、その下方に成形用金
型3を設置すると共に該金型3内に成形用受台4
を昇降可能に配置した装置を用いて行なわれる方
法であつて、シリンダ1内に充填した粘弾性材料
Aをラム6によつて押圧することによりノズル孔
5から線状に押出して垂直方向に降下させると共
に該線状押出物を受台4の上へ、更に押出物積層
面上へ螺旋状に巻回しつつ積層させるものであ
る。これを乾燥・焼成することによつてハニカム
成形体よりも良質の多孔成形体を経済的に製造す
ることに成功している。
That is, the method for producing a porous molded product according to the above application is, for example, as shown in FIG. A molding mold 3 is installed below, and a molding pedestal 4 is installed in the mold 3.
This is a method carried out using a device arranged to be able to move up and down, in which the viscoelastic material A filled in the cylinder 1 is pressed by a ram 6, extruding it linearly from the nozzle hole 5 and descending in the vertical direction. At the same time, the linear extrudate is spirally wound and laminated onto the pedestal 4 and further onto the extrudate lamination surface. By drying and firing this, it has been possible to economically produce a porous molded body of better quality than a honeycomb molded body.

しかるに上記製造方法においては線状押出物の
積層方向が垂直方向に限定される為横断面積が押
出ダイス間口とほぼ同一面積の成形体しか得るこ
とができず、横断面積の大きな成形体を得ようと
すれば押出ダイスの間口面積並びに押出用シリン
ダを大型化さざるを得なかつた。又種々の大きさ
の成形体を製造しようとすると、大きさに対応し
た押出ダイス等を用意する必要があり、更に押出
ダイスの交換という煩雑な作業を頻繁に行なわな
ければならないという問題もあつた。
However, in the above manufacturing method, since the stacking direction of the linear extrudates is limited to the vertical direction, it is only possible to obtain a molded product with a cross-sectional area that is approximately the same as the extrusion die frontage, and it is difficult to obtain a molded product with a large cross-sectional area. In this case, the opening area of the extrusion die and the extrusion cylinder had to be increased in size. In addition, when trying to manufacture molded products of various sizes, it is necessary to prepare extrusion dies, etc. corresponding to the sizes, and there is also the problem that the complicated work of extrusion dies must be replaced frequently. .

〔発明が解決しようとする問題点〕 従来技術では成形装置の大きさによつて製造し
得る成形体の大きさが決定される。従つて所望の
大きさの成形体を製造しようとすれば対応した規
模の成形装置殊に押出ダイスを使用しなければな
らないというのが最大の問題である。その為前述
の様に種々の大きさの押出ダイスを用意する必要
があると共に押出クイズの交換の為に作業性が悪
化し、且つ交換時の材料ロスも多量に発生して成
形体の製造コストが高騰する。本発明は上記問題
点を克服すべく検討を重ねた結果完成されたもの
であつて任意の大きさの横断面積を持つ成形体を
成形装置殊に押出ダイスを交換することなく経済
的に製造する方法を提供することを目的とする。
[Problems to be Solved by the Invention] In the prior art, the size of the molded product that can be manufactured is determined by the size of the molding device. Therefore, the biggest problem is that in order to produce a molded article of a desired size, a correspondingly sized molding device, particularly an extrusion die, must be used. Therefore, as mentioned above, it is necessary to prepare extrusion dies of various sizes, and work efficiency deteriorates due to extrusion quizzes being replaced, and a large amount of material is lost during replacement, which increases the manufacturing cost of the molded product. is rising. The present invention was completed as a result of repeated studies to overcome the above-mentioned problems, and it is possible to economically produce a molded article having a cross-sectional area of any size without replacing the molding device, especially the extrusion die. The purpose is to provide a method.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成し得た本発明とは、粘弾性材料
を押出ダイスに設けた多数のノズル孔から押出し
て垂直方向に一定速度で降下させ、受け面上へ螺
旋状に着床させると共に、押出ダイスの下面と着
床面との間隔を略一定に保持しつつ、該受け面を
一定速度で横方向へ片道又は往復移動させること
により螺旋状物を高さ方向に積層させていく点に
要旨を有するものである。
The present invention has achieved the above object by extruding a viscoelastic material through a number of nozzle holes provided in an extrusion die, lowering it vertically at a constant speed, landing it on a receiving surface in a spiral shape, and extruding it. The gist is that the spiral objects are stacked in the height direction by keeping the distance between the lower surface of the die and the landing surface substantially constant and moving the receiving surface laterally at a constant speed in one way or back and forth. It has the following.

