JPS5811519A - Preparation of block copolymer from propylene - Google Patents

Preparation of block copolymer from propylene

Info

Publication number
JPS5811519A
JPS5811519A JP10948181A JP10948181A JPS5811519A JP S5811519 A JPS5811519 A JP S5811519A JP 10948181 A JP10948181 A JP 10948181A JP 10948181 A JP10948181 A JP 10948181A JP S5811519 A JPS5811519 A JP S5811519A
Authority
JP
Japan
Prior art keywords
polymerization
slurry
propylene
ethylene
activity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10948181A
Other languages
Japanese (ja)
Other versions
JPS6036206B2 (en
Inventor
Tadashi Asanuma
正 浅沼
Ichiro Fujikage
一郎 藤隠
Shinryu Uchikawa
進隆 内川
Tetsunosuke Shiomura
潮村 哲之助
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP10948181A priority Critical patent/JPS6036206B2/en
Priority to GB8205476A priority patent/GB2094319B/en
Priority to PT74523A priority patent/PT74523B/en
Priority to CA000397621A priority patent/CA1180481A/en
Priority to FR8203581A priority patent/FR2501214B1/en
Priority to BR8201135A priority patent/BR8201135A/en
Priority to KR8200938A priority patent/KR850001403B1/en
Priority to DE19823208010 priority patent/DE3208010A1/en
Priority to IT20005/82A priority patent/IT1150636B/en
Publication of JPS5811519A publication Critical patent/JPS5811519A/en
Publication of JPS6036206B2 publication Critical patent/JPS6036206B2/en
Priority to US07/083,924 priority patent/US4751265A/en
Expired legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

PURPOSE:To obtain the titled copolymer having well balanced physical properties between impact resistance, rigidity, etc., by polymerizing ethylene/propylene batchwise under conditions controlled to give a specific catalytic activity. CONSTITUTION:Polymerization of ethylene/propylene is carried out continuously at a reaction ratio between ethylene and propylene <=(6/94)wt% and batchwise at a reaction ratio between ethylene and propylene of (15/85)-(95/5)wt% by the multi-stage polymerizing method in plural connected polymerizers in the presence of a stereoregular catalyst. A catalytic activity reducing agent is added to a slurry in transferring the slurry to the polymerizers to reduce the catalytic activity to (1/4) or less, and the batchwise polymerization is started after transferring the slurry. In the process, an organoaluminum compound is added to improve the activity to 1.1 times that before the addition of the organoaluminum compound and carry out the batchwise polymerization. After the completion of the batchwise polymerization, the slurry is transferred to a zone for deactivating the polymerization activity of the slurry in a time of (1/3) or less the polymerization time in the batchwise polymerizers to afford the aimed copolymer.

Description

【発明の詳細な説明】 本発明は耐“衝撃性、剛性等の物性の間で夷好なバラ□
ンスを有スるプロピレン−エチレンブロック共重合体の
製造方法に関する。
[Detailed Description of the Invention] The present invention provides “the most favorable variation among physical properties such as impact resistance and rigidity”.
The present invention relates to a method for producing a propylene-ethylene block copolymer having a high carbon content.

チーグラー及びナツタらによる立体規則性触媒の発明以
来結晶性ポリすレツインはすぐれた剛性、耐熱性を有し
、又その成形品が軽量であることなどすぐれ九性質を有
する汎用樹脂として近来その生産量は世界的に増大して
いる。しかしながら結晶性ポリプロピレンは低温で脆い
という欠点を有する丸め低温で耐衝撃性を要求される用
途には使用しにくい。
Since the invention of stereoregular catalysts by Ziegler and Natsuta et al., crystalline polystyrene has been used as a general-purpose resin with excellent rigidity, heat resistance, and lightweight molded products, and its production volume has increased in recent years. is increasing worldwide. However, crystalline polypropylene has the disadvantage of being brittle at low temperatures, making it difficult to use in applications requiring impact resistance at low temperatures.

この欠点を改良する方法についてはすでに多くの研究、
開発がなされ、種々の改良法が提案されている。中でも
工業的に有用な方法として、プロピレンと他のオレフィ
ン41にエチレンをブロック共重合する方法が例えば、
特公昭3B−14834,49会昭39−1836、特
公@39−15535などで提案されている。しかしな
がらこれらの方法で製造され九ブロック共重合体は結晶
性ポリプロピレンと比較して成形品の剛性、透明性が低
く、衝撃或いは折りまげによ9変形されると変形部が白
化するなどの欠点を有する。これらの問題に対して3段
階に分けてブロック共重合を行う方法が特公昭44−2
0621、特公昭49−24593などで提案され得ら
れるブロック共重合体の物性は非常に優れたものである
A lot of research has already been done on how to improve this shortcoming.
Developments have been made and various improved methods have been proposed. Among them, a method of block copolymerizing propylene and other olefins 41 with ethylene is, for example, an industrially useful method.
It has been proposed in Tokuko Sho 3B-14834, 49th Kai Sho 39-1836, Tokko @39-15535, etc. However, compared to crystalline polypropylene, the nine-block copolymers produced by these methods have lower rigidity and transparency, and when deformed by impact or folding, the deformed parts turn white. have To solve these problems, a method of conducting block copolymerization in three stages was developed in 1973.
0621, Japanese Patent Publication No. 49-24593, etc., and the obtained block copolymers have very excellent physical properties.

一方、フロヒレンーエチレンブロック共重合体の単位時
間当に、重合槽の単位容積歯炒の生歯性を高め、及びな
るべく均一な物性をもつ製品を大量に得るため連続的に
生産する方法が望まれる。しかしながら回分的には物性
バランスの優れたプロピレン−エチレンブロック共重合
体を与える方法であっても、それを連続的方法に適用す
るKは多くの問題がある。連続的方法において遭at物
性を有するブロック共重合体を得るため、エチレン/プ
ロピレンの反応比の異なる重合段階をいくつか設ける場
合が多く、従ってその段階の数Kpじ九重合槽を準備す
る必要がある。又多槽の重合槽を直列に連結し、連続し
て重合を行なう場合、完全混合槽を債えた重合槽では各
重合槽によって触媒の滞留時間がことtky従って触媒
嶺抄の重合量に分布が生ずるため、連続的方法と回分的
方法ではその生成重合体の物性が大きく異な秒、前者は
一般に回分法に比較して特に耐衝撃性O低下が見られる
On the other hand, there is a method of continuous production of phlohylene-ethylene block copolymer in order to improve the per unit volume of the polymerization tank per unit time and to obtain a large quantity of products with as uniform physical properties as possible. desired. However, even if the process yields a propylene-ethylene block copolymer with an excellent balance of physical properties in a batchwise manner, there are many problems in applying it to a continuous process. In order to obtain a block copolymer having the physical properties encountered in a continuous process, it is often necessary to provide several polymerization stages with different ethylene/propylene reaction ratios, and therefore it is necessary to prepare nine polymerization tanks for each stage. be. Furthermore, when multiple polymerization tanks are connected in series and polymerization is performed continuously, the residence time of the catalyst varies depending on each polymerization tank in a polymerization tank equipped with a complete mixing tank. Therefore, the distribution of the amount of polymerized catalyst is affected. Because of this, the physical properties of the produced polymers are very different between the continuous method and the batch method, and the former generally shows a drop in impact resistance O compared to the batch method.

