JPS58115359A - Calorimeter for gas - Google Patents

Calorimeter for gas

Info

Publication number
JPS58115359A
JPS58115359A JP21314481A JP21314481A JPS58115359A JP S58115359 A JPS58115359 A JP S58115359A JP 21314481 A JP21314481 A JP 21314481A JP 21314481 A JP21314481 A JP 21314481A JP S58115359 A JPS58115359 A JP S58115359A
Authority
JP
Japan
Prior art keywords
calorimeter
gas
heater
heat
temperature sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21314481A
Other languages
Japanese (ja)
Other versions
JPH0124259B2 (en
Inventor
Shosaku Maeda
前田 昌作
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP21314481A priority Critical patent/JPS58115359A/en
Publication of JPS58115359A publication Critical patent/JPS58115359A/en
Publication of JPH0124259B2 publication Critical patent/JPH0124259B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/20Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity
    • G01N25/22Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on combustion or catalytic oxidation, e.g. of components of gas mixtures
    • G01N25/28Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on combustion or catalytic oxidation, e.g. of components of gas mixtures the rise in temperature of the gases resulting from combustion being measured directly

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE:To ensure the stable and accurate measurement of calorific value, by holding a tubular heater which heats up a tubular calorimeter containing a powder grain oxide catalyst and a sensor detecting the temperature of the catalyst by a heat transmitting plate along with said calorimeter and therefore by carrying out an oxidation reaction under the fixed conditions. CONSTITUTION:A case 21 of a ''Pyrex '' tube, etc. contains a temperature sensor RS enclosed by the Al2O3 powder grains 22 and a temperature sensor SS enclosed by the glass wool 26 and a powder grain oxide catalyst 23. The gas G to be measured is supplied through a branch pipe 5a, and the waste gas is discharged through a branch pipe 5b. Such a calorimeter 3 is held in a heat insulating casing 1 along with a pair of heat transmitting plates 2a and 2b made of Al, etc. which are set in parallel. The plates 2a and 2b contain the depressed parts 8a and 8b to hold the meter 3 and a heater H of the meter 3. Then a gap 9 is formed at a place near the oxide catalyst SS of the meter 3, and a heat insulator 10 is put into the gap 9. Then the oxidation of the gas G is promoted by the heater H, and at the same time the dispersion of heat is prevented by the insulator 10. This enables the accurate detection of the sensor SS.

Description

【発明の詳細な説明】 本発明は、主として燃料用ガスの熱量測定に用いられる
ガス用カロリーメータに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gas calorimeter mainly used for measuring the calorific value of fuel gas.

近来、都市ガス等の精製工程管理用あるいは取引用とし
て、連続的かつ即時的にガスの熱量を測定する要求が生
じており、従来においては、ガス通路中へ、白金線等の
表面へ触媒を固着させたセンサを設け、ガスと触媒との
反応による発熱量を白金線等の抵抗値変化として検出す
る手段が提案されている。
In recent years, there has been a demand for continuous and instantaneous measurement of the calorific value of gas for the purpose of controlling the refining process of city gas, etc., or for trading purposes. A method has been proposed in which a fixed sensor is provided and the amount of heat generated by the reaction between the gas and the catalyst is detected as a change in the resistance value of a platinum wire or the like.

しかし、か\る手段においては、ガスの極<一部のみし
かセンサと接触せず、#j定確度が低下すると共に、白
金線等へ触媒を固着させる場合、スラリー状とした触媒
を塗布のうえ焼結しており、これに高度の技術〜を要す
る割合には、極細白金線等を用いるため一械的強度が弱
く、かつ、触媒を    ″スラリー状とする際の溶媒
が残留し、これが悪影響を与える郷の理由により、セン
サとしての信頼性が劣化する欠点を生じている。
However, in such a method, only a part of the gas pole comes into contact with the sensor, reducing the accuracy of #j, and when fixing the catalyst to a platinum wire, etc., it is difficult to coat the catalyst in the form of a slurry. It is sintered, and this process requires a high degree of skill.The mechanical strength is weak because ultra-fine platinum wires are used, and the solvent used to make the catalyst into a slurry remains, which causes The reliability of the sensor is degraded due to the adverse effects on the sensor.