〔作用〕[Effect]

上記手段の作用を更に具体的に詳述する。但し
もつとも原理的なものとして押出ダイスのノズル
孔を単列にしたものから説明する。まず始めに多
孔性無機物質や多孔性樹脂等の粘弾性材料を、押
出ダイスを備えたシリンダ等に投入する。次いで
粘弾性材料を、シリンダ内を摺動するラムによつ
て加圧し、押出ダイスに設けた多数の単列ノズル
孔から一定速度で押出して垂直方向に垂下させ、
各ノズルからの垂下材料を螺旋状に巻回させつつ
ノズル下面から一定の間隔に設けられた受け面上
に着床させる。このとき受け面を上記ノズル孔の
単列と直交する横方向に移動させると螺旋状押出
物の着床点が移動することになり受け面上に平た
く横たえながら受け面上へじゆうたんを敷く様に
展開されていく。このとき受け面の移動は、ノズ
ル孔と着床点の距離が略一定に保持される様に、
行なう必要がある。尚ノズル孔と着床点の距離
は、10〜100mm程度であり、適宜選定される。本
発明ではその後色々な展開が可能であるが、代表
例を示すと螺旋状押出物の着床開始点からの距離
が所望の長さ(所望横断面積を与える為の長さ)
に到達した段階で受け面の移動方向を反転させ、
且つ螺旋状押出物の高さ分だけ受け面を下降さ
せ、既に着床した螺旋状押出物上に新しい螺旋状
押出物を着床積層し、前記着床開始点まで戻ると
再び下降反転移動させる。以下上記往復移動を繰
返しながら積層を続け、積層厚さを所定厚さに到
達させることによつて所望の横断面積並びに厚さ
を有する成形体を得ることができる。こうして得
た成形体を乾燥した後焼成処理に付すことによつ
て触媒坦体等として卓越した性能を有する成形体
小製品を得る。尚上記説明では移送ベルトの移動
方向を1軸方向にしたものを述べたが、上記移動
方向と直交する方向への移動を組合せて2軸移動
にし、上下に隣接する螺旋状物の展開方向が互い
に直交する積層物を形成してもよい。こうして得
られる成形体は展開方向が直交しているので機械
的強度が大きくなる。
The operation of the above means will be explained in more detail. However, as a basic principle, the extrusion die will be explained with nozzle holes arranged in a single row. First, a viscoelastic material such as a porous inorganic substance or a porous resin is put into a cylinder or the like equipped with an extrusion die. The viscoelastic material is then pressurized by a ram sliding inside the cylinder, extruded at a constant speed through a number of single row nozzle holes provided in an extrusion die, and suspended vertically.
The hanging material from each nozzle is wound spirally and landed on a receiving surface provided at a constant interval from the bottom surface of the nozzle. At this time, if the receiving surface is moved in the lateral direction perpendicular to the single row of nozzle holes, the landing point of the spiral extrudate will move, so while lying flat on the receiving surface, spread a carpet on the receiving surface. It will unfold like this. At this time, the receiving surface is moved so that the distance between the nozzle hole and the landing point is maintained approximately constant.
It is necessary to do it. The distance between the nozzle hole and the landing point is approximately 10 to 100 mm and is appropriately selected. The present invention can be developed in various ways after that, but a typical example is when the distance from the start point of implantation of the helical extrudate is a desired length (length to give a desired cross-sectional area).
When reaching the point, reverse the direction of movement of the receiving surface,
In addition, the receiving surface is lowered by the height of the helical extrudate, a new helical extrudate is deposited and stacked on top of the already deposited helical extrudate, and when it returns to the deposit start point, it is moved downward and reversed again. . Thereafter, the stacking is continued while repeating the above reciprocating movement until the stacking thickness reaches a predetermined thickness, thereby making it possible to obtain a molded article having a desired cross-sectional area and thickness. By drying the molded product thus obtained and then subjecting it to a calcination treatment, a small molded product having excellent performance as a catalyst carrier or the like is obtained. In the above explanation, the moving direction of the transfer belt is uniaxial, but the movement in the direction orthogonal to the above moving direction is combined to make biaxial movement, so that the direction of development of the vertically adjacent spiral objects is Mutually orthogonal laminates may also be formed. The molded body thus obtained has high mechanical strength because the developing directions are perpendicular to each other.

