JPS58111775A - Laser radar apparatus - Google Patents

Laser radar apparatus

Info

Publication number
JPS58111775A
JPS58111775A JP56212983A JP21298381A JPS58111775A JP S58111775 A JPS58111775 A JP S58111775A JP 56212983 A JP56212983 A JP 56212983A JP 21298381 A JP21298381 A JP 21298381A JP S58111775 A JPS58111775 A JP S58111775A
Authority
JP
Japan
Prior art keywords
light
pulse
detection
detector
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56212983A
Other languages
Japanese (ja)
Other versions
JPS6359471B2 (en
Inventor
Satoshi Wakabayashi
諭 若林
Toru Tajime
田治米 徹
Toshio Takei
竹居 敏夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP56212983A priority Critical patent/JPS58111775A/en
Publication of JPS58111775A publication Critical patent/JPS58111775A/en
Publication of JPS6359471B2 publication Critical patent/JPS6359471B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Lasers (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PURPOSE:To enable a heterodyne detection or homodyne detection with one pulse laser device by employing a laser beam comprising a short pulse part of high strength and a long pulse part of low strength. CONSTITUTION:A pulse laser device 1 generates a laser beam comprising a short pulse part of high strength and a long pulse part of low strength. This laser beam is divided into two parts with a beam splitter 2; one part thereof is transmitted as transmission light through a transmission optical system 3 while the other part thereof is supplied to a detector 6 as a local oscillation light via a high speed shutter 7 and a beam coupler 5. The transmission light reflected on a target is received by the receiving optical system 4 and the received light is fed to the beam coupler 5 while the local oscillation light continues thereby permitting a homodyne detection. Likewise, a heterodyne detection is possible. Thus, one pulse laser device is allowed to handle the heterodyne detection and the homodyne detection.

Description

【発明の詳細な説明】 この発明はパルスレーザを用いるレーザレーダ装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a laser radar device using a pulsed laser.

従来のこの種装置では短いパルス幅のレーザ光を射出し
目標からの反射光を検出器で直接検波することによって
、レーザ光の伝搬時間を測定し、これにより目標までの
距離を算出していた。ところでこの種装置において測距
範囲を伸ばすことは実用上重要であシ、その手段とじて
主にレーザ出力光強度を増す方法、検出器のNIP (
Noise Equivalent Power 、雑
音等価電力)を下げる方法がとられていた。しかし前者
の方法には、装置が大形化する。操作者等人体に危険を
及ぼす確率が高くなるという欠点があった。
Conventional devices of this type emit a laser beam with a short pulse width and directly detect the reflected light from the target with a detector, measuring the propagation time of the laser beam and calculating the distance to the target from this. . By the way, it is practically important to extend the distance measurement range in this type of device, and the methods for doing so are mainly methods of increasing the laser output light intensity and NIP (NIP) of the detector.
Methods have been used to lower the noise equivalent power (Noise Equivalent Power). However, the former method requires a larger device. This has the disadvantage that there is a high probability of causing danger to the human body of the operator and the like.

一方後者の方法にはヘテロダイン検波法やホモダイン検
波法があり特に赤外域においてNEPを大きく改善でき
るが、この方法では検出器に局部発振光として受信光以
外にレーザ光を照射する必要があシ装置として合計2台
のレーザ装置がいるという欠点があった。
On the other hand, the latter method includes the heterodyne detection method and the homodyne detection method, which can greatly improve NEP especially in the infrared region, but this method requires irradiation of the detector with laser light in addition to the received light as locally oscillated light. The disadvantage was that there were two laser devices in total.

との発明はこれらの欠点を改善するため1台のパルスレ
ーザ装置を用いてヘテロダイ、ン検波又はホモダイン検
波できるようにしたもので。
In order to improve these drawbacks, the invention of ``1'' enables heterodyne detection or homodyne detection using a single pulse laser device.

以下図面について詳細に説明する。The drawings will be explained in detail below.

第1図はこの発明の一実施例を示す図である。FIG. 1 is a diagram showing an embodiment of the present invention.