本発明は、従来のか\る欠点を根本的に解決する目的を
有し、ガスの通路へ封入した粉粒状の酸化触媒と、この
酸化触媒の反応による温度を検出する温度センサとを備
える管状のカロリーメータと、管状のヒータとを、伝熱
板により挾持して−体とした極めて効果的な、ガス用カ
ロリーメータを提供するものである。
The present invention has the purpose of fundamentally solving the drawbacks of the conventional method, and is directed to a tubular system comprising a powdery oxidation catalyst sealed in a gas passage and a temperature sensor that detects the temperature caused by the reaction of this oxidation catalyst. To provide an extremely effective gas calorimeter in which a calorimeter and a tubular heater are sandwiched between heat exchanger plates.

以下、実施例を示す図によって本発明の詳細な説明する
Hereinafter, the present invention will be explained in detail with reference to figures showing examples.

第1図は全構成を示し、囚tよ正断面図、ω)は側断面
図であり、セラミックスウール等の成形により製された
断熱性の外筐1中には、アルミニウム等からなる1対の
伝熱板2a 、2bにより、互に隣接しかつ平行に挾持
された後述のカロリーメータ3および、管状のカートリ
ッジ形ヒータHが収容されており、カロリーメータ3の
ガスGが供給される枝管51および、排ガスRGが排出
される枝管5b1ならびに、各リード線6a〜6e、、
7等は、外筐1を貫通して外部へ引出されている。
Figure 1 shows the entire configuration, and ω) is a front sectional view, and ω) is a side sectional view. A calorimeter 3, which will be described later, and a tubular cartridge-shaped heater H, which are sandwiched adjacently and parallel to each other by heat exchanger plates 2a and 2b, are housed therein, and a branch pipe to which gas G of the calorimeter 3 is supplied. 51, a branch pipe 5b1 through which exhaust gas RG is discharged, and each lead wire 6a to 6e.
7 and the like penetrate the outer casing 1 and are drawn out to the outside.

また、伝熱板2a 、2bには、カロリーメータ3およ
びヒータ4を挾持するだめの四部8a、8bが相対向す
る内面側に形成しであると共に、カロリーメータ3の挾
持部8cにおける、後述のとおりカロリーメータ3内へ
酸化触媒が封入しである近傍には、空隙9が形成されて
おり、この中ヘウール等の断熱材10が介挿されている
In addition, the heat exchanger plates 2a and 2b have four portions 8a and 8b that sandwich the calorimeter 3 and the heater 4 formed on the inner surfaces thereof facing each other. A gap 9 is formed in the vicinity of the calorimeter 3 where the oxidation catalyst is sealed, and a heat insulating material 10 such as wool is inserted into the gap 9.

このため、カロリーメータ3は、ヒータHの発熱により
、伝熱板2a 、2b を介して加熱され、ガスGの酸
化触媒との酸化反応が促進される一方、空H9内の断熱
材10により不要な熱放散が阻止され、後述のとおり、
酸化触媒中へ設けた温度センサによる温度検出が正確に
行なわれるものとなっている。
Therefore, the calorimeter 3 is heated via the heat exchanger plates 2a and 2b by the heat generated by the heater H, and the oxidation reaction of the gas G with the oxidation catalyst is promoted, while the heat insulating material 10 in the air H9 makes the calorimeter 3 unnecessary. heat dissipation is prevented, and as explained later,
Temperature detection is performed accurately by a temperature sensor provided in the oxidation catalyst.

なお、伝熱板2m 、 2b T’S、ねじ11a、1
1bにより両端部が締結され、全体が一体として組立て
られており、これらが断熱性の外筐1内へ封入されてい
ると共に、後述の制御回路によりヒータHの通電が制御
されているため、外筐1の内部は一定温度に維持される
ものとなっている。
In addition, heat exchanger plates 2m, 2b T'S, screws 11a, 1
1b, both ends are fastened together, and the whole is assembled as one piece. These are enclosed in the heat-insulating outer casing 1, and the energization of the heater H is controlled by the control circuit described later. The inside of the housing 1 is maintained at a constant temperature.