これらの問題の解決方法の1つとして、プロピレン単独
或いはプロピレンリッチのエチレン/プロピレンの重合
が全重合量の大部分を占めるエチレン−プロピレンプロ
//共重合体の製造方法において、上記プロピレン単独
或いはプロピレンリッチのエチレン/プロビレ/の重合
段階を連続で行い、次にエチレン/プロピレンの反応比
をかえながらいくつかの重合段階を回分的に行う方法が
考えられ、この方法を採用することによって比較的少数
の重合槽を用いて物性のバランスの優れたブロック共重
合体を得ることができる。しかしながら、連続重合段階
から回分重合段階、又回分重合段階から脱活工程へスラ
リーを移送する間、さらに水素濃度等を調整する間、予
定していない制御不可能な重合がおこり従って得られる
ポリマーの物性のバランスが悪化する。連続重合段階か
ら回分重合段階へのスラリーの移送を、容量の大きいポ
ンプあるいは圧力差を利用して短時間に行ったり、又水
素濃度の調整もパージ量を大きくするなどの方法をとる
ことにより、予定していない制御不可能な重合をかな9
減少させることができる。しかしながら連続重合槽から
スラリーの急激な排出は、連続重合を行っている重合槽
のレベ〜を急激に変化させることKなり連続重合の温度
の制御とか、生成するポリマーの分子量の制御が困難に
なるなどの問題が生ずる。さらにポンプでスラリーの移
送を行う場合にはポンプの能力が大きいものが必要とな
り設備費用が大角くなる。一方回分重合槽から脱活工程
へのスラリーの移送は急激に行りtも連続重合反応域へ
の影響はなく、又脱活工程の圧力を回分重含槽の圧力よ
抄低い条件に保つ方法、或いは回分重合槽を脱活工程よ
り高い位置に設置してスラリーを脱活工程へ急速に移送
することも可能である。又脱活工程への影響については
脱活工程の反応条件を回分重合槽での反応条件6近いも
のに設定して急激なスラリーの排出の影響をさけるとと
も可能である。
As one method to solve these problems, in a method for producing ethylene-propylene pro//copolymer in which the polymerization of propylene alone or propylene-rich ethylene/propylene accounts for the majority of the total polymerization amount, the above-mentioned propylene alone or propylene One possible method is to perform a rich ethylene/propylene polymerization step continuously, and then perform several polymerization steps batchwise while changing the ethylene/propylene reaction ratio. A block copolymer with excellent balance of physical properties can be obtained using a polymerization tank of However, during the transfer of the slurry from the continuous polymerization stage to the batch polymerization stage, from the batch polymerization stage to the deactivation stage, and during the adjustment of hydrogen concentration, etc., unplanned and uncontrollable polymerization occurs. The balance of physical properties deteriorates. By transferring the slurry from the continuous polymerization stage to the batch polymerization stage in a short time using a large capacity pump or using a pressure difference, and by adjusting the hydrogen concentration by increasing the purge amount, Unplanned and uncontrollable polymerization.9
can be reduced. However, rapid discharge of slurry from the continuous polymerization tank will cause a sudden change in the level of the polymerization tank in which continuous polymerization is being carried out, making it difficult to control the temperature of continuous polymerization and the molecular weight of the produced polymer. Problems such as this arise. Furthermore, if a pump is used to transfer the slurry, a pump with a large capacity is required, which increases equipment costs. On the other hand, the slurry is rapidly transferred from the batch polymerization tank to the deactivation process without affecting the continuous polymerization reaction zone, and the pressure in the deactivation process is kept at a level lower than the pressure in the batch polymerization tank. Alternatively, it is also possible to install the batch polymerization tank at a higher position than the deactivation step and rapidly transfer the slurry to the deactivation step. In addition, the influence on the deactivation process can be avoided by setting the reaction conditions of the deactivation process close to the reaction conditions 6 in a batch polymerization tank to avoid the influence of rapid slurry discharge.

本発明の目的は耐衝撃性と高い剛性等すぐれた物性を有
するプロピレン−エチレンブロック共重合体を重合時の
制御の困難を伴なうことなく製造すること及び回分重合
の場合に比較して得られるポリマーの物性を実質的に低
下させることなく、重合槽単位容積当り単位時間当りの
生産性を高める方法を提供することKある。
The purpose of the present invention is to produce a propylene-ethylene block copolymer having excellent physical properties such as impact resistance and high rigidity without any difficulty in controlling the polymerization process, and to obtain better properties than in the case of batch polymerization. It is an object of the present invention to provide a method for increasing productivity per unit time per unit volume of a polymerization tank without substantially deteriorating the physical properties of a polymer produced.

本発明は、立体規則性触媒を用−て2種以上の重合槽を
連結した多段階重合に際しエチレン/プロピレンの反応
比が6794重量x以下の重合を連続式で行い、エチレ
ン/プロピレンの反応比が15/85〜9515重量X
の重合を回分的に行うことによりプロピレン−エチレン
ブロック共重合体を製造する方法に於いて、回分重合を
行う重合槽にスラリーを移送すると同時又は移送する前
KMスラリーに触媒活性低下剤を加えるととKより該低
下剤を加えない場合の触媒活性の1/4以下に低下させ
、次いで回分重合を行う重合槽へのスラリー〇移送の終
了後回分重合を開始する際に有機アルミニウム化合物を
添加することにより、該有機アルミニウムを添加する前
の活性の1.1倍以上に活性を高めた条件下で回分重合
を行い、ついで回分重合の終了後、該スラリーの重合活
性を失活させる操作を行う帯域に上記回分重合槽で、の
所定の重合時間の1/3以下の時間でスラリーを移送す
ること全特徴とする、エチレン−プロピレンブロック共
重合体の製造方法に関する。
In the present invention, polymerization is carried out in a continuous manner in which the reaction ratio of ethylene/propylene is 6794 weight x or less during multi-stage polymerization in which two or more types of polymerization vessels are connected using a stereoregular catalyst. is 15/85~9515 weight
In a method for producing a propylene-ethylene block copolymer by batchwise polymerization, if a catalyst activity reducing agent is added to the KM slurry at the same time as or before the slurry is transferred to a polymerization tank for batch polymerization. and K to reduce the catalyst activity to 1/4 or less of the catalyst activity without adding the reducing agent, and then transfer the slurry to a polymerization tank where batch polymerization is carried out. After completion of the transfer, an organoaluminum compound is added when starting batch polymerization. By doing so, batch polymerization is performed under conditions where the activity is increased to 1.1 times or more the activity before adding the organoaluminum, and then, after the batch polymerization is completed, an operation is performed to deactivate the polymerization activity of the slurry. The present invention relates to a method for producing an ethylene-propylene block copolymer, which is characterized in that the slurry is transferred to the zone in the batch polymerization tank in a time that is ⅓ or less of the predetermined polymerization time.