尚上記の原理を更に発展させて押出ダイスのノ
ズル孔を受け面移動方向にも複数列配設し(即ち
前後左右へ広がる様に配設し)、移動方向におけ
る着床位置のずれを利用して進行方向の前列側ノ
ズル孔から降下・着床した螺旋状押出物層上に進
行方向の後列側ノズル孔から降下・着床する螺旋
状押出物層を積層することによつて所定厚さに仕
上げることもできる。よして所定長さの成形体を
得るに際しては移動長さが前述の所定長さに到達
した時点で粘弾性材料の押出しを停止すればよい
が押出しを停止させずに続行して移動方向へ連続
した長尺の成形物を造り、最後にこれを切断して
もよい。得られた成形体を前記と同様に乾燥及び
焼成することによつて触媒坦体等として使用され
る多孔成形体を得ることができる。
Furthermore, by further developing the above principle, multiple rows of nozzle holes of the extrusion die are also arranged in the direction of movement of the receiving surface (that is, they are arranged so as to spread from front to back, left and right), and the deviation of the landing position in the direction of movement is utilized. By stacking the spiral extrudate layer that descends and lands from the rear row nozzle hole in the traveling direction on the spiral extrudate layer that descends and lands from the front row nozzle hole in the traveling direction, a predetermined thickness is obtained. You can also finish it. Therefore, in order to obtain a molded body of a predetermined length, extrusion of the viscoelastic material may be stopped when the moving length reaches the above-mentioned predetermined length, but extrusion may be continued without stopping and continued in the moving direction. Alternatively, a long molded product may be made and finally cut. By drying and firing the obtained molded body in the same manner as described above, a porous molded body that can be used as a catalyst carrier or the like can be obtained.

尚ノズル孔を複数とする例では列数を調整する
ことによつて調整できる。また積層厚さは前記列
数と往復移動数によつて決定される。
In an example in which there are a plurality of nozzle holes, adjustment can be made by adjusting the number of rows. Further, the lamination thickness is determined by the number of rows and the number of reciprocating movements.

その他本発明においては、線状物同士が垂下の
途中で交錯し合つて螺旋状態が乱れることがない
様に且つ線状物同士の間隔が離れすぎて着床物同
士の接合が不十分になることがない様に、線状物
が移送ベルトの上面で描く螺旋半径を調整するこ
とが望まれるが、該螺旋半径は押出ダイスの下
面と移送ベルトの上面との間隔及び線状物の断
面径(ノズル孔の径)との間に夫々略比例関係が
あるので上記間隔及び断面径を夫々調整して最良
の結果を得る様に設定する。設定後は、該間隔が
常に略一定とある様に、受け面の往復動に際して
機械的に制御する。又同様の理由からノズル孔の
配設間隔について好適に調整することが望まれ
る。
In addition, in the present invention, it is necessary to prevent the wires from intersecting with each other in the middle of hanging down and disrupting the spiral state, and to prevent the wires from being too far apart from each other, resulting in insufficient bonding between the implants. In order to avoid this, it is desirable to adjust the radius of the spiral drawn by the linear object on the top surface of the transfer belt. (diameter of the nozzle hole), so the above-mentioned interval and cross-sectional diameter are adjusted respectively to obtain the best results. After setting, the reciprocating movement of the receiving surface is mechanically controlled so that the interval is always substantially constant. Furthermore, for the same reason, it is desirable to suitably adjust the spacing between the nozzle holes.

