JPS58115356A - Calorimeter for gas - Google Patents

Calorimeter for gas

Info

Publication number
JPS58115356A
JPS58115356A JP21314181A JP21314181A JPS58115356A JP S58115356 A JPS58115356 A JP S58115356A JP 21314181 A JP21314181 A JP 21314181A JP 21314181 A JP21314181 A JP 21314181A JP S58115356 A JPS58115356 A JP S58115356A
Authority
JP
Japan
Prior art keywords
gas
heater
temperature
catalyst layer
temperature sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21314181A
Other languages
Japanese (ja)
Inventor
Shosaku Maeda
前田 昌作
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP21314181A priority Critical patent/JPS58115356A/en
Publication of JPS58115356A publication Critical patent/JPS58115356A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/20Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity
    • G01N25/22Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on combustion or catalytic oxidation, e.g. of components of gas mixtures
    • G01N25/28Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on combustion or catalytic oxidation, e.g. of components of gas mixtures the rise in temperature of the gases resulting from combustion being measured directly
    • G01N25/30Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on combustion or catalytic oxidation, e.g. of components of gas mixtures the rise in temperature of the gases resulting from combustion being measured directly using electric temperature-responsive elements
    • G01N25/32Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on combustion or catalytic oxidation, e.g. of components of gas mixtures the rise in temperature of the gases resulting from combustion being measured directly using electric temperature-responsive elements using thermoelectric elements

Abstract

PURPOSE:To ensure the accurate measurement of the calorific value of fuel gas in a continuous and instantaneous way, by providing a powder grain oxidation catalyst layer and then a heater into a gas flowing path and setting temperature heaters before the catalyst layer, between the catalyst layer and the heater and after the heater respectively. CONSTITUTION:The end pipes 2 and 3 are stuck to both ends of a case 1 which forms a flowing path of a fuel gas G. Then a temperature sensor 10, a powder grain oxidation catalyst layer 14, a temperature sensor 11, a heater 13 and a temperature sensor 12 are set successively from the side of the gas inlet (side of the pipe 2). Each of the sensors 10-12 is formed by enclosing a platinum net wires, etc. into a pipe of alumina ceramic, etc. These sensors are then enclosed by the glass wool 16, etc. and put into branch pipes 4, 5 and 6 respectively. The heater 13 is put through a branch pipe 7. The layer 14 is made of Cu2O, V2O5, etc., and Al2O3 15 is packed around the heater 13. Then the calorific value Q of the gas G is obtained accurately from equationsI-III, where t0 is the temperature of G obtained before the oxidation reaction, t1 is the temperature of G obtained after the oxidation reaction, t2 is the temperature of gas G2 due to the calorific value (q) supplied from the heater 13 and Cp is the specific heat at constant pressure of CO2 produced from G.

Description

【発明の詳細な説明】 本発明は、主として燃料用ガスの熱量測定に用いられる
ガス用カロリーメータに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gas calorimeter mainly used for measuring the calorific value of fuel gas.

近来、都市ガス等の精製工程管理用あるいは取引用とし
て、連続的かつ即時的にガスの熱量を測定する要求が生
じており、従来においては、ガス通路中へ、白金線等の
表面へ触媒を固着させたセンサを設け、ガスと触媒との
反応による発熱量を白金11の抵抗値変化として検出す
る手段が提案されている。
In recent years, there has been a demand for continuous and instantaneous measurement of the calorific value of gas for the purpose of controlling the refining process of city gas, etc., or for trading purposes. A method has been proposed in which a fixed sensor is provided and the amount of heat generated by the reaction between the gas and the catalyst is detected as a change in the resistance value of the platinum 11.