本発明で使用する立体規則性触媒は一般にプロピレンの
立体規則性重合に用いられる触媒であればよく特に制限
はないが、ビ)少なくとも棒、π、αの3種の元素を含
有する固体触媒と、←)有機アルミニウム化合物からな
る触媒が好ましい。少なくとも締、π、αの3種の元素
を含有する固体触媒は種々の方法で、例えば本発明者の
一部がすでに特開昭54−103494、特開1854
−116079、特開昭55−102606等で提案し
ているような方法で得られる。具体的にはハロゲン化マ
グネシウム(たとえば無水の峙α、)と種々の有機化合
物、例えば芳香族オルソカルボン酸エステル、アルコキ
シケイ素とノ・ロゲン化炭化水素、オルソカルボッ酸エ
ステルとハロゲ7 化炭化水素、あるいはカルボン酸エ
ステルと〃α。
The stereoregular catalyst used in the present invention is not particularly limited as long as it is a catalyst generally used for stereoregular polymerization of propylene. , ←) A catalyst consisting of an organoaluminum compound is preferred. A solid catalyst containing at least the three elements of hardness, π, and α can be produced by various methods.
-116079, JP-A-55-102606, and the like. Specifically, magnesium halides (for example, anhydrous dioxyalpha) and various organic compounds, such as aromatic orthocarboxylic esters, alkoxysilicon and halogenated hydrocarbons, orthocarboxylic esters and halogenated hydrocarbons, or Carboxylic acid ester and α.

との錯体とアルコールを共粉砕し九ものを710ゲン化
チタンで熱処理することによ抄固体触媒を得ることがで
きる。或いは不活性溶媒に可溶な有機マグネシウム化合
物を種々の710ゲン化剤と反応させることにより不活
性溶i 媒に不溶な締及びαを含有する固体量体を合成し、さら
に電子供与性化合物、/Sログン化チタンで処理するこ
とによっても得られる。
A solid catalyst can be obtained by co-pulverizing the complex with alcohol and heat-treating the complex with 710 titanium oxide. Alternatively, by reacting an organomagnesium compound soluble in an inert solvent with various 710 genating agents, a solid polymer containing α and α which is insoluble in an inert solvent is synthesized, and further an electron-donating compound, It can also be obtained by treatment with titanium /S rogonide.

触媒の一成分であるfo)有機アルζニウム化合吻とし
ては、一般式Mn讃x、−m(式中:Rは炭素数1〜1
2の炭化水素残基、Xは)−ロゲ/原子、かつ1≦m≦
3で表わされる有機ニクム、)17−II−ヘキシルア
ルミニウム、ジエチルアルミニウムモノク四ライドなど
が単独で又は2種以上混合して用いられる。
The organic aluminum ζ compound (fo) which is one of the components of the catalyst has the general formula Mnx, -m (wherein: R has 1 to 1 carbon atoms)
2 hydrocarbon residue, X is)-Rogge/atom, and 1≦m≦
Organic nicum represented by 3), 17-II-hexylaluminum, diethylaluminium monochloride, etc. can be used alone or in combination of two or more.

また、触媒系KC−0又はC−N結合を少なくとも1り
有する化合物を併用するととによ9得られるポリマーの
立体規則性を高め物性のバランスをよくすることかで角
る。C−〇又はC−N結合を少なくとも1つ有する化合
物としてはエステル、エーテル、オルソエステル、アル
コキシケイ素、アミン、アミド、リン酸エステ化等が用
いられ、より具体的には安息香酸エチル、トルイル酸メ
チル、オルソ安息香酸メチル、テトラエトキシシラン、
フェニルトリエトキシクラン、ジブチルエーテル、トリ
エチルアミ/、ジエチルアニリン、リン酸トリエチル等
が好ましく用いられる。
In addition, when the catalyst system KC-0 or a compound having at least one C--N bond is used in combination, the stereoregularity of the resulting polymer is increased and the physical properties are well-balanced. As the compound having at least one C-〇 or C-N bond, esters, ethers, orthoesters, alkoxy silicones, amines, amides, phosphoric acid esters, etc. are used, and more specifically, ethyl benzoate, toluic acid, etc. Methyl, methyl orthobenzoate, tetraethoxysilane,
Phenyltriethoxycran, dibutyl ether, triethylamide, diethylaniline, triethyl phosphate, etc. are preferably used.

本発明で用いる触媒を構成する各成分の使用割合は任意
であ抄、又その適轟な範囲は用いる化合物によって異る
が、一般には固体触1m中のnトモルに対して有機アル
ミニウム化金物は0.1〜500モルであり、又c−o
又はC−N結合を少なくとも1つ有する化合物は0〜2
50モルの範囲である。
The proportion of each component constituting the catalyst used in the present invention is arbitrary and the appropriate range varies depending on the compound used, but in general, the organoaluminide is 0.1 to 500 mol, and c-o
Or the compound having at least one C-N bond is 0 to 2
The range is 50 moles.