本発明において上述の様に使用される粘弾性材
料の原料としては無機物質(多孔性無機物質及び
非多孔性無機物質)及び合成樹脂が挙げられる
が、更に具体的に示せば下記の通りである。
Raw materials for the viscoelastic material used as described above in the present invention include inorganic substances (porous inorganic substances and non-porous inorganic substances) and synthetic resins, but more specifically, they are as follows. .

まず多孔性無機物質としては、ゼオライト(合
成及び天然の如何を問わない)、γ−アルミナ、
シリカゲル、シリカ・アルミナ、ベーマイト、活
性チタニア、活性炭、モレキユラシービングカー
ボン等が例示される。また非多孔性無機物質とし
てはムライト(3Al2O3)、コランダム(α−
Al2O3)、コージエライト(2Al2O3・2MgO・
5SiO2)等の金属酸化物含有鉱物が例示される。
これらの無機物質は一般に粉粒体として入手する
ことができ、これを線状に押出すに当たつては、
後述する様なバインダーを添加して混練し、粘稠
状の粘弾性材料を調整する。
First, porous inorganic substances include zeolite (whether synthetic or natural), γ-alumina,
Examples include silica gel, silica/alumina, boehmite, activated titania, activated carbon, and molecular sieving carbon. Mullite (3Al 2 O 3 ) and corundum (α-
Al 2 O 3 ), cordierite (2Al 2 O 3・2MgO・
Examples include metal oxide-containing minerals such as 5SiO 2 ).
These inorganic substances are generally available as powder or granules, and when extruding them into a linear shape,
A binder as described below is added and kneaded to prepare a viscous viscoelastic material.

また合成樹脂としては非酸化性雰囲気下で炭化
して微細気孔を形成するものが好ましく、その様
な樹脂としては環式基(飽和炭素環式基、飽和複
素環式基、芳香族基、不飽和複素環式基等)等を
含む合成樹脂が挙げられ、中でもフエノール系樹
脂、アニリン系樹脂、キシレン・ホルムアルデヒ
ド樹脂、メラミン樹脂等の熱硬化性樹脂が最適で
ある。これらの合成樹脂も、使用に当たつては粉
粒状に粉砕した後、適当なバインダーと混練して
線状に押出される。
In addition, the synthetic resin is preferably one that carbonizes in a non-oxidizing atmosphere to form fine pores, and such resins include cyclic groups (saturated carbocyclic groups, saturated heterocyclic groups, aromatic groups, non-oxidizing groups). Examples include synthetic resins containing saturated heterocyclic groups, etc., among which thermosetting resins such as phenolic resins, aniline resins, xylene/formaldehyde resins, and melamine resins are most suitable. When these synthetic resins are used, they are crushed into powder, kneaded with a suitable binder, and extruded into a linear shape.

バインダーについては特段の制限はなく、粉粒
体に対して粘結機能を発揮するものであればすべ
て利用することができる。代表的なものとして
は、MC、CMC、殿粉、CMS(カルボキシメチル
スターチ)、HEC(ヒドロキシエチルセルロー
ス)、HPC(ヒドロキシプロピルセルロース)、リ
グニンスルホン酸ナトリウム、リグニンスルホン
酸カルシウム、ポリビニルアルコール、アクリル
酸エステル、メタクリル酸エステル、フエノール
樹脂、メラミン樹脂等の有機京バインダー;水ガ
ラス、コロイダルシリカ、コロイダルアルミナ、
コロイダルチタン、ベントナイト、燐酸アルミニ
ウム等の無機系バインダーが例示され、勿論これ
らは2種以上を併用してもかまわない。尚バイン
ダーの配合率は、乾燥重量で35%(対全混練物)
以下とするのが好ましく、この値を超えると最終
製品の強度が低下してくるので推奨できない。
There are no particular restrictions on the binder, and any binder can be used as long as it exhibits a caking function for powder and granules. Typical examples include MC, CMC, starch, CMS (carboxymethyl starch), HEC (hydroxyethyl cellulose), HPC (hydroxypropyl cellulose), sodium lignin sulfonate, calcium lignin sulfonate, polyvinyl alcohol, and acrylic ester. , methacrylic acid ester, phenolic resin, melamine resin, etc.; water glass, colloidal silica, colloidal alumina,
Examples include inorganic binders such as colloidal titanium, bentonite, and aluminum phosphate, and of course, two or more of these may be used in combination. The blending ratio of the binder is 35% by dry weight (based on the total kneaded material)
It is preferable to set it to the following value; if it exceeds this value, the strength of the final product will decrease, so it is not recommended.