第2図は、カロリーメータ3の断面図であ抄、バイオレ
ックスガラス等の円管を用いたガスGの通路を形成する
ケース21には、両端部側に枝管5m 、5bが設けて
あり、枝管5a側のケース21内には、温度センサR8
が挿入されたうえ、これの周囲にアルミナ粉粒22が充
填されており、枝管5b側のケース21内には、温度セ
ンサSSが挿入されたうえ、これの周囲に粉粒状の酸化
触媒23が封入されている。
Fig. 2 is a cross-sectional view of the calorimeter 3.A case 21 that forms a passage for gas G using a circular tube made of paper or biorex glass is provided with branch pipes 5m and 5b at both ends. , a temperature sensor R8 is installed in the case 21 on the side of the branch pipe 5a.
is inserted, and its surroundings are filled with alumina powder particles 22, and a temperature sensor SS is inserted into the case 21 on the side of the branch pipe 5b, and a powder-like oxidation catalyst 23 is inserted around it. is included.

また、酸化触媒23中には、温度センサSSを介し、か
つ相対向して白金線等の電極24m、24bが挿入され
ており、温度センサR8、SSの各リード線6a 、6
cおよび電極24a、24bのリード線sb tま、ケ
ース1の端部へ溶融のうえ充填されたガラス封止部25
a、25b を 気密状に貫通し、外部へ引出されてい
る。
Furthermore, electrodes 24m and 24b such as platinum wires are inserted into the oxidation catalyst 23 through the temperature sensor SS and facing each other, and lead wires 6a and 6 of the temperature sensors R8 and SS are respectively inserted.
c and the lead wires sb of the electrodes 24a and 24b; and the glass sealing part 25 melted and filled into the end of the case 1
a and 25b in an airtight manner and are drawn out to the outside.

なお、酸化触媒23とガラス封止部25b  との間に
は、千ルミナ粉粒22が充填されていると共に、空隙部
および枝管5m 、Sb内には、ガラスウール26が充
填されてお松、各部を固定すると同時に、アルミナ粉粒
22の漏出を阻止している。
In addition, 1,000-lumina powder particles 22 are filled between the oxidation catalyst 23 and the glass sealing part 25b, and glass wool 26 is filled in the void, branch pipe 5m, and Sb. , fixes each part and at the same time prevents leakage of the alumina powder particles 22.

したがって、空気または酸素系の支燃気体によゆ希釈さ
れたガスGを枝管5aから供給すると共に、カロリーメ
ータ3の加熱を行なえば、ガスGが温度センサR8を経
て酸化触媒23へ至り、ここにおいて酸化反応を行ない
酸化反応熱を生じたうえ、枝管5bから排ガスRGとし
て排出されるため、温度センサSS によって酸化反応
による温度を検出することにより、ガスGの熱量を求め
ることができる。
Therefore, if the gas G diluted with air or oxygen-based combustion supporting gas is supplied from the branch pipe 5a and the calorimeter 3 is heated, the gas G passes through the temperature sensor R8 and reaches the oxidation catalyst 23. Here, an oxidation reaction is carried out to generate oxidation reaction heat, which is then discharged from the branch pipe 5b as exhaust gas RG. Therefore, by detecting the temperature due to the oxidation reaction with the temperature sensor SS, the amount of heat of the gas G can be determined.

たソし、温度セ/すR8によっては酸化反応前の温度を
検出しており、これの検出々力により、゛温度センサS
Sの検出々力を補正することにより、正確にガスGの熱
量が求められるものとなる。
Temperature sensor S
By correcting the detection power of S, the calorific value of gas G can be determined accurately.

また、酸化触媒23として金属半導体酸化物を用いれば
、電極24m、24bの通電により、簡単かつ容易にカ
ロリーメータ3の校正を行なうことができる。
Moreover, if a metal semiconductor oxide is used as the oxidation catalyst 23, the calorimeter 3 can be easily and easily calibrated by energizing the electrodes 24m and 24b.

すなわち、電極24&、24bへの電圧印加より、酸化
触媒23へ電流を通ずれば、これがオーム熱を生ずるた
め、この発生熱量を所定値としたうえ、温度センサSS
の検出々力と所定の発生熱量とを対比することにより、
校正が行なわれる。
That is, if a current is passed through the oxidation catalyst 23 by applying a voltage to the electrodes 24&, 24b, this will generate ohmic heat.
By comparing the detection power and the predetermined amount of heat generated,
Calibration is performed.