本発明の方法においては2槽以上を連結した重合槽を用
いてエチレン/プロピレンの反応比が6794重量に以
下の重合の80X以上を連続で行い、エチレン/プロピ
レンの反応比力15/85〜9515 重110重合(
090X以上を回分的に行うととkよりエチレン−プロ
ピレンブロック共重合体が製造される。エチレン/プロ
ピレンの反応比が6/94重量X以下の重合にはプロピ
レン単独で重合することも、もちろん含まれる。該反応
比での重合は不活性溶媒の存在下又は不活性溶媒が実質
的に存在しないプロピレン自身を溶媒とする塊状重合又
は液状の重合溶媒が実質的に存在しない気相重合で行う
こともできる。エチレン/プロピレンの反応比が6/9
4重量X以下の重合はエチレン/プロピレンブはツク典
型ゴ合体の耐衝撃性と剛性をバランスよく保っために必
要であり、特にこの反応比での重合が全重含量の60〜
95重量Xで以下ことがエチレン−プロピレンブロック
共重合体の剛性を高めるため望ましい。上記反応比での
重合温度は触媒系によって異なるが、一般には40〜9
0℃特に60〜80℃が好ましい。
In the method of the present invention, using a polymerization tank in which two or more tanks are connected, 80X or more of the following polymerization is carried out continuously until the reaction ratio of ethylene/propylene is 6794 weight, and the specific reaction force of ethylene/propylene is 15/85 to 9515. Heavy 110 polymerization (
When 090X or more is carried out batchwise, an ethylene-propylene block copolymer is produced from K. Polymerization in which the reaction ratio of ethylene/propylene is 6/94 by weight or less also includes, of course, polymerization of propylene alone. Polymerization at the reaction ratio can also be carried out in the presence of an inert solvent, or by bulk polymerization using propylene itself as a solvent in the absence of a substantial inert solvent, or by gas phase polymerization in the substantial absence of a liquid polymerization solvent. . Ethylene/propylene reaction ratio is 6/9
Polymerization of ethylene/propylene at a weight of 4 weight or less is necessary to maintain a good balance between impact resistance and rigidity of the typical rubber polymer.
It is desirable that the weight of the ethylene-propylene block copolymer be 95% by weight or less. The polymerization temperature at the above reaction ratio varies depending on the catalyst system, but is generally 40 to 9
0°C, especially 60 to 80°C is preferred.

又生産性を高めるため上記反応比での重合工程はできる
かぎり連続で行うことが好ましい。
Further, in order to increase productivity, it is preferable to carry out the polymerization step at the above reaction ratio as continuously as possible.

次に一エチレン/プロピレンの反応比が15/85〜9
515重量にの重合段嘴は、耐衝撃性の優れ九プロピレ
ンーエチレンブロック共を合体を得るためKは必須の工
程であ抄、その重合は不活性溶媒の存在下又は不活性溶
媒が実質的に存在しないプロピレン自身を溶媒とする塊
状重合又は液状の重合溶媒が実質的に存在しない気相重
合法で行うこともできる。
Next, the reaction ratio of ethylene/propylene is 15/85 to 9
In order to obtain a polymerization step beak of 515 weight by weight, K is an essential step in order to obtain a combination of nine propylene-ethylene blocks with excellent impact resistance.The polymerization is carried out in the presence of an inert solvent or in the presence of an inert solvent. Bulk polymerization using propylene itself, which is not present in the solvent, as a solvent, or gas phase polymerization, in which a liquid polymerization solvent is not substantially present, can also be carried out.

上記重合温度はエチレン/プロピレンの反応比等により
異なるが一般には30〜70℃、特に40〜60℃が好
ましい。
The above polymerization temperature varies depending on the reaction ratio of ethylene/propylene, etc., but is generally 30 to 70°C, particularly preferably 40 to 60°C.

本発明の方法においては回分重合を行う重合槽にスラリ
ーを移送すると同時又は移送する前に該スラリーに触媒
活性低下剤を加えることにより該低下剤を加えない場合
の触媒活性の174以下に低下させ、次いで回分重合を
行う重合槽へのスラリーの移送後、回分重合開始する際
に有機アルミニウム化合物を添加することにより該有機
アルミニウムを添加する前の活性の1.1倍以上に活性
を高めた条件下で回分重合を行い、ついで回分重合の終
了後該スリラーの重合活性を失活させる操作を行う帯域
に上記回分重合槽での所定の重合時間の1/3以下の時
間でスラリーを移送することを特徴とする。
In the method of the present invention, a catalyst activity reducing agent is added to the slurry at the same time or before the slurry is transferred to a polymerization tank for batch polymerization, thereby reducing the catalyst activity to 174 or less compared to when the reducing agent is not added. , conditions in which the activity is increased to 1.1 times or more the activity before adding the organoaluminum compound by adding an organoaluminum compound when starting the batch polymerization after transferring the slurry to a polymerization tank where batch polymerization is carried out. Batch polymerization is carried out in the tank below, and then, after the batch polymerization is completed, the slurry is transferred to a zone where the polymerization activity of the thriller is deactivated in a time of 1/3 or less of the predetermined polymerization time in the batch polymerization tank. It is characterized by

連続重合1薯から回分重合工程へ、又回分重合工種から
脱活工程へスラリーを移送する間、さらに気相の水素浸
度等を調整する間に予室しない制御不可能な重合が行わ
れる丸め得られるポリマーの物性のバランスが非常に悪
化する。そこで上記の予定しない制御不可能な重合量を
なるべく減少させるため回分重合槽にスラリーを移送す
るとき又はその前に活性低下剤を添加して重合槽にある
触媒活性を本来の活性の174以下、好ましくは1/4
〜1/IOK低下させる。1/4より大きくなれば制御
不可能な重合量の減少効果が小さくなり、一方1/10
よ抄低くなれば活性を復活させるため添加される有機ア
ルミニウム化合物の鯵増大することになる。
During the transfer of the slurry from continuous polymerization to the batch polymerization process, from the batch polymerization process to the deactivation process, and while adjusting the degree of hydrogen immersion in the gas phase, uncontrollable polymerization occurs without a pre-chamber. The balance of physical properties of the resulting polymer becomes extremely unbalanced. Therefore, in order to reduce the unplanned and uncontrollable polymerization amount as much as possible, an activity reducing agent is added when or before transferring the slurry to the batch polymerization tank to reduce the catalyst activity in the polymerization tank to 174% or less of the original activity. Preferably 1/4
~1/IOK decrease. If it is larger than 1/4, the effect of reducing the amount of polymerization that cannot be controlled becomes smaller, while if it is larger than 1/10
If the temperature decreases, the amount of organoaluminum compounds added to restore activity will increase.

回分重合槽へのスラリーの移送終了後に、回分重合の時
間及び重合量に、より決定される適当な触媒活性を復活
させるため有機アルミニウム化合物が添加される。有機
アルミニウムの使用割合は活性低下剤の種類及び量によ
少左右されるが、有機アルミニウム化合物を添加する前
の活性のi、1倍以上、好ましくはL1倍〜10倍に活
性を高める如き量である。
After the transfer of the slurry to the batch polymerization vessel is completed, an organoaluminum compound is added to restore appropriate catalyst activity, which is determined by the batch polymerization time and polymerization amount. The proportion of organoaluminum to be used depends somewhat on the type and amount of the activity-lowering agent, but it should be in an amount that increases the activity by at least 1 times the activity i before adding the organoaluminum compound, preferably 1 to 10 times the activity L. It is.