そしてこれらの混合・混練手段についても制限
はなく公知の装置及び機器を利用すればよいが、
押出しに当たつてスクリユー式押出成形機を用い
る場合は、該成形機のスクリユーを利用して混練
することもできる。こうして混練された素材は、
上記スクリユー式押出成形機又はプランジヤー式
押出形成機等を用い、押出しを行なう。この押出
しから積層成形に亘る一連の工程において螺旋状
押出物同士は多数の微細間隔を形成した状態で接
合し、通気抵抗の小さい多孔成形体を得ることが
できる。
There are no restrictions on the mixing and kneading means, and known devices and equipment may be used.
When a screw type extrusion molding machine is used for extrusion, the screw of the molding machine can also be used for kneading. The material kneaded in this way is
Extrusion is carried out using the above-mentioned screw type extrusion molding machine or plunger type extrusion molding machine. In a series of steps from extrusion to lamination molding, the spiral extrudates are bonded together with a large number of fine gaps formed therebetween, thereby making it possible to obtain a porous molded product with low ventilation resistance.

〔実施例〕〔Example〕

第1図は第1実施例を示す斜視図、第2図は第
1図における−線断面矢視図で、成形装置S
はシリンダ1の下端フランジ部1aにダイブロツ
ク8を付設すると共に該ダイブロツク8の下面に
吐出ダイス2を取付けてなり、且つ吐出ダイス2
にはダイブロツク8の長辺に平行な方向へ1列に
ノズル孔5を穿設する。成形に当たつてはシリン
ダ1及びダイブロツク8内に充填した粘弾性材料
Aを、ラム6の押し下げによつて吐出ダイス2の
ノズル孔5から線状に一定速度で押出して垂直方
向に降下させ、成形装置Sの下方に略水平に配設
した移送ベルト4a上に着床させる。このとき線
状物Bは粘弾性を有しているので移送ベルト4a
の上面に当つた後夫々螺旋を描く様にして着床を
完了する。一方移送ベルト4aは軸9が矢印C方
向に回転するロール9によつて矢印D方向に移動
しており、前記の知く移送ベルト4aの上面に着
床した線状物Bは第1図に示す様にコイル状に平
たく横たわりベルト4a上へ展開されていく。こ
うして着床開始線Mから所定長さ分だけ線状物B
の着床が進行すると、ノズル5から線状物Bの押
出しを継続しながらロール9の回転方向を矢印
C′方向に反転させ且つ着床した線状物Bの厚さ分
だけ移動ベルト4aを下降させる。この様にして
移送ベルト4aの移動方向を矢印D′方向に転換
させる。これにより新たに垂下する線状物B′は
第3図(側面説明図)に示す様に既に着床してい
る線状物B(図では第1層)上に積層される様に
着床して第2層を形成する。こうして更に第2層
の着床が着床開始点まで戻ると着床方向を反転且
つ下降させて第3層以降所定の積層高さまで積層
を行なう。こうして所望の幅並びに厚さを有する
成形体を得ることができる。
FIG. 1 is a perspective view showing the first embodiment, and FIG. 2 is a cross-sectional view taken along the line - in FIG.
The die block 8 is attached to the lower end flange portion 1a of the cylinder 1, and the discharge die 2 is attached to the lower surface of the die block 8, and the discharge die 2
The nozzle holes 5 are bored in a row in a direction parallel to the long side of the die block 8. During molding, the viscoelastic material A filled in the cylinder 1 and die block 8 is extruded linearly at a constant speed from the nozzle hole 5 of the discharge die 2 by pushing down the ram 6, and is caused to fall vertically. It is placed on a transfer belt 4a disposed substantially horizontally below the molding device S. At this time, since the linear object B has viscoelasticity, the transfer belt 4a
After hitting the upper surface of the plane, they complete the landing by drawing a spiral. On the other hand, the transfer belt 4a is moving in the direction of arrow D by a roll 9 whose shaft 9 rotates in the direction of arrow C, and as mentioned above, the linear object B that has landed on the upper surface of the transfer belt 4a is shown in FIG. As shown, it lies flat in a coil shape and is unfolded onto the belt 4a. In this way, the linear object B is inserted by a predetermined length from the implantation start line M.
As the landing progresses, the direction of rotation of the roll 9 is indicated by the arrow while continuing to extrude the linear material B from the nozzle 5.
The moving belt 4a is lowered by the thickness of the linear object B which has been reversed in the C' direction and has landed on the floor. In this way, the direction of movement of the transfer belt 4a is changed to the direction of arrow D'. As a result, the newly hanging linear object B' lands on top of the linear object B (the first layer in the figure) that has already landed, as shown in Figure 3 (side view). to form a second layer. In this way, when the landing of the second layer returns to the landing start point, the landing direction is reversed and lowered, and the third and subsequent layers are stacked up to a predetermined stacking height. In this way, a molded article having a desired width and thickness can be obtained.