たyし、ガスGめ流通による冷却作用が使用時にあるた
め、校正時には、使用時に流通する混合気体と同一流通
量の支燃気体のみを通じ、使用時と同一の条件を維持す
る必要がある。
However, since there is a cooling effect during use due to the flow of gas G, during calibration, it is necessary to maintain the same conditions as during use by passing only the combustion supporting gas at the same flow rate as the mixed gas flowing during use.

第3図は、温度センサSSおよびR8の検出々力によに
熱量を表示すると共に、ヒータHの通電を制御する付属
回路の回路図であり、電源+E・−Eを抵抗器R+ お
よび定電圧ダイオードZDにより安定化のうえ、温度セ
ンサ8S、R8−および抵抗器R2+ BSからなる各
直列回路へ印加しており、温度センサ88.R8の抵抗
値が温度に応じて変化すれば、抵抗器Rt l R1の
端子電圧も変化するため、これを、抵抗器R4、Ri 
 を介し、差動増幅器Alの反転入力および非反転入力
へ与、え、肉入力の差を求めたうえ、測定出力として表
示回路DPへ与え、これによってガスGの熱量を表示す
るものとなっている。
Figure 3 is a circuit diagram of an attached circuit that displays the amount of heat detected by the temperature sensors SS and R8 and controls the energization of the heater H. After being stabilized by the diode ZD, the voltage is applied to each series circuit consisting of the temperature sensor 8S, R8- and the resistor R2+BS, and the temperature sensor 88. If the resistance value of R8 changes depending on the temperature, the terminal voltage of resistor Rt l R1 also changes, so this is
is applied to the inverting input and the non-inverting input of the differential amplifier Al through the . There is.

なお、差動増幅器AIには、動作安定化のため、抵抗器
R6による負帰還が施されている。
Note that the differential amplifier AI is provided with negative feedback by a resistor R6 in order to stabilize its operation.

また、温度センサR8の検出々力に応じてヒータHへの
通電を制御し、カロリーメータ3の加熱状態を一定に保
つ丸め、抵抗器R3の端子電圧を、強度の負帰還が施さ
れた差動増幅器A2を介して取り出し、周期的なスイッ
チング動作を行々うサイリスタ等を用いた制御回路CT
へ与えており、これによって、ヒータHへ交流電源AC
から通ずる電流の流通角を可変している。
In addition, the energization to the heater H is controlled according to the detected force of the temperature sensor R8, the heating state of the calorimeter 3 is kept constant, and the terminal voltage of the resistor R3 is set to a difference with strong negative feedback. A control circuit CT using a thyristor, etc., which is extracted via a dynamic amplifier A2 and performs periodic switching operations.
This supplies AC power to heater H.
The angle of flow of the current passing through is varied.

したがって、ガスGの酸化触媒23による酸化反応が一
定条件下において行なわれるものとなり、ガスGの熱量
を安定かつ正確に測定することができる。
Therefore, the oxidation reaction of the gas G by the oxidation catalyst 23 is carried out under certain conditions, and the calorific value of the gas G can be measured stably and accurately.

なお、酸化触媒23の劣化状況をチェックするには、排
ガスRG中に残存する燃焼可能な成分を検出すればよい
ため、公知の可燃性ガスセンサを枝管5し、@へ封入し
、これによって燃焼可能成分を検出するか、可搬型の可
燃性ガス検出器により排ガスRGを点検すればよい。
Note that in order to check the deterioration status of the oxidation catalyst 23, it is sufficient to detect the combustible components remaining in the exhaust gas RG, so a known combustible gas sensor is connected to the branch pipe 5 and sealed in the Possible components may be detected or the exhaust gas RG may be inspected using a portable combustible gas detector.

また、酸化触媒23が劣化した場合は、ガスGの単位時
間商り供給量を減少させ、供給されるガスGのすべてが
酸化反応を生ずるものとすればよく、連続的な使用が可
能となる。
In addition, if the oxidation catalyst 23 deteriorates, it is sufficient to reduce the supply amount of gas G per unit time so that all of the supplied gas G undergoes an oxidation reaction, making continuous use possible. .