第1図において、パルスレーザ装置(])よりパルス光
を発生させビームスプリッタ(2)及び送信光学系(3
)を通して送信光として目標に向けて射出する。このよ
うにして照射された送信光は目標によって反射され受信
光学系(4)によって受信される。第1図では送信光学
系(31と受信光学系(4)を分離して示したが2両者
共有の光学系であっても良い。受信光はビーム結合器(
5)を経て検出器(6)に入射する。一方、パルスレー
ザ装置(1)より発生された前記パルス光の1部をビー
ムスプリッタ(21によって送信光と分離し、高速シャ
ッタ(7)及びビーム結合器(5)を通して局部発振光
として検出器(6)に入射させる。局部発振光が検出器
(61に入射している間に受信光も検出器(6)に入射
すれば受信光をホモダイン検波することができる。しか
し、測定精度を高くすることを目的にレーザ光のパルス
幅を短かぐするとレーザ光の伝搬時間の差から、測距距
離が長いと局部発振光と受信光の検出器入射タイミング
が太きくずれホモダイン検波できなくなる。そこでこれ
を防ぐため、以下に説明するようなパルス波形のレーザ
光を発生させる。゛ 第2図はこの発明に必要なレーザパルス波形の1例を示
す図である。図において縦軸は光強度、横軸は時間を表
わしている。図に示したパルスは、非常に高い光強度を
もつ急峻なパルスと、はぼ一定の低い強度をもつ長いパ
ルスが一つにガつkようなものであり2便宜上前者を短
パルス部、後者を長パルス部と呼ぶことにする。
In Fig. 1, pulsed light is generated from a pulsed laser device (]), and a beam splitter (2) and a transmission optical system (3) are used.
) is emitted toward the target as transmitted light. The transmitted light thus irradiated is reflected by the target and received by the receiving optical system (4). Although the transmitting optical system (31) and the receiving optical system (4) are shown separately in FIG. 1, they may be shared optical systems.The received light is transmitted through the beam combiner (
5) and enters the detector (6). On the other hand, a part of the pulsed light generated by the pulsed laser device (1) is separated from the transmitted light by a beam splitter (21), and passed through a high-speed shutter (7) and a beam combiner (5) as local oscillation light to the detector ( 6).If the received light is also incident on the detector (6) while the local oscillation light is incident on the detector (61), the received light can be homodyne detected.However, it is necessary to increase the measurement accuracy. If the pulse width of the laser beam is shortened for this purpose, due to the difference in the propagation time of the laser beam, if the measuring distance is long, the timing at which the locally oscillated light and the received light enter the detector will become distorted, making homodyne detection impossible. In order to prevent this, a laser beam with a pulse waveform as described below is generated. ゛Figure 2 is a diagram showing an example of the laser pulse waveform necessary for this invention. In the figure, the vertical axis represents the light intensity, and the horizontal axis represents the The axis represents time.The pulse shown in the figure is a combination of a steep pulse with very high light intensity and a long pulse with approximately constant low intensity. For convenience, the former will be referred to as a short pulse portion, and the latter will be referred to as a long pulse portion.

このようなパルスの発生法は周知であり、Qスイッチレ
ーザでは共振器のQ値を一度低くシタのちQ値を急激に
高くし短パルス部を発生させ。
The method of generating such a pulse is well known, and in a Q-switched laser, the Q value of the resonator is lowered once, then the Q value is suddenly increased to generate a short pulse portion.

その後もCW光発振持続する程度にQ値を高くしておく
ことで長パルス部を作ることができる。
A long pulse portion can be created by setting the Q value high enough to continue CW light oscillation even after that.

第2図に示したようなパルス光を用い、長パルス部の持
続時間を送信レーザ光の伝搬時間より長くすれば受信光
の短パルス部をホモダイン検波で高感度に検出できる上
、短パルス部のパルス幅を短かくすれば高い測距精度を
得ることができる。なお、ホモダイン検波のNFliP
を低くするため局部発振光強を適切に設定し1局部発振
光によるショット雑音が検出器の支配的雑音になるよう
にしておく。局部発振光の短パルス部の強度が強く検出
器(6)に損傷を与える恐れのある場合は高速シャッタ
(7)を用りて短パルス部を遮断すれば良い。
By using pulsed light as shown in Figure 2 and making the duration of the long pulse part longer than the propagation time of the transmitting laser beam, the short pulse part of the received light can be detected with high sensitivity by homodyne detection, and the short pulse part can be detected with high sensitivity. High ranging accuracy can be obtained by shortening the pulse width. In addition, NFliP of homodyne detection
In order to lower the local oscillation light intensity, the intensity of the local oscillation light is appropriately set so that the shot noise caused by one local oscillation light becomes the dominant noise of the detector. If the intensity of the short pulse portion of the locally oscillated light is so strong that there is a risk of damaging the detector (6), the short pulse portion may be blocked using a high speed shutter (7).

第1図ではホモダイン検波する場合について説明したが
、送信光又は局部発振光のいずれか一方を音響光学変調
素子等を用いて周波数シフトさせヘテロダイン検波して
も良い。
Although the case of homodyne detection has been described in FIG. 1, heterodyne detection may be performed by shifting the frequency of either the transmitted light or the locally oscillated light using an acousto-optic modulation element or the like.