次に回分重合槽での所定の重合が終了すると同時に該回
分重合槽での所定の重合時間の1/3以下の時間内に触
媒を失活させる。該操作は一般には脱活剤を含有する帯
域に回分重金種からスラリーを移送することKよって行
われる。移送に要する時間を回分重合槽での所定の重合
時間の1/3以下にすることKより移送の間の制御され
ない重合を実質的に無視し得る程度にすることができる
。移送に要する時間は短かければ短かいほど制御されな
い重合が少〈な抄好ましいが、重合時間の1/3以下に
することで実質的に移送時の制御されない重合の影響を
さけることができる。
Next, at the same time as the predetermined polymerization in the batch polymerization tank is completed, the catalyst is deactivated within ⅓ or less of the predetermined polymerization time in the batch polymerization tank. The operation is generally carried out by transferring a slurry from a batch of heavy metal species to a zone containing a deactivator. By reducing the time required for transfer to 1/3 or less of the predetermined polymerization time in the batch polymerization tank, uncontrolled polymerization during transfer can be made substantially negligible. The shorter the time required for transfer, the less uncontrolled polymerization, which is preferable, but by setting it to 1/3 or less of the polymerization time, the influence of uncontrolled polymerization during transfer can be substantially avoided.

前記の活性低下剤としては触媒活性を低下させるもので
あれば使用で負、種々の有機化合物及びM ct8 、
 StC/4の如負無機化合物が用いられるが、好まし
くは生成ポリマーの立体規則性を大傘〈低下させずに活
性を低下させるものが好ましく、特に、立体規則性を低
下させずに活性を低下させ、かつ少量の有機アルミニウ
ム化合物の添加により活性を復活させることが可能であ
るような化合物を用いるのが好ましい。たとえば前述の
触媒系の好ましい一成分として用いられるC−0又はC
−N納金を少なくとも1つ有する化合物が示される。具
体的な化合物の例は前述したとお抄である。
The activity reducing agent may be used as long as it reduces the catalyst activity, and various organic compounds and M ct8 ,
StC/4 negative inorganic compounds are used, but those that reduce the activity without reducing the stereoregularity of the produced polymer are preferred, and in particular those that reduce the activity without reducing the stereoregularity are preferred. It is preferable to use a compound whose activity can be restored by adding a small amount of an organoaluminum compound. For example, C-0 or C used as a preferred component of the catalyst system described above.
Compounds having at least one -N deposit are indicated. A specific example of the compound is Toosho mentioned above.

又、活性を復活させるのに用いる有機アルミニウム化合
物としては、前述の触媒系の一成分として用い九有機ア
ルミニウム化合物が好ま5しく用いられる。
Further, as the organoaluminum compound used to restore the activity, the nine organoaluminum compounds used as one component of the catalyst system described above are preferably used.

本発明の方法を用いることにより耐衝撃性と剛性のバラ
ンスの優れたグロピレンーエチレンブロック共重合体を
制御した条件で効率よく与えることができ工業的に非常
に有意義である。
By using the method of the present invention, it is possible to efficiently provide a glopyrene-ethylene block copolymer with an excellent balance of impact resistance and rigidity under controlled conditions, which is of great industrial significance.

以下に実施例により本発明をさらに詳しく説明する。を
お実施例及び比較例において、メルトフローインデック
ス(以下MIと略記)ムSTM  01238 曲げ剛性11j      A8TM D747−63
アイゾツト(ノツチ付)ム8TM  0256−56デ
ユポン      JIS  K6718に基づいてM
Iは230℃、荷重2.16Ktの条件で、曲げ剛性度
は20℃の条件で、またアイゾツト及びデュポン衝撃強
度は20℃及び−10℃の条件下でそれぞれ測定した。
The present invention will be explained in more detail with reference to Examples below. In the Examples and Comparative Examples, melt flow index (hereinafter abbreviated as MI) STM 01238 Bending rigidity 11j A8TM D747-63
Izot (with notch) M8TM 0256-56 Dupont M based on JIS K6718
I was measured at 230°C and a load of 2.16Kt, bending rigidity was measured at 20°C, and Izod and DuPont impact strengths were measured at 20°C and -10°C, respectively.

極限粘度数(以下ダと略記)は135℃、テトラリン溶
液で測定した。アイ、ンタクテイツクインデックス(以
下!■と略記)は 算出された。
The intrinsic viscosity number (hereinafter abbreviated as Da) was measured at 135°C using a tetralin solution. The eye contact index (hereinafter abbreviated as ■) has been calculated.

実施例1゜ (1)固体触媒成分の調製 直径12■の鋼球91cfの入った内容積4Lの粉砕用
ポットを4個装備した振動ミルを用意する。各ポットに
窒素算量気中で塩化マグネシウム300 f、テトラエ
トキ77ラン60sd、α、α、d−)9クロロトルエ
ン45−を加え40時間粉砕した。内容積50tのオー
トクレーブに上記粉砕物3細、四塩化チタン201を加
え80℃で2時間攪拌し死後デカンテーショ/によって
上澄液を除き、次にn−ヘプタ/35tを加え80℃で
15分間攪拌ののちデカ/チージョンで上澄液を除く洗
浄操作を7回繰り返した後さらにn−へブタン20tを
追加して固体触媒スラリーとした。固体触媒スラリーの
一部をサンプリングしn−へブタンを蒸発させ分析した
ところ固体触媒中に1、4重量%のnを含有していた。
Example 1 (1) Preparation of solid catalyst component A vibratory mill equipped with four grinding pots each having an internal volume of 4 L each containing 91 cf of steel balls with a diameter of 12 cm was prepared. To each pot were added 300 f of magnesium chloride, 77 runs of tetraethylene, 60 sd, α, α, d-)9 chlorotoluene 45-, and the mixture was ground for 40 hours. In an autoclave with an internal volume of 50 tons, add 3 fine particles of the above pulverized material and 201 pieces of titanium tetrachloride, stir at 80°C for 2 hours, remove the supernatant liquid by postmortem decantation, then add 35 tons of n-hepta and stir at 80°C for 15 minutes. After that, the washing operation of removing the supernatant liquid with Deka/Cheeseon was repeated 7 times, and then 20 tons of n-hebutane was added to prepare a solid catalyst slurry. When a part of the solid catalyst slurry was sampled, n-hebutane was evaporated and analyzed, it was found that the solid catalyst contained 1.4% by weight of n.