第4図は第2実施例を示す側面説明図でダイス
2の長辺(紙面貫通方向に延在する)と直交する
方向へ3列にノズル孔5a,5b,5cを穿設す
ると共に、線状物Bの着床面である移送ベルト4
bを傾斜して配置し該移送ベルト4bを矢印E方
向へ回転移動させる。ノズル孔5a,5b,5c
から線状物Bを一定速度で降下させると移送ベル
ト4b移動方向にみて着床位置が異なつているの
で図ではノズル孔5aから降下した線状物が最下
層となりその上にノズル5b及びノズル5cから
降下した各線状物が順次積み重なつて3層の線状
物積層体が形成される、尚移送ベルト4bを傾斜
させ各ノズルから降下する線状物のダイス2下面
から着床点までの距離及び線状物の降下速度を一
定にしているので、1つのノズルから下降して形
成される螺旋状線状物は同じ様な螺旋半径を有し
ており、この場合下層、中層、上層で夫々若干径
の異なる線状物の積層が得られる。
FIG. 4 is a side explanatory view showing the second embodiment, in which nozzle holes 5a, 5b, 5c are bored in three rows in a direction perpendicular to the long side of the die 2 (extending in the penetrating direction of the paper), and The transfer belt 4 is the landing surface for the object B.
b is arranged to be inclined, and the transfer belt 4b is rotated in the direction of arrow E. Nozzle holes 5a, 5b, 5c
When the linear object B is lowered at a constant speed, the landing position is different in the direction of movement of the transfer belt 4b, so in the figure, the linear object that has descended from the nozzle hole 5a becomes the lowest layer, and the nozzle 5b and nozzle 5c are placed above it. The linear objects descended from each nozzle are stacked one after another to form a three-layer linear object stack.The transfer belt 4b is tilted to transfer the linear objects descending from each nozzle from the bottom surface of the die 2 to the landing point. Since the distance and the descending speed of the linear object are constant, the spiral linear object formed by descending from one nozzle has a similar spiral radius, and in this case, the spiral linear object descends from one nozzle and has a similar spiral radius. A stack of linear objects having slightly different diameters is obtained.