このほか、温度センサ88.R8としては、アルミナセ
ラミック等の管中へ、白金細線等を封入したものが好適
であり、酸化触媒23としては、Cu5p、Coo、M
nOs * Crs+Os + ZnO,F@mol、
 Vz Os 、 Mo5s +等のいずれかソ用いら
れる。
In addition, temperature sensor 88. As R8, a tube made of alumina ceramic or the like with thin platinum wire sealed in it is suitable, and as the oxidation catalyst 23, Cu5p, Coo, M
nOs * Crs + Os + ZnO, F@mol,
VzOs, Mo5s+, etc. are used.

たソし、複数種のものを混合して用いれば、各々の特性
が相補的に作用するため、各種の可燃性成分に対しよシ
確実な酸化反応を得ることができるものとなり好適であ
る。
However, it is preferable to use a mixture of a plurality of combustible materials, since the characteristics of each component act complementary to each other, so that a more reliable oxidation reaction can be achieved with respect to various combustible components.

なお、酸化触媒23中へ、アルミナ粉粒等の不活性粉粒
を混合すれば、粉粒状酸化触媒の融着による相互結合が
阻止され、これの表面積減少が防止されるため効果的で
ある。
Note that it is effective to mix inert particles such as alumina powder into the oxidation catalyst 23 because this prevents mutual bonding due to fusion of the granular oxidation catalyst and prevents a decrease in surface area.

したがって、表面積の多い粉粒状の酸化触媒23とガス
Gの流通するすべてが完全に接触し、すべてのガスGが
酸化反応に関与するものとなるため、ガスGの熱量を完
全かつ正確に検出できるものになると共に、露出し九極
細白金線等を使用しないうえ、触媒の塗布、固着等を必
要としないため、全体としての信頼性が大幅に向上する
Therefore, the granular oxidation catalyst 23 with a large surface area and all of the gas G flowing through it are in complete contact, and all the gas G takes part in the oxidation reaction, so the calorific value of the gas G can be detected completely and accurately. In addition, the overall reliability is greatly improved because there is no need for exposed ultrafine platinum wires, and there is no need for coating or fixing catalysts.

このほか、外筐1および伝熱板2a 、2b の材質お
よび形状は、条件に応じて種々の選定が可能であると共
に、状況によっては空隙9および断熱材10を省略して
も、はソ同様の結果□を得ることができる。
In addition, the materials and shapes of the outer casing 1 and the heat exchanger plates 2a and 2b can be selected in various ways depending on the conditions, and depending on the situation, even if the void 9 and the heat insulating material 10 are omitted, the The result □ can be obtained.

なお、ケース21は、耐熱性、気密性2よび化学的不活
性を有するものであれば、任意の材料により製してよく
、その形状も選定が可能であり、温度センサSS 、S
Rには、サーミスタ等の半導体を用いても同様であるう
え、アルミナ粉粒22およびガラスウール26の代りに
同等の性質を呈する他の物質を用いてもよい等、種々の
変形が自在である。
The case 21 may be made of any material as long as it has heat resistance, airtightness 2, and chemical inertness, and its shape can be selected.
R can be modified in various ways, such as using a semiconductor such as a thermistor, and other substances exhibiting the same properties as the alumina powder particles 22 and glass wool 26. .