以上のように、この発明に係るレーザレーダ装置では、
高強鼓の短パルス部と低強度の長パルス部からなる単一
のパルス光を発生させ、パルス光のパワーを分割して送
信光2局部発振光を得、長パルス部のパルス幅が送信光
の伝搬時間より長(なるようにして受信光の短パルス部
が検出器に入射するまで局部発振光を持続させるので、
1台のパルスレーザ装置を用いるだけで測距精度を低下
させずに受信光を高感度にヘテロダイン検波やホモダイ
ン検波できる利点がある。
As described above, in the laser radar device according to the present invention,
Generate a single pulsed light consisting of a high-power short pulse part and a low-intensity long pulse part, and divide the power of the pulsed light to obtain two locally oscillated beams, and the pulse width of the long pulse part is the transmitted light. Since the locally oscillated light is maintained until the short pulse part of the received light enters the detector,
There is an advantage that by using only one pulse laser device, the received light can be subjected to highly sensitive heterodyne detection or homodyne detection without reducing the distance measurement accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明によるレーザレーダ装置の。 実施例を示す図、第2図はこの発明に必要なし一ザパル
ス波形の1例を示す図である。図中(11はパルスレー
ザ装置、(2]はビームスプリッタ。 (3)は送信光学系、(4)は受信光学系、f5i1d
ビーム結合器、(6)は検出器、(7)は高速シャッタ
である。 代理人 葛 野 信 −
FIG. 1 shows a laser radar device according to the present invention. FIG. 2 is a diagram showing an example of a pulse waveform that is not necessary for the present invention. In the figure (11 is a pulse laser device, (2) is a beam splitter, (3) is a transmitting optical system, (4) is a receiving optical system, f5i1d
A beam combiner, (6) a detector, and (7) a high-speed shutter. Agent Shin Kuzuno −

Claims (1)

【特許請求の範囲】 急峻に立上シ、高い尖頭値を得たのち所定の時間、所定
の強度を維持するパルス状のレーザ光を発生する手段と
、前記パルス状のレーザ光を分割して送信光と局部発振
光を得る手段と。 前記送信光の物体による反射光を前記局部発振光と重ね
合わせ検出器に入射させる手段とをもつことを特徴とす
るレーザレーダ装置。
[Claims] Means for generating pulsed laser light that rises steeply and maintains a predetermined intensity for a predetermined period of time after obtaining a high peak value; means for obtaining transmitted light and local oscillation light. A laser radar device characterized by comprising means for superimposing the reflected light of the transmitted light by an object with the locally oscillated light and inputting it into a detector.
JP56212983A 1981-12-25 1981-12-25 Laser radar apparatus Granted JPS58111775A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56212983A JPS58111775A (en) 1981-12-25 1981-12-25 Laser radar apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56212983A JPS58111775A (en) 1981-12-25 1981-12-25 Laser radar apparatus

Publications (2)

Publication Number Publication Date
JPS58111775A true JPS58111775A (en) 1983-07-02
JPS6359471B2 JPS6359471B2 (en) 1988-11-18

Family

ID=16631519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56212983A Granted JPS58111775A (en) 1981-12-25 1981-12-25 Laser radar apparatus

Country Status (1)

Country Link
JP (1) JPS58111775A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0432887A2 (en) * 1989-12-12 1991-06-19 Litton Systems, Inc. Pulsed coherent Doppler laser radar
CN111886513A (en) * 2018-03-29 2020-11-03 三菱电机株式会社 Laser radar device
CN111886513B (en) * 2018-03-29 2024-06-04 三菱电机株式会社 Laser radar device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0432887A2 (en) * 1989-12-12 1991-06-19 Litton Systems, Inc. Pulsed coherent Doppler laser radar
EP0432887A3 (en) * 1989-12-12 1992-09-09 Litton Systems, Inc. Pulsed coherent doppler laser radar
CN111886513A (en) * 2018-03-29 2020-11-03 三菱电机株式会社 Laser radar device
EP3754364A4 (en) * 2018-03-29 2021-03-10 Mitsubishi Electric Corporation Laser radar device
US11933903B2 (en) 2018-03-29 2024-03-19 Mitsubishi Electric Corporation Laser radar device
CN111886513B (en) * 2018-03-29 2024-06-04 三菱电机株式会社 Laser radar device

Also Published As

Publication number Publication date
JPS6359471B2 (en) 1988-11-18

Similar Documents

Publication Publication Date Title
JPH0346589A (en) Distance measuring device
JPH08503546A (en) Look-ahead wind shear detector with filtered Rayleigh or aerosol scattered light
US6781677B1 (en) Laser range finding apparatus
US6130754A (en) Eyesafe transmission of hazardous laser beams
JPH03252586A (en) Laser radar device
JP3225682B2 (en) Distance measuring device
JPH0829533A (en) Laser radar
CA3088581C (en) A device and a method for distance measurement for a laser processing system, and a laser processing system
JPH09178853A (en) Imaging laser range finder
JPS58111775A (en) Laser radar apparatus
US7154591B2 (en) Laser range finding apparatus
JPH0469546A (en) Marine laser observation device using multitrace simultaneous light measurement system
JPS629284A (en) Laser sounding device
JP2846150B2 (en) Laser welding monitoring method and apparatus
KR102177933B1 (en) Distance measurement apparatus and method using visible light laser and near-infrared pulse laser
JPH05264719A (en) Laser rader apparatus
CA1087285A (en) Laser rangefinders
JP2001174557A (en) All-weather optical range finder and range finding method
JP2623782B2 (en) Optical fiber temperature distribution measurement method
JPH04307387A (en) Range finder device
JPS613695A (en) Method and equipment of laser beam machining
JPS6275363A (en) Laser distance measuring apparatus
JPS56122689A (en) Laser working device
JPH0455788A (en) Laser ranging device
JPH0399291A (en) Apparatus for measuring distance