しかし、か\る手段においては、ガスの極く一部のみし
かセンサと接触せず、測定確度が低下すると共に、白金
線等へ触媒を固着させる場合、スラリー状とした触媒を
塗布のうえ焼結しており、これに高度の技術を要する割
合には、極細白金線等を用いるため機械的強度が弱く、
かつ、触媒をスラリー状とする際の溶媒が残留し、これ
が悪影響を与える等の理由により、セ:ンサとしての信
頼性が劣化する欠点を生じている。
However, in such a method, only a small portion of the gas comes into contact with the sensor, which reduces measurement accuracy, and when fixing the catalyst to a platinum wire, etc., a slurry of the catalyst is applied and then baked. The mechanical strength is weak due to the use of ultra-fine platinum wire, etc., which requires advanced technology.
In addition, the reliability of the sensor is deteriorated due to the fact that the solvent remaining when the catalyst is made into a slurry has an adverse effect.

本発明は、従来のか\る欠点を根本的に解決する目的を
有し、ガス通路中へ、粉粒状の酸化触媒と、加熱用ヒー
タとを順次に設け、酸化反応前のガス温度と、酸化反応
後のカス温度と、加熱後のガス温度とを検出し、これら
の結果に基づいてガスの熱量を求めるものとした極めて
効果的な、ガス用カロリーメータを提供するものである
The present invention has the purpose of fundamentally solving the drawbacks of the conventional method, and by sequentially providing a powdery oxidation catalyst and a heating heater in the gas passage, the gas temperature before the oxidation reaction can be controlled. The present invention provides an extremely effective gas calorimeter that detects the temperature of the residue after reaction and the temperature of the gas after heating, and determines the calorific value of the gas based on these results.

以下、実施例を示す断面図により尿発明の詳細な説明す
る。
Hereinafter, the urine invention will be described in detail with reference to cross-sectional views showing examples.

同図において、バイオレックスガラス等の円管を用いた
ガス通路を形成するケース1の両端には、同様の材料に
より製され九端管2.3が気密状に固着されており、端
管2からガスGが流入する一方、ケース1内を通過した
ガスGが、端管3から排ガスRGとして排出されるもの
となっている。
In the figure, nine-end tubes 2.3 made of the same material are airtightly fixed to both ends of a case 1 that forms a gas passage using a circular tube such as Biolex glass. While the gas G flows in from the case 1, the gas G that has passed through the case 1 is discharged from the end pipe 3 as exhaust gas RG.

また、ケース1内には、枝管4〜7へ嵌入し、かつ、気
密状に固定された絶縁性と気密性とを有するペース8を
、リード線9が貫通した第1温度センサ10、第2温度
センサ11、第3温度七ンサ12が挿入されていると共
に、加熱用のヒータ13が挿入されており、第1および
第2温度センサ10と11との間には、粉粒状の酸化触
媒14が充填され、第2および第3温度センサ11と1
2との間に挿入されたヒータ13の周囲には、アルミナ
粉粒15が充填されている。
Also, inside the case 1, a first temperature sensor 10 and a first temperature sensor 10 having a lead wire 9 passing through an insulating and airtight pace 8 that is fitted into the branch pipes 4 to 7 and fixed in an airtight manner. A second temperature sensor 11 and a third temperature sensor 12 are inserted, as well as a heater 13 for heating, and a powdery oxidation catalyst is inserted between the first and second temperature sensors 10 and 11. 14 is filled, and the second and third temperature sensors 11 and 1
Alumina powder particles 15 are filled around the heater 13 inserted between the heater 13 and the heater 13 .

なお、温度センサ10〜12の周囲にはガラスウール1
6が充填され、これらを固定している。
In addition, glass wool 1 is placed around the temperature sensors 10 to 12.
6 is filled and fixes them.

このため、ガスGの流通に対し、酸化触媒14と、ヒー
タ13とが順次に配設されるものとなっており、第1一
度センサ10によっては、酸化反応前のガスGの温度が
検出され、第2温度センサ11によっては、酸化触媒1
4によるガスGの酸化反応後における温度が検出され、
第3温度センサ12によっては、酸化反応後、ヒータ1
3により加熱されたガスGの温度が検出されるものとな
っている。
For this reason, the oxidation catalyst 14 and the heater 13 are sequentially arranged for the flow of the gas G, and the temperature of the gas G before the oxidation reaction is detected by the first sensor 10. , depending on the second temperature sensor 11, the oxidation catalyst 1
The temperature after the oxidation reaction of gas G by 4 is detected,
Depending on the third temperature sensor 12, after the oxidation reaction, the heater 1
3, the temperature of the heated gas G is detected.

