JPS58113250A - Conductive silver paste composition and semiconductive device using the same - Google Patents

Conductive silver paste composition and semiconductive device using the same

Info

Publication number
JPS58113250A
JPS58113250A JP21085181A JP21085181A JPS58113250A JP S58113250 A JPS58113250 A JP S58113250A JP 21085181 A JP21085181 A JP 21085181A JP 21085181 A JP21085181 A JP 21085181A JP S58113250 A JPS58113250 A JP S58113250A
Authority
JP
Japan
Prior art keywords
composition
paste composition
silver powder
polyimide resin
silver paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21085181A
Other languages
Japanese (ja)
Inventor
Kazuo Iko
伊香 和夫
Fujio Kitamura
北村 富士夫
Hideto Suzuki
秀人 鈴木
Kazumasa Igarashi
一雅 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Electric Industrial Co Ltd filed Critical Nitto Electric Industrial Co Ltd
Priority to JP21085181A priority Critical patent/JPS58113250A/en
Publication of JPS58113250A publication Critical patent/JPS58113250A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Die Bonding (AREA)
  • Conductive Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To obtain titled paste composition and a semiconductive device manufactured by using the same which exhibits excellent characteristics appropriate for use in die bonding, by kneading both an organic solvent and silver powder with a polyimide resin precursor, with the content of impurities such as halogen ion being limited to a low level. CONSTITUTION:The objective composition consisting of a pasty material prepared by kneading both an organic solvent and silver powder with a polyimide resin precursor. The composition contains each <=100ppm of the halogen ion and alkali metal ion extracted by water under pressured cooker condition or the like following a cure by heating (an imidization). The above composition is put between a semiconductor element and a base composed of stem or lead frame to effect electrical bonding of the element to the base, thus manufacturing the objective device.

Description

【発明の詳細な説明】 この発明は主として半導体素子をステムあるいはリード
フレームからなる基板に接着固定するためのいわゆるダ
イボンディング用として有用な・(I電性銀ペースト組
成物に関し、またこの組成物を用いてダイボンディング
された半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electroconductive silver paste composition useful mainly for so-called die bonding for adhesively fixing a semiconductor element to a substrate consisting of a stem or a lead frame, and also relates to a The present invention relates to a semiconductor device that is die-bonded using the present invention.

半導体装置、たとえばトランジスタでは、リードフレー
ム上に半導体素子を導電性接着材料によってダイボンデ
インクし、上記素子上の一対の電極を対応する他のリー
ドフレームにそれぞれ金属線を介して電気的に接続し、
さらにこれらを一体に樹脂封止している。上記の導電性
接着材料としては、従来、エポキシ樹脂をバインダ成分
とした導電性銀ペーストが用いられ、これをリードフレ
ーム上に所定量塗工しこの上に半導体素子を配置したの
ち、加熱硬化させて上記素子をダイボンディングすると
いう手法がとられてきた。
In a semiconductor device, such as a transistor, a semiconductor element is die-bonded onto a lead frame using a conductive adhesive material, and a pair of electrodes on the element are electrically connected to the corresponding other lead frame through metal wires. ,
Furthermore, these are integrally sealed with resin. Conventionally, conductive silver paste with an epoxy resin as a binder component has been used as the conductive adhesive material described above, and after coating a predetermined amount of this on a lead frame and placing a semiconductor element on top of it, it is heated and cured. A method has been adopted in which the above-mentioned elements are die-bonded.

ところが、上記従来の導電性銀ペーストを用いてダイボ
ンディングされた半導体装置は一高温での電気特性に劣
る欠点があり、また高温下での耐湿特性に欠は素子の配
線パターンが経時的に腐食しやすく、さらに上記耐湿特
性がロット間ではらつきやすいという欠点があった。
However, semiconductor devices die-bonded using the conventional conductive silver paste described above have the disadvantage of poor electrical properties at high temperatures, and lack of moisture resistance at high temperatures, and the wiring patterns of the elements corrode over time. Furthermore, the moisture resistance properties tend to vary between lots.

この発明者らは、上記の原因が導電性銀ペーストのバイ
ンダとして用いるエポキシ樹脂の耐熱性およびこの樹脂
に含まれる不純物としてのハロゲンイオンやアルカリ金
属イオンにあることを究明し、上記エポキシ樹脂よりも
耐熱性にすぐれかつ不純物の少ないバインダを使用する
ことにより。
The inventors discovered that the cause of the above problem lies in the heat resistance of the epoxy resin used as a binder for conductive silver paste and the impurities such as halogen ions and alkali metal ions contained in this resin, and found that By using a binder with excellent heat resistance and low impurities.

前記問題を克服できることを見い出し、この発明を完成
するに至ったものである。
It was discovered that the above-mentioned problem could be overcome, and the present invention was completed.

すなわち、この発明は、ポリイミド系樹脂の前駆体に有
機溶剤とともに銀粉を混練してなるペースト状物であっ
て、加熱硬化(イミド化)ごプレッシャラッカー状態な
いしこれに近い状態下で水抽出されるハロゲンイオンお
よびアルカリ金属イオン含量が共に100 ppm以下
とされた導電5性銀ペ一スト組成物に係る第1の発明と
、この組成物を用いてグイボンディングされた半導体装
置に係る第2の発明とからなるものである。
That is, this invention is a paste-like product made by kneading silver powder with a polyimide resin precursor together with an organic solvent, which is heat-cured (imidized) and extracted with water under a pressure lacquer state or similar conditions. The first invention relates to a conductive silver paste composition in which the content of both halogen ions and alkali metal ions is 100 ppm or less, and the second invention relates to a semiconductor device that is bonded using this composition. It consists of.