第5図は第3実施例を示す断面説明図でダイス
2の長辺と直交する方向へ段階状に3列のノズル
孔5d,5e,5fを穿設し、且つ該ノズル孔5
d〜5fの段差長さdは1条の螺旋状線状物Bの
高さd′と略同等になる様に設計する。そして矢印
方向に略水平に走行する移送ベルト4a上に上記
ノズル孔5d〜5fから線状物Bを押出・降下さ
せることによつて図示する様な3層構造の線状物
積層体を得る。尚上記実施例においては各ノズル
孔5d〜5fの下面と線状物着床位置との垂直距
離を夫々等しくなる様に設計しているので旋回半
径はほぼ等しくなり、均質な線状物積層体を得る
ことができる。
FIG. 5 is a cross-sectional view showing a third embodiment, in which three rows of nozzle holes 5d, 5e, and 5f are bored stepwise in a direction perpendicular to the long side of the die 2.
The step length d from d to 5f is designed to be approximately equal to the height d' of one spiral linear object B. Then, the linear material B is extruded and lowered from the nozzle holes 5d to 5f onto the transfer belt 4a running substantially horizontally in the direction of the arrow, thereby obtaining a three-layered linear material laminate as shown. In the above embodiment, since the vertical distances between the lower surfaces of the nozzle holes 5d to 5f and the landing positions of the linear objects are designed to be equal, the turning radii are approximately equal, and a homogeneous linear object stack is produced. can be obtained.

使用例 本発明に係る多孔成形体の使用例として第7図
に示す様な輻射体がある。即ち上記輻射体Fはコ
の字型容器Kの上部に両端を支持された形で保持
され、側壁に臨設される吹込口Sから導入された
燃焼排ガスを輻射体の細孔か系外へ放散させると
共に輻射熱を反射させる機能を発揮するものであ
る。この様な輻射体Fにおいて輻射体が熱衝撃に
よつて割れて容器内へ落下すると重大事故につな
がる恐れがある。しかるに本発明に係る多孔体は
割れに方向性があるので第7図にIで示す如く配
置すると割れても輻射体Fが落下することがな
く、かかる用途に極めて有効である。
Example of Use As an example of use of the porous molded body according to the present invention, there is a radiator as shown in FIG. That is, the radiator F is held at the upper part of the U-shaped container K with both ends supported, and the combustion exhaust gas introduced from the inlet S provided on the side wall is radiated out of the system through the pores of the radiator. It also functions to reflect radiant heat. In such a radiator F, if the radiator breaks due to thermal shock and falls into the container, it may lead to a serious accident. However, since the porous body according to the present invention cracks in a certain direction, if it is arranged as shown by I in FIG. 7, the radiator F will not fall even if it breaks, and it is extremely effective for such applications.

〔発明の効果〕〔Effect of the invention〕

本発明は以上の様に構成されており、殊に受け
面を横方向に片道又は往復移動させるので、シリ
ンダや吐出ダイス等を交換することなく受け面の
移動長を調整するだけで任意の大きさで且つ螺旋
径の揃つた成形体を得ることができる。
The present invention is constructed as described above, and in particular, since the receiving surface is moved horizontally one way or back and forth, it is possible to create any size by simply adjusting the moving length of the receiving surface without replacing the cylinder or discharge die. It is possible to obtain a molded body with a long diameter and a uniform helical diameter.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の1実施態様を示す斜視
図、第2図は第1図における−線断面図、第
3図は線状物の積層状態を示す側面図、第4,5
図は他の実施例を示す説明図、第6図は従来の製
造方法を示す断面説明図及び第7図は本発明に係
る多孔成形体の使用例を示す斜視図である。 1……シリンダー、2……吐出ダイス、3……
成形用金型、4……受台、5……ノズル孔、6…
…ラム。
Fig. 1 is a perspective view showing one embodiment of the method of the present invention, Fig. 2 is a sectional view taken along the line - - in Fig. 1, Fig. 3 is a side view showing the stacked state of linear objects, and Fig.
FIG. 6 is an explanatory view showing another embodiment, FIG. 6 is an explanatory cross-sectional view showing a conventional manufacturing method, and FIG. 7 is a perspective view showing an example of use of the porous molded body according to the present invention. 1... Cylinder, 2... Discharge die, 3...
Molding mold, 4... pedestal, 5... nozzle hole, 6...
...Rum.