(II)  重合 第1図に示した重合装置を用いて重合が行われる。充分
に乾燥し窒素で置換した内容積50tのオートクレーブ
にn−へブタン30L1上記固体触媒50t1ジエチル
アルミニウム クロライド240d、p−トルイル酸メ
チル140−を入れ25℃で攪拌した。この混合物を触
媒スラリー混合物とする。充分に乾燥し窒素で置換しさ
らにプロピレンガスで置換した内容積300Lのオート
クレーブム及びBを直列に連結し、内容積200Lのオ
ートクレーブC1及びC2をオートクレーブBの次に並
列に連結する。内容積300tのオートクレーブDをオ
ートクレーブC1とC2に対して直列に連結する。オー
トクレーブA及び1にプロピレン60−を装入する。上
記触媒スラリー混合物を固体触媒として19/bの速度
で又トリエチルアルミニウムを1.5−レ′bで、さら
に液体プロピレンを3011/hでオートクレープムに
装入する。オートクレーブBにはトリエチルアルミニウ
ムを30−ン′hの速度でまたオートクレープムからポ
リプロピレンスラリーを3011t/hで連続的に装入
しオートクレーブBからはポリプロピレンスラリーを3
04/にで連続的に抜き出しながらオートクレープム及
びBの気相水素濃度を表IK示す量に保つように水素を
装入し75℃で重合を行い、重合開始後6時間経過し重
合が安定し九ところでオートクレーブBから少量のスラ
リーを抜き出しパウダーの物性を測定した。次にオート
クレーブBの下部から連続的に抜き出しているスラリー
及び1.4m/30■の速度で、p−トルイル酸メチル
を同時にオートクレーブC1に装入し゛30分間スラリ
ーをC1に受は入れた後、オートクレーブBからのスラ
リー及びp−)ルイル酸メチルの移送先をオートクレー
ブC2に変更した。C1ではスラリーを受は入れると同
時に気相部をパージしながら液状のプロピレン5−を圧
入し、内温を50℃にすると同時に水素amを0.3マ
OIXとした。この間の活性はp−約 ドルイル酸の装入によ釘115に低下している。さらに
エチレン及び水素を装入し気相部の水素濃度を0.55
マO!に、エチレンの濃度を35.0モル%とじ九。回
分重合の開始のためさらにトリエチルアルミニウム3.
0−を−気に圧入して活性を約25倍に上げて上記水素
及びエチレン濃度を保ちながら9分間SOt:で重合し
、さらにエチレンを追加して水素濃度0.50マo1%
、エチレン濃度40.0モル%で2.0分間重合した。
(II) Polymerization Polymerization is carried out using the polymerization apparatus shown in FIG. Into a 50 t autoclave which had been thoroughly dried and purged with nitrogen, 30 L of n-hebutane, 50 t of the above solid catalyst, 240 d of diethylaluminum chloride, and 140 ml of methyl p-toluate were placed and stirred at 25°C. This mixture is used as a catalyst slurry mixture. An autoclave with an internal volume of 300 L which has been sufficiently dried and purged with nitrogen and further with propylene gas is connected in series, and autoclaves C1 and C2 with an internal volume of 200 L are connected next to autoclave B in parallel. An autoclave D having an internal volume of 300 tons is connected in series to autoclaves C1 and C2. Charge autoclaves A and 1 with 60-propylene. The above catalyst slurry mixture as a solid catalyst was charged to the autoclave at a rate of 19/b, triethylaluminum at a rate of 1.5 L/b, and liquid propylene at a rate of 3011/h. Autoclave B was continuously charged with triethylaluminum at a rate of 30 m/h and polypropylene slurry from the autoclave at a rate of 3011 t/h.
Hydrogen was charged so as to maintain the gas phase hydrogen concentration of the autoclave and B at the amount shown in Table IK while continuously withdrawing it at 04/2, and polymerization was carried out at 75 °C, and 6 hours after the start of polymerization, the polymerization became stable. At the end of the day, a small amount of slurry was extracted from autoclave B and the physical properties of the powder were measured. Next, the slurry being continuously extracted from the lower part of autoclave B and methyl p-toluate were simultaneously charged into autoclave C1 at a speed of 1.4 m/30 cm, and after the slurry was placed in C1 for 30 minutes, The slurry from autoclave B and methyl p-) were transferred to autoclave C2. In C1, while receiving the slurry, liquid propylene 5- was injected under pressure while purging the gas phase, and at the same time the internal temperature was raised to 50°C, and at the same time, the hydrogen am was set to 0.3 M OIX. The activity during this time was reduced to 115 by the addition of p-doluic acid. Furthermore, ethylene and hydrogen are charged to reduce the hydrogen concentration in the gas phase to 0.55.
Mao! Then, the concentration of ethylene was adjusted to 35.0 mol%. 3. additional triethylaluminum for initiation of batch polymerization;
0- was injected into - air to increase the activity by about 25 times, and while maintaining the above hydrogen and ethylene concentrations, polymerization was carried out in SOt: for 9 minutes, and ethylene was further added to give a hydrogen concentration of 0.50 mO1%.
, polymerization was carried out for 2.0 minutes at an ethylene concentration of 40.0 mol%.

ついであらかじめ液状のプロピレン10q1イソグロバ
ノール50−を入れたオートクレーブDに3分間でスラ
リーを圧送し九。
The slurry was then pumped for 3 minutes into autoclave D, which had previously been charged with 10q1 of liquid propylene and 50m of isoglobanol.

オートクレーブC1は液状のプロビレ2で内部を洗浄し
、洗浄したプロピレンもオートクレーブDに送った。オ
ートクレーブC1は約3萱−ゲージで次のスラリー受は
入れに備えた。一方オートクレープDにはインプロパノ
ールを1−レ′hで装入しながらその下部からスラリー
をフラッシュタンクIK移送し、さらにホッパーFt経
てパウダーとして取抄出した。オートクレーブDからの
排出は約40Vhの連続排出とし、次にオートクレーブ
C2からスラリーを受は入れる時、オートクレーブDに
はスラリーが約1011+残っているようにした。オー
トクレーブC2ではオートクレーブBからのスラリー及
びp−トルイル酸メチルを30分分間性入れた後C1と
同様に共重合操作を行った。オートクレーブCI 、C
2の操作を各25回合計50回、25時間の連続重合を
行ない製品として約250陶のプロピレン−エチレンブ
ロック共重合体を得た。
The interior of autoclave C1 was cleaned with liquid Propylene 2, and the washed propylene was also sent to autoclave D. Autoclave C1 was approximately 3-gauge and was ready for the next slurry receptacle. On the other hand, while charging impropanol at a rate of 1 hour to the autoclave D, the slurry was transferred from the lower part of the autoclave to a flash tank IK, and was then taken out as a powder through a hopper Ft. The discharge from autoclave D was continuous at about 40 Vh, and when the slurry was next received from autoclave C2, about 1011+ slurry remained in autoclave D. In autoclave C2, the slurry from autoclave B and methyl p-toluate were mixed for 30 minutes, and then the copolymerization operation was carried out in the same manner as in C1. Autoclave CI, C
Continuous polymerization was carried out for 25 hours, 25 times each for a total of 50 times, to obtain about 250 pieces of propylene-ethylene block copolymer as a product.