この発明において用いられるポリイミド系樹脂の前駆体
には、ジアミンとテトラカルボン酸二無水物とを反応さ
せて得られるポリアミド酸や、ジアミンとテトラカルボ
ン酸二無水物の誘導体(たとえば低級ジアルキルエステ
ル)とを反応させて得られるポリアミド酸誘導体のほか
、ジアミンとともにジアミノアミドを併用しこれらとテ
トラカルボン酸二無水物ないしその誘導体とを反応させ
て得られるポリイミド−イソインドロキナシリジオン樹
脂の前駆体などが広く包含される。
The precursor of the polyimide resin used in this invention includes polyamic acid obtained by reacting diamine and tetracarboxylic dianhydride, and derivatives of diamine and tetracarboxylic dianhydride (for example, lower dialkyl ester). In addition to polyamic acid derivatives obtained by reacting diamines with diaminoamides and tetracarboxylic dianhydrides or their derivatives, precursors of polyimide-isoindoroquinasilidione resins are also available. Broadly encompassing.

これら前駆体の重合度(分子量)としては、溶媒として
N−メチル−2−ピロリドンを使用し測定温度30±0
.01・c(恒温槽)でつぎの式;%式%) 【;ウベローデ粘度計で測定されるポリマー溶液の落下
時間 to;上記同様に測定される溶媒の落下時間C;ポリイ
ミド系樹脂の前駆体濃度(0,5重量%とした) で表わされる固有粘度〔η〕が0,3〜3.0程度とな
るものが望ましい。
The degree of polymerization (molecular weight) of these precursors was determined using N-methyl-2-pyrrolidone as a solvent at a measurement temperature of 30±0.
.. 01・c (constant temperature bath) using the following formula: % formula %) [; Falling time to of the polymer solution measured with an Ubbelohde viscometer; Falling time C of the solvent measured in the same manner as above; Precursor of polyimide resin It is desirable that the intrinsic viscosity [η] expressed by the concentration (assumed to be 0.5% by weight) is about 0.3 to 3.0.

上記の前駆体の合成に用いられるジアミンとしては、た
とえば4・4′−ジアミノジフェニルニー−ジアミノジ
フェニルスルホン、4・4′−ジアミノジフェニルサル
ファイド、ベンジジン、メタフェニレンジアミン、パラ
フェニレンジアミン、1・5−ナフタレンジアミン、2
・6−ナフタレンジアミン、エチレンジアミン、シクロ
ヘキサンジアミンなどが用いられる。これらは一種であ
っても二種以上を併用してもよい。
The diamines used in the synthesis of the above precursors include, for example, 4,4'-diaminodiphenyl di-diaminodiphenylsulfone, 4,4'-diaminodiphenyl sulfide, benzidine, meta-phenylene diamine, para-phenylene diamine, 1,5- naphthalenediamine, 2
・6-Naphthalenediamine, ethylenediamine, cyclohexanediamine, etc. are used. These may be used alone or in combination of two or more.

また、上記ジアミンと併用できるジアミノアミドとして
は、たとえば4・4′−ジアミノジフェニルエーテル−
3−スルホンアミド、3・4′−ジアミノジフェニルエ
ーテル−4−スルホンアミド、3・4−ジアミノジフェ
ニルメタン−4−スルホンアミド、3・4−ジアミノジ
フェニルスルホン−4−スルホンアミド、4・4−ジア
ミノジフェニルエーテル−3−カルボン・アミド、3・
4−ジアミノジフェニルエーテル−4−カルボンアミド
、4・4′−ジアミノジフェニルメタン−3−カルボン
アミド、4・4−ジアミノジフェニルスルホン−3−カ
ルボンアミド、4・4′−ジアミノジフェニルサルファ
イド−3−カルボンアミド、34′−ジアミノジフェニ
ルサルファイド−31−スルホンアミドなどがある。こ
れらは一種であっても二種以上を併用してもよい。
In addition, examples of diaminoamides that can be used in combination with the above diamines include 4,4'-diaminodiphenyl ether-
3-sulfonamide, 3,4'-diaminodiphenyl ether-4-sulfonamide, 3,4-diaminodiphenylmethane-4-sulfonamide, 3,4-diaminodiphenylsulfone-4-sulfonamide, 4,4-diaminodiphenyl ether- 3-Carbonamide, 3.
4-diaminodiphenyl ether-4-carbonamide, 4,4'-diaminodiphenylmethane-3-carbonamide, 4,4-diaminodiphenylsulfone-3-carbonamide, 4,4'-diaminodiphenyl sulfide-3-carbonamide, Examples include 34'-diaminodiphenyl sulfide-31-sulfonamide. These may be used alone or in combination of two or more.

上記のアミン類と反応させるテトラカルボン酸二無水物
としては、たとえばピロメリット酸二無水物、3・3′
・4・4′−ジフェニルテトラカルボン酸二無水物、3
・3′・4・4′−ベンゾフェノンテトラカルボン酸二
無水物、シクロペンタンテトラカルホン酸二無水物、1
・2・5・6−ナフタレンテトラカルボン酸二無水物、
2・3・6・7−ナフタレンテトラカルボン酸二無水物
、2・3・5・6−ピリジンテトラカルボン酸二無水物
、3・4・9・10−ペリレンテトラカルボン酸二無水
物、4・4′−スルホニルシフタル酸二無水物、ブタン
テトラカルボン酸二無水物などが用いられる。これらは
一種であっても二種以上を併用してもよい。また、上記
二無水物の誘導体としては低級ジアルキルエステル化物
やハロゲン化物などが挙げられる。
Examples of the tetracarboxylic dianhydride to be reacted with the above amines include pyromellitic dianhydride, 3.3'
・4,4'-diphenyltetracarboxylic dianhydride, 3
・3', 4, 4'-benzophenonetetracarboxylic dianhydride, cyclopentanetetracarboxylic dianhydride, 1
・2,5,6-naphthalenetetracarboxylic dianhydride,
2,3,6,7-naphthalenetetracarboxylic dianhydride, 2,3,5,6-pyridinetetracarboxylic dianhydride, 3,4,9,10-perylenetetracarboxylic dianhydride, 4. 4'-sulfonylsiphthalic dianhydride, butanetetracarboxylic dianhydride, etc. are used. These may be used alone or in combination of two or more. In addition, examples of derivatives of the dianhydride include lower dialkyl esters and halides.