したがって、各温度センサ10〜12の検出々力により
、ガスGの熱量Qを求めることができる。
Therefore, the amount of heat Q of the gas G can be determined by the detection power of each temperature sensor 10 to 12.

すなわち、ガスGの酸化反応熱量QVi、これによって
生ずるCO2の定圧比・熱をCpとし、酸化反応前の温
度をtos酸化酸化反応源度をt! とすれば、次式に
より与えられる。
That is, the oxidation reaction heat quantity QVi of gas G, the constant pressure ratio/heat of CO2 produced by this is Cp, the temperature before the oxidation reaction is tos, and the oxidation reaction source degree is t! Then, it is given by the following equation.

Q=Cp (tr  to )     −−−(1)
また、酸化反応後のガスGに対[2、qカロIJ−の熱
量をヒータ13により供給すれば、これによって加熱さ
れたガスGの温度をt!とするとき、Cowの定圧比熱
Cpは次式によって示される。
Q=Cp (tr to )---(1)
Furthermore, if the heater 13 supplies the gas G after the oxidation reaction with a heat amount of [2, q Calo IJ-, the temperature of the heated gas G will be t! Then, the constant pressure specific heat Cp of Cow is expressed by the following equation.

Cp=q/ (tz  tt )    ・・・・・・
 (2)こ\で、(1)式へ(2)式を代入すると、し
たがって、ヒータ13によりqカロリーの熱量を供給の
うえ、第1乃至第3温度センサ11〜13により温度j
o+il+L冨  を求め、これらの検出々力に基づき
(3)式の演算を行なえば、ガスGのM−IQが求めら
れる。
Cp=q/ (tz tt) ・・・・・・
(2) Now, by substituting equation (2) into equation (1), the heater 13 supplies q calories of heat, and the first to third temperature sensors 11 to 13 measure the temperature j.
The M-IQ of the gas G can be obtained by calculating o+il+L-value and calculating the equation (3) based on these detection forces.

なお、酸化触媒14の劣化状況をチェックするになよ、
排ガスRG中に残存する燃焼可能な成分を構出すればよ
いため、公知の可燃性ガスセンサを端管3@へ封入し、
これによって燃焼可能成分を検出するか、可搬型の可燃
性ガス検出器により排ガスRGを点検すればよい。
Please do not check the deterioration status of the oxidation catalyst 14.
In order to detect the combustible components remaining in the exhaust gas RG, a known combustible gas sensor is sealed in the end pipe 3@.
This may be used to detect combustible components, or the exhaust gas RG may be inspected using a portable combustible gas detector.

また、酸化触媒14が劣化した場合は、ガスGの坐位時
間肖り供給量を減少させ、供給されるガスGのすべてが
酸化反応を生ずるものとすればよく、連続的な使用が可
能となる。
Furthermore, if the oxidation catalyst 14 deteriorates, the amount of gas G supplied during sitting time may be reduced so that all of the supplied gas G undergoes an oxidation reaction, allowing continuous use. .

このほか、各温度センサ10〜12としては、アルミナ
セラミック等の管中へ、白金網線等を封入したものが好
適であり、酸化触媒14としては、Cut O,Coo
、 Mn0m 、  Crx 03 、 ZnO,F@
mol、 V2051 Mo5s 1  等のいずれか
ソ用いられる。
In addition, each of the temperature sensors 10 to 12 is preferably a tube made of alumina ceramic or the like with a platinum mesh wire sealed therein, and the oxidation catalyst 14 is preferably a tube made of alumina ceramic or the like.
, Mn0m, Crx03, ZnO,F@
mol, V2051 Mo5s 1 etc. are used.

