JPS58111138A - Focusing detecting device - Google Patents

Focusing detecting device

Info

Publication number
JPS58111138A
JPS58111138A JP20827681A JP20827681A JPS58111138A JP S58111138 A JPS58111138 A JP S58111138A JP 20827681 A JP20827681 A JP 20827681A JP 20827681 A JP20827681 A JP 20827681A JP S58111138 A JPS58111138 A JP S58111138A
Authority
JP
Japan
Prior art keywords
light
incident
reflected
photodetector
objective lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20827681A
Other languages
Japanese (ja)
Inventor
Masatoshi Ida
井田 正利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp, Olympus Optical Co Ltd filed Critical Olympus Corp
Priority to JP20827681A priority Critical patent/JPS58111138A/en
Publication of JPS58111138A publication Critical patent/JPS58111138A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0908Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for focusing only

Abstract

PURPOSE:To simplify the structure of a titled device and to reduce the size and weight by using sensitive characteristics changed in accordance with the incident angle of light to an optical detector inclined to the optical axis of light reflected by an object to be irradiated. CONSTITUTION:When a disc 6 is located on the focusing position of an objective lens 5, both of light flux made insident to respective photodetecting areas 14A, 14B of a photodetector 13 are in parallel with the optical axis O, respectively and their incident angles are equal, so that the sensitivity of respective photodetecting areas 14A, 14B are made equal. If the disc 6 is shifted from the focusing position in the direction of (a), the light flux reflected by a polarizing prism 3 is made to the light flux having inclination components shown by max. a1-a2 to the photodetector 13, so that the incident angle of the incident light a1 to the photodetecting area 14A is reduced smaller than theta, and the incident angle of the incident light a2 penetrated into the photodetecting area 14B is increased larger than theta. When the disc 6 is shifted from the focusing position in the direction of (b), the incident angle of the incident light b2 to the photodetecting area 14B is reduced smaller than theta.

Description

【発明の詳細な説明】 本発明は、例えば記轍媒体上に螺施状あるいは同心円状
に記録された情報トラックに、対物レンズにより読み取
り光スポットを焦束して情報を読み取る装置において、
対物レンズの記録媒体に対する合焦状態を検出する合焦
検出装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an apparatus for reading information by focusing a reading light spot using an objective lens onto an information track recorded in a spiral or concentric pattern on a recording medium, for example.
The present invention relates to a focus detection device that detects the focus state of an objective lens on a recording medium.

上述した情報読み取り装置は従来より既知であり、情報
トラックを有する記録媒体には15例えばビデオディス
クと呼ばれている本のがある。このビデオディスクには
情報トラックに符号化されたビデオ信号や音声信号が、
光学的透過特性、反射特性、位相特性などの光学的情報
として記録されている。ビデオディスクに記録された情
報は、これを高速で回転させなからレーザ光源から放射
されるレーザ光な対物レンズを経て情報トラック上に集
束させ、情報トラックによって2mされた透過光または
反射光を検出して読み取っている。このような記録媒体
の特長の一つは、情報の記録密度が非常に高いことであ
り、そのため各情報トラックの幅が極めて狭いと共に、
順次の情報トラック間隔も非常に狭くなっている。この
ように幅もピッチも狭い情報トラックから元の情報を正
確に挽堆るためには、対物レンズをビデオディスク面に
対して常に合焦状態となるようにして、ディスク山上で
の光スポットの径を常に最小とする必要がある。このた
めかかる光学的読み取り装!においては、対重レンズの
ディスク面に対する焦点はずれを検出し、この焦点はず
れ信号に基いて対物レンズをその光軸方向に変位させる
フォー力ッシング制御が行なわれている。
The above-mentioned information reading device is known from the prior art, and recording media having information tracks include, for example, books called video discs. This video disc contains video and audio signals encoded in information tracks.
It is recorded as optical information such as optical transmission characteristics, reflection characteristics, and phase characteristics. The information recorded on the video disc is rotated at high speed, and the laser light emitted from a laser light source is focused onto an information track through an objective lens, and the transmitted or reflected light transmitted by the information track is detected. and read it. One of the features of such recording media is that the information recording density is extremely high, so the width of each information track is extremely narrow, and the width of each information track is extremely narrow.
The spacing between successive information tracks is also very narrow. In order to accurately recover the original information from information tracks with such narrow width and pitch, the objective lens must be kept in focus on the video disk surface, and the light spot on the top of the disk must be focused. The diameter must always be minimized. This requires an optical reading device! In this system, a force shifting control is performed in which the defocus of the objective lens with respect to the disk surface is detected, and the objective lens is displaced in the direction of its optical axis based on this defocus signal.

g/図は本願人が先に提案した従来の光学的読み散り装
置等における焦点検出装置の一例を示す線図である。レ
ーザ光源lから放射さA=を光(紙面内に直線偏光して
いる)はコリメートレンズコによって平行光とされ、偏
光膜を有する偏光プリズム3.1/4波長板参および対
物レンズ!を経て情報トラックを含むディスクを上に集
束される。
Fig. g is a diagram showing an example of a focus detection device in a conventional optical reading scattering device etc. proposed earlier by the applicant. The light A= emitted from the laser light source 1 (linearly polarized in the plane of the paper) is made into parallel light by a collimating lens, and a polarizing prism with a polarizing film 3. A 1/4 wavelength plate and an objective lens! through which the information track is focused onto the disc containing the information track.