この発明において用いられる銀粉は、その製法により各
種の形状のものがあり、樹状粉、鱗片状粉、粒状粉、多
孔質粉、針状粉などが挙げられる。
The silver powder used in this invention has various shapes depending on its manufacturing method, and examples include dendritic powder, scaly powder, granular powder, porous powder, and acicular powder.

好ましくは樹状粉、鱗片状粉を使用するのがよい。Preferably, dendritic powder or scaly powder is used.

これら銀粉の粒子径は一般に100メツシユフリーパス
、好適には325メツシユフリーパスであるのがよい。
The particle size of these silver powders is generally 100 mesh free pass, preferably 325 mesh free pass.

使用量は、組成物全体の固形分中通常60〜95重量%
、好適には70〜90重量%である。
The amount used is usually 60 to 95% by weight based on the solid content of the entire composition.
, preferably 70 to 90% by weight.

この発明の導電性銀ペースト組成物は、前記のポリイミ
ド系樹脂の前駆体の有機溶剤溶液に上記の銀粉を混練し
てなるものであり、この混線に当たってグイボンディン
グ時の密着性を向上させるなどの目的で必要に応じてシ
ランカップリング剤やポリシロキサンなどの各種の任意
成分を配合しても差し支えない。
The conductive silver paste composition of the present invention is made by kneading the above-mentioned silver powder into an organic solvent solution of the above-mentioned polyimide-based resin precursor, and has the following properties: Various optional components such as a silane coupling agent and polysiloxane may be added as required for the purpose.

ポリイミド系樹脂の前駆体を溶解させるための有機溶剤
は、上記前駆体を合成する際に用いた有機溶剤をそのま
ま使用でき、必要に応じて前駆体合成ごにさらに希釈し
てもよい。溶剤量は組成物の固形分濃度が10〜30重
量%程度となるようにするのがよい。かかる有機溶剤の
具体例としては、N−メチル−2−ピロリドン、N・N
−ジメチルアセトアミド、N、N−ジメチルホルムアミ
ド、N、N−ジエチルホルムアミド、ジメチルスルホキ
サイド、ヘキサメチルホスホルアミド、テトラメチレン
スルホン、2−エトキシエチルアセタートなどが挙げら
れる。また、これら溶媒とともに組成物の粘度を調整す
るためにナフサなどの汎用溶媒を併用することもできる
As the organic solvent for dissolving the precursor of the polyimide resin, the organic solvent used when synthesizing the above precursor can be used as it is, and it may be further diluted each time the precursor is synthesized, if necessary. The amount of solvent is preferably set so that the solid content concentration of the composition is about 10 to 30% by weight. Specific examples of such organic solvents include N-methyl-2-pyrrolidone, N.N.
-dimethylacetamide, N,N-dimethylformamide, N,N-diethylformamide, dimethylsulfoxide, hexamethylphosphoramide, tetramethylenesulfone, 2-ethoxyethyl acetate, and the like. Moreover, a general-purpose solvent such as naphtha can also be used together with these solvents in order to adjust the viscosity of the composition.

このようにして調製されるこの発明の導電性銀ペースト
組成物は、これを硬化(イミド化)させたのちプレッシ
ャークツカー状態(121℃、2気圧、100%R,H
)ないしこれに近い状態下で水抽出されるハロゲンイオ
ンおよびアルカリ金属イオンが共に100 ppm以下
に抑えられていなければならない。これらの不純物は主
としてポリイミド系樹脂の前駆体を合成する際に混入し
てくるものであり、使用する原料とくにジアミン成分を
あらかじめよく精製したり、前駆体合成こに適宜の精製
処理を施すことにより、上記範囲内に設定する。
The conductive silver paste composition of the present invention prepared in this manner is cured (imidized) and then placed in a pressure cooker state (121°C, 2 atmospheres, 100% R, H).
) or under similar conditions, both halogen ions and alkali metal ions extracted with water must be suppressed to 100 ppm or less. These impurities are mainly mixed in when synthesizing the precursor of polyimide resin, and it is necessary to thoroughly purify the raw materials used, especially the diamine component, or to perform appropriate purification treatment during precursor synthesis. , set within the above range.

このような導電性銀ペースト組成物は、これを被着体に
塗工し乾燥して有機溶剤を除去したのち、高温に加熱処
理すると、ポリイミド系樹脂の前駆体が分子内開環反応
(イミド化)をおこして硬化し、この硬化物(ポリイミ
ド系樹脂)中に銀粉と要すれば任意成分とが分散結着さ
れた導電層を形成する。この導電層は従来の硬化エポキ
シ樹脂層に較べて格段にすぐれた耐熱性を示し、また、
不純物としてのハロゲンイオンおよびアルカリ金属イオ
ンが少量に抑えられているため層内部への水分の浸入が
少なく良好な耐湿性を示す。
When such a conductive silver paste composition is applied to an adherend, dried to remove the organic solvent, and then heated to a high temperature, the precursor of the polyimide resin undergoes an intramolecular ring-opening reaction (imide The cured product (polyimide resin) is cured to form a conductive layer in which silver powder and optional components are dispersed and bonded if necessary. This conductive layer exhibits much better heat resistance than conventional cured epoxy resin layers, and
Since halogen ions and alkali metal ions as impurities are suppressed to a small amount, there is little moisture infiltration into the layer, and it exhibits good moisture resistance.

このように、この発明の導電性銀ペースト組成物によれ
ば、その本来の導電機能とともに耐熱性および耐湿性に
すぐれた硬化樹脂層を形成できるため、これら特性が要
求される各種の用途にきわめて有用であり、なかでも半
導体素子のグイボンディング用としてすぐれた効果を発
揮する。
As described above, the conductive silver paste composition of the present invention can form a cured resin layer that has excellent heat resistance and moisture resistance as well as its original conductive function, making it extremely suitable for various applications that require these properties. It is useful, and exhibits excellent effects especially for use in bonding semiconductor devices.