たソし、複数種のものを混合して用いれば、各々の特性
が相補的に作用するため、各種の可燃性成分に対しより
確実な酸化反応を得ることができるものとなり好適であ
る。
However, it is preferable to use a mixture of a plurality of types, since the characteristics of each type act complementary to each other, so that a more reliable oxidation reaction can be obtained for various combustible components.

なお、酸化触媒14中へ、アルミナ粉粒等の不活性粉粒
を混合すれば、粉粒状酸化触媒の融着による相互結合が
阻止され、これの表面積減少が防止されるため効果的で
ある。
Note that it is effective to mix inert particles such as alumina powder into the oxidation catalyst 14 because this prevents the granular oxidation catalysts from bonding to each other due to fusion and prevents their surface area from decreasing.

したがって、表面積の多い粉粒状の酸化触媒14とガス
Gの流通するすべてが完全に接触し、すべてのガスGが
酸化反応に関与するものとなるため、ガスGの熱量を完
全かつ正確に検出できるものになると共に、霧出した極
細白金線等を使用しないうえ、触媒の塗布、固着郷を必
要としないため、全体としての信頼性が大幅に向上する
Therefore, the powdery oxidation catalyst 14 with a large surface area and all of the gas G that flows through it come into complete contact, and all of the gas G takes part in the oxidation reaction, so the amount of heat of the gas G can be detected completely and accurately. In addition, the overall reliability is greatly improved because it does not use atomized ultrafine platinum wire, and it does not require catalyst application or adhesion.

なお、ケース1は、耐熱性、気密性および化学的不活性
を有するものであれば、任意の材料により製してよく、
その形状も選定が可能であり、各温度センサ1°0〜1
2には、サーミスタ等の半導体匁用いても同様であるう
え、アルミナ粉粒15およびガラスクール16の代りに
同等の性質を呈する他の物質を用いてもよく、あるいは
、各温度センサ10〜12をケース1の外壁側へ設けて
もよい等、種々の変形が自在である。
Note that the case 1 may be made of any material as long as it has heat resistance, airtightness, and chemical inertness.
Its shape can also be selected, and each temperature sensor 1°0~1°
The same effect can be obtained by using a semiconductor material such as a thermistor for the temperature sensors 10 to 12. In addition, other substances exhibiting the same properties may be used instead of the alumina powder particles 15 and the glass coolant 16, or each of the temperature sensors 10 to 12 Various modifications are possible, such as providing the casing 1 on the outer wall side of the case 1.

以上の説明により明らかなとおり本発明によれば、簡単
かつ製造の容易な構成により、正確かつ高信頼性のカロ
リーメータが得られるため、各種可燃性ガスの連続的か
つ即時的な熱t#I定が自在となり、燃料用ガス等の精
製工程管理および取引上、顕著な効果が得られる。
As is clear from the above description, according to the present invention, an accurate and highly reliable calorimeter can be obtained with a simple and easy-to-manufacture configuration. This allows remarkable effects to be achieved in refining process management and trading of fuel gas, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の実施例を示す断面図である。 1・・・・ケース、10〜12・・・・第1乃至第3温
度センサ、13・愉・9ヒータ、14・・・・酸化触媒
、G・・・・ガス。 特許出願人  山武ハネウェル株式会社代理人 山川政
樹(ほか1名)
The figure is a sectional view showing an embodiment of the present invention. 1... Case, 10-12... 1st to 3rd temperature sensor, 13... 9 heater, 14... Oxidation catalyst, G... Gas. Patent applicant Yamatake Honeywell Co., Ltd. Agent Masaki Yamakawa (and one other person)

Claims (2)