以上の説明により明らかなとおり本発明によれば、簡単
かつ製造の容易な構成により、正確かつ高信頼性のガス
用カロリーメータが得られるため、各種可燃性ガスの連
続的かつ即時的な熱量測定が自在となり、燃料用ガス等
の精製工程管理および取引−ヒ、顕著な効果が得られる
As is clear from the above description, according to the present invention, an accurate and highly reliable gas calorimeter can be obtained with a simple and easy-to-manufacture configuration, so that continuous and instantaneous calorific value measurement of various combustible gases can be achieved. This makes it possible to achieve remarkable effects in refining process management and trading of fuel gas, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の実施例を示し、第1図(4)は全構成の正
断面図、同図(B)は同様の側断面図、第2図けカロリ
ーメータの断面図、第3図は付属回路の回路図である。 1・・・・外筐、2m 、 2b  ^・・・伝熱板、
3・・・IIFロリーメータ、21・・・・ケース、2
3・・・・酸化触媒、24a、24b・・・・電極、l
(・・拳・ヒータ、88 、 SR・・・・ 温度セン
サ、G・・・・ガス。 特許出願人 山武)・ネウエル株式会社代理人 山川政
樹(ほか1名) G          RG 第2図 G                        
RG第3図
The figures show an embodiment of the present invention, and FIG. 1 (4) is a front sectional view of the entire configuration, FIG. 1 (B) is a similar side sectional view, FIG. 2 is a sectional view of the calorimeter, and FIG. FIG. 3 is a circuit diagram of an attached circuit. 1...outer casing, 2m, 2b ^...heat exchanger plate,
3...IIF Roly meter, 21...Case, 2
3... Oxidation catalyst, 24a, 24b... Electrode, l
(...Fist/heater, 88, SR...Temperature sensor, G...Gas. Patent applicant: Yamatake)・Newel Co., Ltd. agent Masaki Yamakawa (and 1 other person) G RG Figure 2 G
RG figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)ガスの通路へ封入した粉粒状の酸化触座および該
酸化触媒の反応による温度を検出する温度セ、ンサを備
える管状のカロリーメータと、該カロリーメータを加熱
する管状のヒータと、前記カロリーメータおよびヒータ
を互に隣接させたうえ平行に挾持する伝熱板とからなる
ことを特徴とするガス用カロリーメータ。
(1) A tubular calorimeter equipped with a powdery oxidation catalyst sealed in a gas passage and a temperature sensor that detects the temperature caused by the reaction of the oxidation catalyst; a tubular heater that heats the calorimeter; A gas calorimeter comprising a calorimeter and a heater placed adjacent to each other and a heat transfer plate sandwiching the calorimeter and heater in parallel.
(2)カロリーメータの挾持部かつ酸化触媒近傍へ放熱
阻止用の9隙を設けた伝熱板を用いることを特徴とする
特許請求の範囲第1項記載のガス用カロリーメータ。
(2) A gas calorimeter according to claim 1, characterized in that a heat exchanger plate is used in which nine gaps for preventing heat radiation are provided in the holding portion of the calorimeter and in the vicinity of the oxidation catalyst.
JP21314481A 1981-12-29 1981-12-29 Calorimeter for gas Granted JPS58115359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21314481A JPS58115359A (en) 1981-12-29 1981-12-29 Calorimeter for gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21314481A JPS58115359A (en) 1981-12-29 1981-12-29 Calorimeter for gas

Publications (2)

Publication Number Publication Date
JPS58115359A true JPS58115359A (en) 1983-07-09
JPH0124259B2 JPH0124259B2 (en) 1989-05-10

Family

ID=16634302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21314481A Granted JPS58115359A (en) 1981-12-29 1981-12-29 Calorimeter for gas

Country Status (1)

Country Link
JP (1) JPS58115359A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03275871A (en) * 1990-03-26 1991-12-06 San Sekkei Jimusho:Kk Multistory parking equipment

Also Published As

Publication number Publication date
JPH0124259B2 (en) 1989-05-10

Similar Documents

Publication Publication Date Title
US2768069A (en) Combustible gas detector
US3869370A (en) Method and apparatus for continuously sensing the condition of a gas stream
JPS58115359A (en) Calorimeter for gas
JPH03282247A (en) Detection of flammable gas
US4017792A (en) Device for determining and/or measuring alcohol content in a gas and method of manufacturing a semi-conductor body for use in alcohol detection
JPH0216867B2 (en)
JPH09229853A (en) Detector for infrared gas analyser
JPH01201149A (en) Composite gas sensor
JPS58115358A (en) Calibrating method of calorimeter for gas
JPS58115355A (en) Calorimeter for gas
JPS58115356A (en) Calorimeter for gas
EP0117692A1 (en) Heated electrochemical cell
JPH0220059B2 (en)
JPH084610Y2 (en) Oxygen sensor with heater
JP2974088B2 (en) Carbon dioxide detection sensor
JPH02193019A (en) Flow sensor
JPS6118451Y2 (en)
JPH01265149A (en) Sensor of concentration detector for combustible gas and concentration detector for combustible gas
JPS5821152A (en) Element for measurement of heat quantity and its preparation
JPS60198443A (en) Calorimeter for gas
JPH032848Y2 (en)
McGuire An absolute thermal radiation calorimeter
JPS58193450A (en) Oxygen concentration detector
JPH0399273A (en) Hot-wire anemometer with deterioration prevention device
JPH08285699A (en) Temperature sensor inside heating vessel