この発明の半導体装置は、上記の導電性銀ペースト組成
物を用いて半導体素子をグイボンディングした装置に係
るものであり、すなわち、ステムあるいはリードフレー
ムからなる基板と半導体素子との間に、銀粉を含有しか
つプレッシャークツカー状態ないしこれに近い状態下で
水抽出されるハロゲンイオンおよびアルカリ金属イ木ン
が共に1o o ppm以下とされたポリイミド系樹脂
層を介在させ、この層により上記素子を上記基板上に電
気的に接着固定してなるものである。
The semiconductor device of the present invention relates to a device in which a semiconductor element is bonded using the above conductive silver paste composition, that is, silver powder is bonded between a substrate consisting of a stem or a lead frame and a semiconductor element. A polyimide resin layer containing halogen ions and alkali metal ions, which are extracted with water under a pressure-extracting state or a state close to this state, is 100 ppm or less, and this layer allows the above-mentioned element to be It is electrically adhesively fixed onto the substrate.

第1図および第2図はこの発明の半導体装置の一例(ト
ランジスタ)を示したもので、リードフ銀 シーム1a上に前記の導電彬す−スト組成物を所定置設
けこの上に半導体素子2をのせ、上記組成物を加熱硬化
(イミド化)させることにより、」−記フレーム1aと
半導体素子2との間に、銀粉ヲ含有しかつプレッシャー
クツカー状態ないしこれに近い状態下で水抽出されるハ
ロゲンイオンおよびアルカリ金属イオンが共に100 
ppm以下とされたポリイミド系樹脂層3が形成され、
この樹脂層3によって半導体素子2がフレーム1’ a
 (C電気的に強固に接着固定されている。4,4は他
のIJ−ドフレームlb、lcに金属線5.5を介して
電気的に接続された一対の電極、6はトランスファー成
形などにより上記のリードフレームla、1b%IC1
半導体素子2、ポリイミド系樹脂層3、電極4.4およ
び金属線5.5を一体に被覆した封止樹脂である。
1 and 2 show an example of a semiconductor device (transistor) of the present invention, in which the conductive composition is placed in a predetermined position on a lead-off silver seam 1a, and a semiconductor element 2 is placed thereon. By heating and curing (imidizing) the above composition, a silver powder containing silver powder is placed between the frame 1a and the semiconductor element 2 and is extracted with water under a pressure cooker state or similar conditions. Both halogen ions and alkali metal ions are 100%
A polyimide resin layer 3 having a ppm or less is formed,
This resin layer 3 allows the semiconductor element 2 to be attached to the frame 1' a
(C is electrically firmly adhesively fixed. 4, 4 is a pair of electrodes electrically connected to other IJ-deframes lb, lc via metal wires 5.5, 6 is transfer molding, etc. According to the above lead frame la, 1b% IC1
This is a sealing resin that integrally covers the semiconductor element 2, polyimide resin layer 3, electrode 4.4, and metal wire 5.5.

上記の構成によると、ダイボンディング部のポリイミド
系樹脂層3が良好な導電性とともにすぐれた耐熱性およ
び耐湿性を示すものであるため、高高バイアス時の電気
特性にすぐれかつ配線パターンの腐食が抑制された高信
頼性の半導体装置が得られる。
According to the above structure, the polyimide resin layer 3 of the die bonding part exhibits good conductivity as well as excellent heat resistance and moisture resistance, so it has excellent electrical properties at high bias and prevents corrosion of the wiring pattern. A semiconductor device with suppressed and high reliability can be obtained.

以下に、この発明の実施例を記載してより具体的に説明
する。
EXAMPLES Below, examples of the present invention will be described in more detail.

実施例1 無水ピロメリット酸1′モルとよく精製したジアミノジ
フェニルエーテル1モルとをN−メチル−2−ピロリド
ン中約80℃以下(とくに室温付近ないしそれに近い温
度)に保ちながら攪拌した。
Example 1 1' mol of pyromellitic anhydride and 1 mol of well-purified diaminodiphenyl ether were stirred in N-methyl-2-pyrrolidone while maintaining the temperature at about 80° C. or lower (particularly at or near room temperature).

粘度は次第に上昇して、つきの構造式で表わされる固有
粘度〔η〕が0.7のポリイミド前駆体が得られた。
The viscosity gradually increased, and a polyimide precursor having an intrinsic viscosity [η] of 0.7 expressed by the following structural formula was obtained.

この前駆体はこれを120℃で0.5時間および250
℃で10時間加熱処理することにより完全に硬化(イミ
ド化)し、っぎの構造式で表わされるポリイミドを与え
るが、このポリイミドの熱天秤(TGA)による熱分解
開始温度は後記の表に示されるとおりであった。
This precursor was heated at 120 °C for 0.5 h and at 250 °C.
It is completely cured (imidized) by heat treatment at ℃ for 10 hours, giving a polyimide represented by the structural formula of . That's right.

量%)151.5F(樹脂分25y)に、325メツシ
ユフリーパスの樹状銀粉・759を加え、三木ロールで
混練してこの発明の導電性銀ペースト組成物を得た。
To 151.5F (resin content: 25y), 325 mesh free pass dendritic silver powder 759 was added and kneaded with a Miki roll to obtain a conductive silver paste composition of the present invention.