【特許請求の範囲】[Claims] (1)ガス通路中へ順次に設けられた粉粒状の酸化触媒
と、加熱用のヒータとを備えることを特徴とするガス用
カロリーメータ。
(1) A gas calorimeter characterized by comprising a powdery oxidation catalyst sequentially provided in a gas passage and a heater for heating.
(2)#化触媒として複数種の混合物を用いたことを特
徴とする特許請求の範囲第1項記載のガス用カロリーメ
ータ。
(2) The gas calorimeter according to claim 1, characterized in that a mixture of a plurality of types is used as the #formation catalyst.
JP21314181A 1981-12-29 1981-12-29 Calorimeter for gas Pending JPS58115356A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21314181A JPS58115356A (en) 1981-12-29 1981-12-29 Calorimeter for gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21314181A JPS58115356A (en) 1981-12-29 1981-12-29 Calorimeter for gas

Publications (1)

Publication Number Publication Date
JPS58115356A true JPS58115356A (en) 1983-07-09

Family

ID=16634249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21314181A Pending JPS58115356A (en) 1981-12-29 1981-12-29 Calorimeter for gas

Country Status (1)

Country Link
JP (1) JPS58115356A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2942321A1 (en) * 2009-02-16 2010-08-20 Peugeot Citroen Automobiles Sa Fuel's net calorific value determining method for controlling engine of vehicle, involves measuring temperature data of catalyst, and determining net calorific value of fuel from injected quantity and measured temperature data
FR2942320A1 (en) * 2009-02-16 2010-08-20 Peugeot Citroen Automobiles Sa Fuel's net calorific value determining method for engine of vehicle, involves determining quantity of fuel injected in engine, measuring temperature data of catalyst, and determining net calorific value of fuel from fuel quantity and data
US10048217B2 (en) 2016-03-11 2018-08-14 Southwest Research Institute Calibrated volume displacement apparatus and method for direct measurement of specific heat of a gas

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2942321A1 (en) * 2009-02-16 2010-08-20 Peugeot Citroen Automobiles Sa Fuel's net calorific value determining method for controlling engine of vehicle, involves measuring temperature data of catalyst, and determining net calorific value of fuel from injected quantity and measured temperature data
FR2942320A1 (en) * 2009-02-16 2010-08-20 Peugeot Citroen Automobiles Sa Fuel's net calorific value determining method for engine of vehicle, involves determining quantity of fuel injected in engine, measuring temperature data of catalyst, and determining net calorific value of fuel from fuel quantity and data
US10048217B2 (en) 2016-03-11 2018-08-14 Southwest Research Institute Calibrated volume displacement apparatus and method for direct measurement of specific heat of a gas

Similar Documents

Publication Publication Date Title
US4787251A (en) Directional low differential pressure transducer
JPS6026977B2 (en) Combustible gas detection device
US8042409B2 (en) Method for measuring mass flow of a multi-component gas
JP4355792B2 (en) Thermal flow meter
US4141955A (en) Combustible concentration analyzer
JPH02195941A (en) Breathed air flow meter
RU2283479C2 (en) Method for determining flow of gas mixture and a gas counter
JPS58115356A (en) Calorimeter for gas
AU565376B2 (en) Constant temperature heating value measurement apparatus
EP1336841A2 (en) Acoustic gas meter
CA1096197A (en) Apparatus for measuring excess oxygen or combustibles in a gaseous sample of a combustion process
JPS58115357A (en) Calorimeter for gas
JPS58115355A (en) Calorimeter for gas
JPH02141621A (en) Heat type flow rate sensor
JPS58115358A (en) Calibrating method of calorimeter for gas
JPH0216867B2 (en)
JPH07294467A (en) Continuous composition measuring method for mixed gas whose component is known, measuring pipe for continuous composition measurement and continuous composition measuring device
JPS6050289B2 (en) thermal flow meter
JPS58196448A (en) Gas sensor and manufacture thereof
US3296865A (en) Heat sensing probe and process
US2422129A (en) Measurement of oxygen in gas mixtures
CN214172533U (en) Water heater
WO1994028410A1 (en) Device and method for calibration of sensors
SU1038856A1 (en) Moisture meter
JPS6118451Y2 (en)