Claims (1)

【特許請求の範囲】[Claims] 1 粘弾性材料を押出ダイスに設けた多数のノズ
ル孔から押出して垂直方向に一定速度で降下さ
せ、受け面上へ螺旋状に着床させると共に、押出
ダイスの下面と着床面との間隔を略一定に保持し
つつ、該受け面を一定速度で横方向へ片道又は往
復移動させることにより螺旋状物を高さ方向に積
層させていくことを特徴とする多孔成形体の製造
方法。
1. A viscoelastic material is extruded through a number of nozzle holes provided in an extrusion die, is lowered vertically at a constant speed, and is deposited on the receiving surface in a spiral manner, and the distance between the lower surface of the extrusion die and the landing surface is A method for manufacturing a porous molded body, which comprises stacking spiral objects in the height direction by moving the receiving surface in one direction or back and forth in the lateral direction at a constant speed while holding the receiving surface substantially constant.
JP59120934A 1984-06-12 1984-06-12 Manufacture of porous molded shape Granted JPS60262604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59120934A JPS60262604A (en) 1984-06-12 1984-06-12 Manufacture of porous molded shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59120934A JPS60262604A (en) 1984-06-12 1984-06-12 Manufacture of porous molded shape

Publications (2)

Publication Number Publication Date
JPS60262604A JPS60262604A (en) 1985-12-26
JPH0358883B2 true JPH0358883B2 (en) 1991-09-06

Family

ID=14798583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59120934A Granted JPS60262604A (en) 1984-06-12 1984-06-12 Manufacture of porous molded shape

Country Status (1)

Country Link
JP (1) JPS60262604A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5074606A (en) * 1973-11-01 1975-06-19
JPS5722156A (en) * 1980-07-15 1982-02-05 Kobe Steel Ltd Porous formed body and manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5074606A (en) * 1973-11-01 1975-06-19
JPS5722156A (en) * 1980-07-15 1982-02-05 Kobe Steel Ltd Porous formed body and manufacture

Also Published As

Publication number Publication date
JPS60262604A (en) 1985-12-26

Similar Documents

Publication Publication Date Title
US7208108B2 (en) Method for producing porous ceramic article
US4645700A (en) Ceramic honeycomb structural body
EP1628929B1 (en) Cordierite ceramic body and method
US6087281A (en) Low CTE cordierite bodies with narrow pore size distribution and method of making same
CN104870341B (en) For lifted and moved it is shapable and/or can avalanche part devices, systems, and methods
US7494613B2 (en) Method of manufacturing a cordierite structure
KR101113619B1 (en) Honeycomb structure, process for producing honeycomb structure, honeycomb filter and process for producing honeycomb filter
US20080124517A1 (en) Wall-flow honeycomb filter with hexagonal channel symmetry
KR930012633A (en) High porosity cordierite body and its manufacturing method
KR860007022A (en) Monolithic catalyst support and preparation method
US20070194480A1 (en) Method of conveying ceramic moldings
US11654592B2 (en) Rectangular outlet honeycomb structures, particulate filters, extrusion dies, and method of manufacture thereof
CN1206458A (en) Ceramic packing with channels for thermal and catalytic beds
JPS63147553A (en) Ceramic honeycomb slender catalyst carrier and manufacture thereof
JPH0911315A (en) Honeycomb structure, extruding die and method for manufacturing the same
EP0315208A2 (en) Process for making ceramic bodies with open channels
US20040152593A1 (en) Catalyst support
US9039987B2 (en) Mass transfer packing element and method of making the same
EP0360590A1 (en) A method and an apparatus for extruding ceramic multi-layer structural bodies
JPH0358883B2 (en)
EP0776696B1 (en) Honeycomb-shaped ceramic and method for producing it
CN112299851A (en) Ceramic wire mesh corrugated medium material with high thermal shock resistance and preparation method and application thereof
US20220234964A1 (en) Dielectric drying method and dielectric drying apparatus for ceramic formed bodies, and method for producing ceramic structures
US20080067707A1 (en) Method and press for the production of molding elements
JPS6331372B2 (en)