上記の組成物を120℃で0.5時間および250℃で
10時間加熱硬化させたのち、100メツシユフリーパ
スに粉砕して分析用試料とした。この試料507に純水
50yを加え、160°Cで20時間加圧浸水したとき
の(プレッシャークツカー状態に近い状態としたときの
)抽出水のハロゲンイオンおよびアルカリ金属イオン(
主としてナトリウムイオン)を測定した結果は、後記の
表に示されるとおりであった。なお、ハロゲンイオンは
電位差滴定法で測定し、アルカリ金属イオンは原子吸光
法により測定した。
The above composition was cured by heating at 120° C. for 0.5 hours and at 250° C. for 10 hours, and then ground into 100 mesh free passes to prepare samples for analysis. When 50y of pure water was added to this sample 507 and the water was immersed under pressure at 160°C for 20 hours (in a state close to that of a pressure cooker), halogen ions and alkali metal ions (
The results of measuring (mainly sodium ions) were as shown in the table below. Note that halogen ions were measured by potentiometric titration, and alkali metal ions were measured by atomic absorption spectrometry.

ついで、前記の導電性銀ペースト組成物を用いて半導体
素子(バイポーラIC)をリードフレーム上にダイボン
ディングし、さらに所定のワイヤボンディングおよびエ
ポキシ樹脂によるトランスファーモールド成形を行なっ
て、第1図および第2図に示される如きこの発明の半導
体装置を作製した。なお、ダイボンディング時の加熱硬
化条件は、120℃で0.5時間および250℃で10
時間とした。
Next, a semiconductor element (bipolar IC) is die-bonded onto a lead frame using the conductive silver paste composition, and predetermined wire bonding and transfer molding with epoxy resin are performed. A semiconductor device of the present invention as shown in the figure was manufactured. The heat curing conditions during die bonding are 120°C for 0.5 hours and 250°C for 10 hours.
It was time.

このようにして得た半導体装置につき、12また結果は
、後記の表に示されるとおりであった。
The results of the semiconductor device thus obtained were as shown in the table below.

表中の数値は、試験個数(n) 40個中の配線腐食数
を示したものである。
The numerical values in the table indicate the number of wiring corrosion out of 40 test pieces (n).

また、別途、前記の導電性銀ペースト組成物を用いて上
記同様にしてダイボンディングしたこの発明のパワート
ランジスタにつき、150 ’C高淘バイアステストを
行なった結果は、後記の表に示されるとおりであった。
Separately, a 150'C high bias test was conducted on the power transistor of the present invention which was die-bonded in the same manner as above using the conductive silver paste composition, and the results are as shown in the table below. there were.

表中の数値は、電流増幅率の110%以上の変化を不良
とし、試験個数(n)40個中の不良数を示したもので
ある。
The numerical values in the table indicate the number of defects out of 40 test pieces (n), with a change in current amplification factor of 110% or more being considered defective.

実施例2 テトラカルボン解二無水物として無水ピロメリット酸0
.5モルとベンゾフェノンテトラカルボン0.6モルと
ジアミノジフェニルエーテルヵルポンアミド0.4モル
とを使用した以外は、実施例1と同様にして後記の構造
式(1)で表わされる固有粘度〔η」が1.8のポリイ
ミド系樹脂の前駆体を得た。
Example 2 Pyromellitic anhydride 0 as tetracarboxylic dianhydride
.. 5 mol, benzophenonetetracarboxylic 0.6 mol, and diaminodiphenyl ether carponamide 0.4 mol were used in the same manner as in Example 1, so that the intrinsic viscosity [η'' expressed by the structural formula (1) below was A precursor of polyimide resin No. 1.8 was obtained.

この前駆体を実施例1と同様にして完全に硬化させて得
た後記の構造式(2)で表わされるポリイミド−イソイ
ンドロキナシリジオン樹脂の熱分解開始温度は後記の表
に示されるとおりであづた。
The thermal decomposition initiation temperature of the polyimide-isoindorouchinasilidione resin represented by the structural formula (2) shown below, obtained by completely curing this precursor in the same manner as in Example 1, is as shown in the table below. Azuta.

つきに、上記の前駆体溶液(樹脂濃度12.5重量%)
160y(樹脂分20y)に、325メツシユフリーパ
スの鱗片状銀粉80yを加え、三本ロールで混練してこ
の発明の導電性銀ペースト組成物を得た。また、この組
成物を用いて実施例1と同様にダイボンディングしてこ
の発明の半導体装置を得た。これらペースト組成物およ
び半導体装置につき、実施例1と同様に分析、評価した
結果は後記の表に示されるとおりであった。
At the same time, the above precursor solution (resin concentration 12.5% by weight)
160y (resin content: 20y) was added with 80y of scaly silver powder of 325 mesh free pass, and kneaded with three rolls to obtain a conductive silver paste composition of the present invention. Further, using this composition, die bonding was performed in the same manner as in Example 1 to obtain a semiconductor device of the present invention. These paste compositions and semiconductor devices were analyzed and evaluated in the same manner as in Example 1, and the results were as shown in the table below.

実施例3 テトラカルボン酸二無水物として無水ピロメリット酸0
.4モルとベンゾフェノンテトラカルボン酸二無水物0
.6モルとを使用し、かつジアミンとモルとアミンフェ
ノキシフェニルスルホン0.6モルとを使用した以外は
、実施例1と同様にして後記の構造式(3)で表わされ
る固有粘度〔η−1か2.7のポリイミド前駆体を得た
。この前駆体を実施例1と同様にして完全に硬化させて
得た後記の構造式(4)で表わされるポリイミドの熱分
解開始温度は後記の表に示されるとおりてあった。
Example 3 Pyromellitic anhydride 0 as tetracarboxylic dianhydride
.. 4 moles and benzophenone tetracarboxylic dianhydride 0
.. Intrinsic viscosity [η-1 A polyimide precursor of 2.7 was obtained. This precursor was completely cured in the same manner as in Example 1, and the thermal decomposition initiation temperature of the polyimide represented by the structural formula (4) described below was as shown in the table below.