以上の操作の間何ら異常なく運転が可能であった。製品
中のπ含量より固体触媒当妙の重合量を求めた。得られ
たブロック共重合体は60℃、100−Hfで10時間
乾燥し、通常用いられる添加物を与えて造粒し物性を測
定した。結果を表2に示す。
During the above operations, operation was possible without any abnormalities. The polymerization amount of the solid catalyst was determined from the π content in the product. The obtained block copolymer was dried at 60° C. and 100-Hf for 10 hours, granulated with commonly used additives, and its physical properties were measured. The results are shown in Table 2.

参考例 第2図及び第3図に実施例1の(1)で合成した触媒を
用い、固体触媒、ジエチルアルミニウムクロライド、ト
リエチルアルミニウムの配合比を一定としp’ −)ル
イル酸メチルの量比のみを変更した場合の活性と、p−
トルイル酸メチルの使用量の関係、及び固体触媒、ジエ
チルアルミニウムクロライド、p−トルイル酸メチルの
配合比を一定としトリエチルアルミニウムの量比のみを
変更した場合の活性とトリエチルアルミニウムの使用量
の関係を示す。これより所望の活性を得る九めに必要な
添加するp−1−ルイル酸メチル、及びトリエチルアル
ミニウムの量が推定できる。
Reference Example In Figures 2 and 3, the catalyst synthesized in Example 1 (1) was used, the blending ratio of the solid catalyst, diethylaluminium chloride, and triethylaluminum was constant, and only the amount ratio of methyl p'-)ruylate was used. The activity when changing p-
The relationship between the amount of methyl toluate used, and the relationship between the activity and the amount of triethyl aluminum used when the blending ratio of the solid catalyst, diethylaluminum chloride, and p-methyl toluate is kept constant and only the amount ratio of triethyl aluminum is changed. . From this, the amounts of p-1-methyl ruylate and triethylaluminum necessary to obtain the desired activity can be estimated.

実施例2 オートクレーブC1及びC2にスラリーを受は入れる際
に添加するp−)ルイル酸メチル0.65g73G−を
テトラエトキクシラン2.0sg/30kK変更し活性
を約115に低下させ、かつオートクレーブC1及びC
2での回分重合開始の際に加えるトリエチルアルミニウ
ムを2dK変更して活性を約2.5倍とした他は実施例
1と同様に重合を行った。結果を表2に示す。
Example 2 0.65 g 73G- of p-)methyl ruylate added when receiving the slurry into autoclaves C1 and C2 was changed to 2.0 sg/30 kK of tetraethoxysilane to lower the activity to about 115, and and C
Polymerization was carried out in the same manner as in Example 1, except that the amount of triethylaluminum added at the start of the batch polymerization in step 2 was changed by 2 dK to increase the activity by about 2.5 times. The results are shown in Table 2.

実施例3 オートクレーブC1及び02にスラリーを受は入れる際
に添加するp−トルイル酸メチル1.4sff/30−
をオルソ酢酸エチル0.9d/30−に変更して活性を
約1/4としかつオートクレーブC1及びC2での回分
重合開始の11に加えるトリエチルアルミニウムを25
mgに変更して活性を約2.0倍に上げて、その他につ
いては表IK示す条件で実施例1と同様の操作により重
合を行った。結果を表2に示す。
Example 3 Methyl p-toluate added when receiving slurry into autoclaves C1 and 02 1.4sff/30-
was changed to 0.9d/30-ethyl orthoacetate to reduce the activity to about 1/4, and 25% of triethylaluminum was added to 11 at the start of batch polymerization in autoclaves C1 and C2.
The polymerization was carried out in the same manner as in Example 1 under the conditions shown in Table IK except that the activity was increased by about 2.0 times. The results are shown in Table 2.

比較例1゜ 回分重合槽への添加剤及び有機アルミニウム化合物はま
ったく加えず、表IK示す条件でその他は、実施例1と
同様に重合を行つ九。
Comparative Example 1 No additives or organoaluminum compounds were added to the batch polymerization tank, and polymerization was otherwise carried out in the same manner as in Example 1 under the conditions shown in Table IK.

結果を表2に示す。耐衝撃性が非常に劣る。The results are shown in Table 2. Impact resistance is very poor.

比較例2゜ 回分重合の各段階の重合時間を変更した他は比較例1と
同様に重合を行った。結果を表2に示す。エチレン含量
を大きくすることで耐衝撃性はかなり良好となったが、
剛性が不充分である。
Comparative Example 2 Polymerization was carried out in the same manner as Comparative Example 1, except that the polymerization time of each stage of the batch polymerization was changed. The results are shown in Table 2. Impact resistance became quite good by increasing the ethylene content, but
Insufficient rigidity.

比較例3゜ 回分重合終了後のスラリーの排出を8分かけて行った他
は実施例1と同様に重合した。
Comparative Example 3 Polymerization was carried out in the same manner as in Example 1, except that the slurry was discharged over 8 minutes after completion of batch polymerization.