つぎに、上記の前駆体溶液(樹脂濃度18重量%)83
y(樹脂分15y)に、325メツシユフリーパスの樹
状銀粉85yおよびシランカップリング剤(ユニオンカ
ーバイド社製のA11.(10)0.3yを加え、三本
ロールで混練して、この発明の導電性銀ペースト組成物
を得た。また、この組成物を用いて実施例1と同様にダ
イボンデインクしてこの発明の半導体装置を得た。これ
らペースト組成物および半導体装置につき、実施例1と
同様に分析、評価した結果は後記の表に示されるとおり
であった。
Next, the above precursor solution (resin concentration 18% by weight) 83
y (resin content: 15 y), 85 y of dendritic silver powder of 325 mesh free pass and 0.3 y of silane coupling agent (A11.(10) manufactured by Union Carbide Co., Ltd.) were added and kneaded with a three-roll mill to form the present invention. A conductive silver paste composition was obtained.This composition was also die-bonded in the same manner as in Example 1 to obtain a semiconductor device of the present invention. The results of analysis and evaluation in the same manner as in 1 were as shown in the table below.

実施例4 た以外は、実施例1と同様にして、つぎの構造式で表わ
される固有粘度〔η〕が0.4のポリイミド前この前駆
体を実施例1と同様にして完全に硬化させて得たつぎの
構造式で表わされるポリイミドの熱分解開始温度は後記
の表に示されるとおりであった。
Example 4 A polyimide precursor having an intrinsic viscosity [η] of 0.4 represented by the following structural formula was prepared in the same manner as in Example 1, except that the precursor was completely cured in the same manner as in Example 1. The thermal decomposition initiation temperature of the obtained polyimide represented by the following structural formula was as shown in the table below.

つぎに、上記の前駆体溶液(樹脂濃度20重量%)50
y(樹脂分102)に、325メッシュフIJ−ハスの
鱗片状銀粉90yおよびシランカップリング剤(信越化
学社製のKBM602)0.22を加え、三本ロールで
混練してこの発明の導電性銀ペースト組成物を得た。ま
た、この組成物を用いて実施例1と同様にダイボンディ
ングしてこの発明の半導体装置を得た。これらのペース
ト組成物および半導体装置につき、実施例1と同様に分
析、評価した結果は、後記の表に示されるとおりであっ
た。
Next, 50% of the above precursor solution (resin concentration 20% by weight)
y (resin content: 102), 90 y of 325 mesh IJ-lotus flaky silver powder and 0.22 y of a silane coupling agent (KBM602 manufactured by Shin-Etsu Chemical Co., Ltd.) were added and kneaded with a triple roll to obtain the conductive silver of the present invention. A paste composition was obtained. Further, using this composition, die bonding was performed in the same manner as in Example 1 to obtain a semiconductor device of the present invention. These paste compositions and semiconductor devices were analyzed and evaluated in the same manner as in Example 1, and the results were as shown in the table below.

比較例1 エポキシ樹脂(シェル化学社製のエピコート#828)
20yに、2−メチルイミダゾール0.042および3
25メツシユフリーパスの樹状銀粉80ノを加え、三本
ロールで混練して導電性銀ペースト組成物を得た。この
組成物から銀粉を除いたものを120℃で0.5時間お
よび175℃で1時間加熱処理して完全に硬化させたも
のにつき、熱分解開始温度を調べた結果は、後記の表に
示されるとおりであった。
Comparative Example 1 Epoxy resin (Epicoat #828 manufactured by Shell Chemical Co., Ltd.)
20y, 2-methylimidazole 0.042 and 3
80 pieces of dendritic silver powder with a mesh free pass of 25 mm was added and kneaded with a triple roll to obtain a conductive silver paste composition. The thermal decomposition onset temperature of this composition after removing the silver powder was completely cured by heat treatment at 120°C for 0.5 hours and at 175°C for 1 hour. The results are shown in the table below. It was as expected.

つぎに、上記の導電性銀ペースト組成物を120℃で0
.5時間および175℃で1時間加熱硬化させたのち、
100メツシユフリーパスに粉砕して分析用試料をつく
り、この試料につき実施例1と同様の手法により、ハロ
ゲンイオン含量およびアルカリ金属イオン含量を調べた
結果は、後記の表に示されるとおりであった。
Next, the above conductive silver paste composition was heated to 0.
.. After heating and curing for 5 hours and 1 hour at 175°C,
A sample for analysis was prepared by grinding it into a 100 mesh free pass, and the halogen ion content and alkali metal ion content of this sample were examined using the same method as in Example 1. The results are as shown in the table below. Ta.

また、上記の導電性銀ペースト組成物を用いて実施例1
と同様にダイボンディングして半導体装置をつくり、こ
の装置につき実施例1と同様の評価を行なった結果は、
後記の表に示されるとおりであった。なお、ダイボンデ
ィング時の加熱硬化条件は、120℃で0.5時間およ
び175℃で1時間とした。
In addition, Example 1 using the above conductive silver paste composition
A semiconductor device was manufactured by die bonding in the same manner as in Example 1, and the results of evaluating this device in the same manner as in Example 1 were as follows.
The results were as shown in the table below. The heat curing conditions during die bonding were 120°C for 0.5 hours and 175°C for 1 hour.

比較例2 エポキシ樹脂(チバ社製のGY250)10yに、フェ
ノール樹脂(荒用化学社製のKP−180”)5y12
−フェニルイミダゾール0.04M’および325メツ
シユフリ・−パスの鱗片状銀粉85yを加え、三本ロー
ルで混練して導電性銀ペースト組成物を得た。この組成
物から銀粉を除いたものにつき、硬化どの熱分解開始温
度を比較例1と同様にして調べた。また、上記の組成物
を用いて比較例1と同様にして半導体装置を得、この装
置および上記ペースト組成物につき、比較例1と同様に
分析、評価した。これらの結果は、後記の表に示される
とおりであった。
Comparative Example 2 To 10y of epoxy resin (GY250 made by Ciba), 5y12 of phenol resin (KP-180'' made by Arayo Kagaku Co., Ltd.) was added.
- 0.04 M' of phenylimidazole and 85 y of scaly silver powder of 325 milliseconds were added and kneaded with three rolls to obtain a conductive silver paste composition. The thermal decomposition initiation temperature of this composition was examined in the same manner as in Comparative Example 1, except for the silver powder. Further, a semiconductor device was obtained in the same manner as in Comparative Example 1 using the above composition, and this device and the above paste composition were analyzed and evaluated in the same manner as in Comparative Example 1. These results were as shown in the table below.