結果は表2に示す。The results are shown in Table 2.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法を実施する重合装置の一例を示す
。 第2図及び第3図は触媒活性とp −、)ルイル酸メチ
ル使用量との関係及び触媒活性とトリエチルアルミニウ
ム使用量との関係をそれぞれ示すグラフである。なお単
位は相対値で示される。 A、B:連続重合用オートクレーブ (j 、C2:回分重合用オートクレーブD= 触媒脱
活用オートクレーブ E: フラッシュタンク F: ホツパー 11!2WJ −p−1ルイI[歳(メ弁しイ更月111第311
FIG. 1 shows an example of a polymerization apparatus for carrying out the method of the present invention. FIGS. 2 and 3 are graphs showing the relationship between the catalyst activity and the amount of methyl p-,)rulylate used, and the relationship between the catalyst activity and the amount of triethylaluminum used, respectively. Note that the units are expressed as relative values. A, B: Autoclave for continuous polymerization (J, C2: Autoclave for batch polymerization D = Autoclave for deactivation of catalyst E: Flash tank F: Hopper 11!2WJ-p-1 Louis I 311

Claims (2)

【特許請求の範囲】[Claims] (1)  立体規則性触媒を用いて2槽以上の重合槽を
連結した多段階重合に際し、エチレン/プロピレンの反
応比が6/94重量x以下の重合を連続式で行い、エチ
レン/プロピレンの反応比が15785〜9515重量
%の重合を回分的に行うことによりプロビレ/−エチレ
ンブロック共重合体を製造する方法において、回分重合
を行う重合槽にスラリーを移送すると同時又は移送する
前に該スラリーに触媒活性低下剤を加えるこiによ抄該
低下剤を加えない場合の触媒活性の1/4以下に低下さ
せ、次いで回分重合を行う重合槽へのスラリーの移送の
終了後で回分重合を開始する際に有機アルミニウム化合
物を添加することにより該有機アルミニウムを添加する
前の活性の1.1倍以上に活性を高めた条件下で回分重
合を行い、ついで回゛分重合の終了後該スラリーの重合
活性を失活さ−せる操作を行う帯域に上記回分重合槽で
の所定の重合時間の173以下の時間でスラリーを移送
することを特徴とするエチレン−プロピレンブロック共
重合体の製造方法。
(1) During multi-stage polymerization in which two or more polymerization tanks are connected using a stereoregular catalyst, polymerization is carried out in a continuous manner at a reaction ratio of ethylene/propylene of 6/94 x or less by weight, and the reaction of ethylene/propylene is carried out in a continuous manner. In a method for producing a propylene/-ethylene block copolymer by batchwise polymerization with a ratio of 15,785 to 9,515% by weight, the slurry is added to the slurry at the same time or before being transferred to a polymerization tank for batch polymerization. By adding a catalyst activity reducing agent, the catalyst activity is reduced to 1/4 or less of that without adding the catalyst activity reducing agent, and then batch polymerization is started after the slurry is transferred to a polymerization tank where batch polymerization is carried out. Batch polymerization is carried out under conditions in which the activity is increased to 1.1 times or more than the activity before adding the organoaluminium compound by adding an organoaluminum compound, and then after the batch polymerization is completed, the slurry is A method for producing an ethylene-propylene block copolymer, characterized in that the slurry is transferred to a zone where the operation for deactivating the polymerization activity is carried out for a time of 173 times or less of the predetermined polymerization time in the batch polymerization tank.
(2)上記回分重合槽にスラリー移送時に添加するi性
低下剤がC−0又はC−N給金を少なくとも1個有する
化合物である第1項記載の方法。
(2) The method according to item 1, wherein the i-property reducing agent added to the batch polymerization tank at the time of slurry transfer is a compound having at least one C-0 or C-N feed.
JP10948181A 1981-03-05 1981-07-15 Method for producing propylene block copolymer Expired JPS6036206B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP10948181A JPS6036206B2 (en) 1981-07-15 1981-07-15 Method for producing propylene block copolymer
GB8205476A GB2094319B (en) 1981-03-05 1982-02-24 Production of propylene block copolymer
PT74523A PT74523B (en) 1981-03-05 1982-03-03 Improved process for the production of a block copolymer of propylene/ethylene
BR8201135A BR8201135A (en) 1981-03-05 1982-03-04 PROCESS TO PRODUCE COPOLYMER IN BLOCKS OF ETHYLENE PROPYLENE
FR8203581A FR2501214B1 (en) 1981-03-05 1982-03-04 PROCESS FOR PRODUCING PROPYLENE SEQUENCE COPOLYMER
CA000397621A CA1180481A (en) 1981-03-05 1982-03-04 Process for production of propylene-ethylene block copolymer
KR8200938A KR850001403B1 (en) 1981-03-05 1982-03-04 Method of producing for propylene brock copolymer
DE19823208010 DE3208010A1 (en) 1981-03-05 1982-03-05 PRODUCTION OF PROPYLENE BLOCK COPOLYMERS
IT20005/82A IT1150636B (en) 1981-03-05 1982-03-05 BLOCK PROPYLENE COPOLYMER PRODUCTION
US07/083,924 US4751265A (en) 1981-03-05 1987-08-03 Production of propylene block copolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10948181A JPS6036206B2 (en) 1981-07-15 1981-07-15 Method for producing propylene block copolymer

Publications (2)

Publication Number Publication Date
JPS5811519A true JPS5811519A (en) 1983-01-22
JPS6036206B2 JPS6036206B2 (en) 1985-08-19

Family

ID=14511331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10948181A Expired JPS6036206B2 (en) 1981-03-05 1981-07-15 Method for producing propylene block copolymer

Country Status (1)

Country Link
JP (1) JPS6036206B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0716811A (en) * 1993-06-30 1995-01-20 Yoshida Kogyo Kk T-retaining wall block molding method and molding form therefor

Also Published As

Publication number Publication date
JPS6036206B2 (en) 1985-08-19

Similar Documents

Publication Publication Date Title
US4576994A (en) Process for the preparation of a polypropylene molding composition
JPS5847402B2 (en) Polymer composition for molding and its manufacturing method
EP0480536B1 (en) Continuous process for producing ethylene/propylene copolymers
CA1115683A (en) Preparation of solid titanium trichloride and propylene polymers using same
KR850001403B1 (en) Method of producing for propylene brock copolymer
JPS6338363B2 (en)
JPH046725B2 (en)
JPS606965B2 (en) Production method of propylene copolymer
JPS646211B2 (en)
JPS6150087B2 (en)
JPS5811519A (en) Preparation of block copolymer from propylene
JPS62174217A (en) Production of propylene block copolymer
JPS6150085B2 (en)
JPS62275111A (en) Continuous polymerization of propylene
JPS6336326B2 (en)
JPH11513420A (en) Polypropylene polymer resins made from highly active catalysts with wide thermal processing windows and articles made therefrom
US5140062A (en) Continuous process for producing high molten viscoelastic polypropylene of ethylene-propylene copolymer
JPS6336327B2 (en)
JPS6138925B2 (en)
JPS5835522B2 (en) Stereoregular polymerization method of α↓-olefin
JPH01272612A (en) Production of propylene copolymer composition
JPS6336325B2 (en)
JPS60226520A (en) Production of propylene-ethylene block copolymer
JPH0141164B2 (en)
JPS6036204B2 (en) Method for producing propylene-ethylene block copolymer