比較例3 エポキシ樹脂(ダウケミカル社製のDER331)10
yに、ヘキサハイドロフタル酸無水物8y、2−エチル
−4−メチルイミダゾールo、osyおよび325メツ
シユフリーパスの樹状銀粉82yを加え、三本ロールで
混練して導電性銀ペースト組成物を得た。この組成物か
ら銀粉を除いたものにつき、硬化どの熱分解開始温度を
比較例1と同様にして調べた。また、上記の組成物を用
いて比較例1と同様にして半導体装置を得、この装置お
よび上記ペースト組成物につき、比較例1と同様に分析
、評価した。これらの結果は、後記の表に示されるとお
りであった。
Comparative Example 3 Epoxy resin (DER331 manufactured by Dow Chemical Company) 10
Hexahydrophthalic anhydride 8y, 2-ethyl-4-methylimidazole o, osy, and 325 mesh free pass dendritic silver powder 82y were added to Y, and kneaded with three rolls to form a conductive silver paste composition. Obtained. The thermal decomposition initiation temperature of this composition was examined in the same manner as in Comparative Example 1, except for the silver powder. Further, a semiconductor device was obtained in the same manner as in Comparative Example 1 using the above composition, and this device and the above paste composition were analyzed and evaluated in the same manner as in Comparative Example 1. These results were as shown in the table below.

比較例4 ヨく精製したジアミノジフェニルエーテルノ代りに、未
精製のジアミノジフェニルエーテルヲ用いた以外は、実
施例1と全く同様にしてポリイミド前駆体をつくり、こ
れより実施例1と同様にして導電性銀ペースト組成物お
よび半導体装置を得た。実施例1と同様の分析、評価を
行なった結果は、後記の表に示されるとおりであった。
Comparative Example 4 A polyimide precursor was prepared in exactly the same manner as in Example 1, except that unpurified diaminodiphenyl ether was used instead of highly purified diaminodiphenyl ether, and from this a conductive silver was prepared in the same manner as in Example 1. A paste composition and a semiconductor device were obtained. The results of the same analysis and evaluation as in Example 1 were as shown in the table below.

比較例5 テトラカルボン酸二無水物としてシクロペンタンテトラ
カルボン酸二無水物を、ジアミンとして未精製の4・4
′−ジアミノジフェニルメタンを用いた以外は、実施例
1と同様にしてポリイミド前駆体を合成した。この前駆
体溶液(樹脂濃度12珈量%)125y(樹脂分15y
)に鱗片状銀粉85yを加え、三本ロールで混練して、
導電性銀ペースト組成物をつくった。また、このペース
ト組成物を用いて実施例1と同様にして半導体装置を得
た。実施例1と同様の分析、評価を行なった結果は、つ
きの表に示されるとおりであった。
Comparative Example 5 Cyclopentanetetracarboxylic dianhydride was used as the tetracarboxylic dianhydride, and unpurified 4.4 was used as the diamine.
A polyimide precursor was synthesized in the same manner as in Example 1 except that '-diaminodiphenylmethane was used. This precursor solution (resin concentration 12%) 125y (resin content 15y
), add 85y of scaly silver powder, knead with three rolls,
A conductive silver paste composition was made. Further, a semiconductor device was obtained in the same manner as in Example 1 using this paste composition. The results of the same analysis and evaluation as in Example 1 were as shown in the accompanying table.

上表から明らかなように、従来の導電性銀ペースト組成
物を用いてダイボンディングされた半導体装置(比較例
1〜3)は、いずれも高温での電気特性に劣る欠点があ
り、また素子の配線パターンが経時的に腐食しやすく、
この腐食は抽出水のアルカリ金属イオンおよびハロゲン
イオンが比較的少量にされたもの(比較例2)でもなお
認められている。
As is clear from the above table, semiconductor devices die-bonded using conventional conductive silver paste compositions (Comparative Examples 1 to 3) all have the disadvantage of poor electrical properties at high temperatures, and Wiring patterns tend to corrode over time,
This corrosion was still observed even when the extracted water contained relatively small amounts of alkali metal ions and halogen ions (Comparative Example 2).

これに対して、この発明の導電性銀ペースト組成物を用
いてダイボンディングされた半導体装置(実施例1〜4
)は、いずれも高温での電気特性にすぐれ、また経時的
な腐食がほとんど認められないことが判る。一方、銀粉
のバインダとしてポリイミド系樹脂の前駆体を使用する
場合でもこれに含まれるアルカリ金属イオンおよびハロ
ゲンイオンが設定値を越えてしまうと(比較例4,5)
、経時的な腐食を防止できず、高温バイアステストでも
多少低下の傾向が認められる。
On the other hand, semiconductor devices die-bonded using the conductive silver paste composition of the present invention (Examples 1 to 4)
) have excellent electrical properties at high temperatures, and almost no corrosion over time is observed. On the other hand, even when a polyimide resin precursor is used as a binder for silver powder, if the alkali metal ions and halogen ions contained therein exceed the set value (Comparative Examples 4 and 5)
, it is not possible to prevent corrosion over time, and there is a tendency for some deterioration even in high temperature bias tests.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の半導体装置の一例を示す要部断面図
、第2図は同平面図である。 1a・・・リードフレーム(基板)、2・半導体素子、
3・・ポリイミド系樹脂層。 特許出願人 日東電気工業株式会社
FIG. 1 is a sectional view of a main part showing an example of a semiconductor device of the present invention, and FIG. 2 is a plan view thereof. 1a... Lead frame (substrate), 2. Semiconductor element,
3. Polyimide resin layer. Patent applicant Nitto Electric Industry Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)  ポリイミド系樹脂の前駆体に有機溶剤ととも
に銀粉を混練してなるペースト状物であって、加熱硬化
(イミド化)ごプレッシャークツカー状態ないしこれに
近い状態下で水抽出されるハロゲンイオンおよびアルカ
リ金属イオン含量が共にi o o ppm以下とされ
た導電性銀ペースト組成物。
(1) A paste-like product made by kneading silver powder with a polyimide resin precursor together with an organic solvent, which contains halogen ions that are extracted with water under heat-curing (imidization) pressure-packing conditions or similar conditions. and a conductive silver paste composition in which the alkali metal ion content is both IO ppm or less.
(2)  ステムあるいはリードフレームからなる基板
と半導体素子との間に、銀粉を含有しかつプレッシャー
クツカー状態ないしこれに近い状態下で水抽出されるハ
ロゲンイオンおよびアルカリ金属イオンが共にi o 
o ppm以下とされたポリイミド系樹脂層を介在させ
、・この層により上記素子を上記基板に電気的に接着固
定した半導体装置。
(2) Between the substrate consisting of a stem or lead frame and the semiconductor element, both halogen ions and alkali metal ions that contain silver powder and are extracted with water under a pressure cooker state or similar conditions are io.
A semiconductor device in which a polyimide resin layer having a concentration of 0 ppm or less is interposed, and the above-mentioned element is electrically adhesively fixed to the above-mentioned substrate by this layer.
JP21085181A 1981-12-26 1981-12-26 Conductive silver paste composition and semiconductive device using the same Pending JPS58113250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21085181A JPS58113250A (en) 1981-12-26 1981-12-26 Conductive silver paste composition and semiconductive device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21085181A JPS58113250A (en) 1981-12-26 1981-12-26 Conductive silver paste composition and semiconductive device using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP58173673A Division JPS5976435A (en) 1983-09-19 1983-09-19 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS58113250A true JPS58113250A (en) 1983-07-06

Family

ID=16596150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21085181A Pending JPS58113250A (en) 1981-12-26 1981-12-26 Conductive silver paste composition and semiconductive device using the same

Country Status (1)

Country Link
JP (1) JPS58113250A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS594129A (en) * 1982-06-30 1984-01-10 Hitachi Chem Co Ltd Manufacture of semiconductor device
JPS60141772A (en) * 1983-12-29 1985-07-26 Hitachi Ltd Adhesive for bonding semiconductor elements
JPS6121172A (en) * 1984-07-09 1986-01-29 Toshiba Chem Corp Heat-resistant and electroconductive adhesive
JPS62195069A (en) * 1986-02-21 1987-08-27 Toshiba Chem Corp Paste for bonding semiconductor element
US6344412B1 (en) * 1999-06-10 2002-02-05 National Semiconductor Corporation Integrated ESD protection method and system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54143462A (en) * 1978-04-28 1979-11-08 Asahi Chem Ind Co Ltd Granule-containing polyamideimide composition
JPS54149759A (en) * 1978-05-16 1979-11-24 Asahi Chem Ind Co Ltd Particulate material-containing polyimide composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54143462A (en) * 1978-04-28 1979-11-08 Asahi Chem Ind Co Ltd Granule-containing polyamideimide composition
JPS54149759A (en) * 1978-05-16 1979-11-24 Asahi Chem Ind Co Ltd Particulate material-containing polyimide composition

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS594129A (en) * 1982-06-30 1984-01-10 Hitachi Chem Co Ltd Manufacture of semiconductor device
JPH023434B2 (en) * 1982-06-30 1990-01-23 Hitachi Chemical Co Ltd
JPS60141772A (en) * 1983-12-29 1985-07-26 Hitachi Ltd Adhesive for bonding semiconductor elements
JPS6121172A (en) * 1984-07-09 1986-01-29 Toshiba Chem Corp Heat-resistant and electroconductive adhesive
JPH0430430B2 (en) * 1984-07-09 1992-05-21
JPS62195069A (en) * 1986-02-21 1987-08-27 Toshiba Chem Corp Paste for bonding semiconductor element
US6344412B1 (en) * 1999-06-10 2002-02-05 National Semiconductor Corporation Integrated ESD protection method and system
US6534422B1 (en) 1999-06-10 2003-03-18 National Semiconductor Corporation Integrated ESD protection method and system

Similar Documents

Publication Publication Date Title
EP1553134B1 (en) Polyimide compositions having resistance to water sorption, and methods relating thereto
KR930002237B1 (en) Heat-resistant resin paste and ic using same paste
JP2697215B2 (en) Heat resistant resin paste and IC using the same
JP3055388B2 (en) Adhesive film
JPS58113250A (en) Conductive silver paste composition and semiconductive device using the same
JPH11292968A (en) Electronic part and its production
US5164816A (en) Integrated circuit device produced with a resin layer produced from a heat-resistant resin paste
JPH0551541A (en) Inorganic filler coated with polyimide resin, resin composition containing the filler, and semiconductor device sealed with the composition
JPH04222889A (en) Electrically conductive resin paste
JPH0977973A (en) Polyimide paste
JPS6183228A (en) Solvent-soluble polyimide
JPS59179650A (en) Heat-resistant, electrically conductive paste composition
JPS58112335A (en) Adhesive film for fixing semiconductor element
JP2021160364A (en) Metal-clad polymer film and electronic device
JPS5976435A (en) Semiconductor device
JPS60177659A (en) Manufacture of semiconductor device
JPS6071662A (en) Conductive silver paste composition
JPH0129381B2 (en)
JPS60170626A (en) Electrically conductive paste composition for electronic part
JPS5945355A (en) Electrically conductive silver paste composition
JPH04345682A (en) Adhesive for hermetic sealing
JPS5945377A (en) Electrically conductive silver paste composition
JPS59133225A (en) Heat-resistant coating
JPS6097646A (en) Semiconductor device
JPH02170857A (en) Polyimide film forming solution