この光束は凹凸のビット形状を持つ情報トラックC記鎌
面)7により反射され、対物レンズ!訃よび1/4波長
板参を経て偏光プリズムJに入射する。
This light beam is reflected by the information track C (sickle surface) 7, which has an uneven bit shape, and is reflected by the objective lens! The light enters the polarizing prism J through the light beam and the 1/4 wavelength plate.

偏光プリズム3に入射する反射光は14波長板ダ−・・
の作用により紙面に対し垂直方向に偏光されてhるから
、この光は偏光プリズムJで反射される。偏光プリズA
3で反射した平行光束を検出ブリ・ズムtに入射し、そ
の反射面デにより反射される光束を検出器10で受光す
る0反射面9は、合焦状態での入射光線(平行光束)に
対してほぼ臨界角となるように設定する。このようにす
れば、合焦状態では偏光プリズムJで反射された全光線
は反射面デで全反射さn(実際には反射面の状態が完全
ではないので図示n方向に幾分の光が透過する)、ディ
スク6が合焦状態からa方向にずれると偏光プリズムJ
で反射され九光束は反射面9に対して最大ai1〜a1
2で示す傾き成分を持つ光線束となる。tたディスク6
が合焦状態からb方向にずれると、反射面9の入射光線
はbil” bilで示す傾き成分を持つ光線束となる
。すなわち、ディスク4が合焦状態からずれると、 反
射面tへの入射光線は光軸上の中心光線(一点鎖線)を
除いて臨界角の前後で連続的に変化する。したがって、
ディスク≦がaおよびb方向に変位して合焦状態からず
れると、反射面tでの反射強度が臨界角近傍では僅かな
入射角の変化で急激に変化し、反射面tに入射する光束
の中心光線を含む紙面に対し垂直な面を境として反射強
度に明暗を生じ、焦点の移動方向に応じてその明暗の状
態がそれぞれ逆になる。これに対し、合焦状態では、一
様に全反射されるから、このような明暗は現われな−、
光検出器10は、このような反射面デからの反射光の光
量分布の変化を検出する本ので、第1図中に平面図なも
示すように、中心光線(光軸)を塊に二分割した二つの
受光領域lOム、lOBをもって構成されている。
The reflected light incident on the polarizing prism 3 is passed through a 14-wavelength plate...
Because the light is polarized in a direction perpendicular to the plane of the paper due to the action of h, this light is reflected by the polarizing prism J. Polarized priz A
The parallel light beam reflected by the reflective surface 9 enters the detection beam t, and the light beam reflected by the reflective surface 9 is received by the detector 10.The reflective surface 9 detects the incident light beam (parallel light beam) in the focused state. The angle is set so that the angle is approximately the critical angle. In this way, in the focused state, all the rays reflected by the polarizing prism J will be totally reflected by the reflecting surface D (actually, since the condition of the reflecting surface is not perfect, some light will be reflected in the direction n shown in the figure). ), when the disc 6 deviates from the focused state in the direction a, the polarizing prism J
The nine luminous fluxes reflected by the reflective surface 9 have a maximum of ai1 to a1
This results in a beam of light having an inclination component shown by 2. t disk 6
When the disc 4 deviates from the focused state in the direction b, the incident light beam on the reflective surface 9 becomes a bundle of rays with an inclination component shown by bil'' The light rays change continuously before and after the critical angle, except for the central ray on the optical axis (dotted chain line).Therefore,
When the disc ≦ is displaced in the a and b directions and is out of focus, the reflection intensity at the reflective surface t changes rapidly with a slight change in the angle of incidence near the critical angle, and the light flux incident on the reflective surface t changes rapidly. There is a brightness and darkness in the reflection intensity along the plane perpendicular to the plane of the paper containing the central ray, and the brightness and darkness are reversed depending on the direction of movement of the focal point. On the other hand, in the focused state, the light is totally reflected uniformly, so no such brightness or darkness appears.
The photodetector 10 detects changes in the light intensity distribution of the reflected light from such a reflecting surface, so it divides the central ray (optical axis) into blocks, as shown in the plan view in FIG. It is composed of two divided light receiving areas lOm and lOB.

いま、ディスク6がa方向に変位したときは、検出プリ
ズムlの反射面9に入射する光のうち中心光線より図に
お−て下側の光束は、一番外側の入射光II ailを
筆頭としてすべての入射光線の入射角は臨界角よりも小
さくなる。したがって、この部分では透過光が存在し、
一番外側の透過光線”tlからntでを含む光線束が透
過する。この透過した分だけ、一番外側の反射光1Ia
r工から中心光aまでな含む反射光線束の強度は弱めら
れる。
Now, when the disk 6 is displaced in the direction a, among the lights that are incident on the reflective surface 9 of the detection prism l, the light flux below the center ray in the figure is led by the outermost incident light II ail. As, the angle of incidence of all incident rays is smaller than the critical angle. Therefore, there is transmitted light in this part,
A bundle of light rays including the outermost transmitted light ray "tl to nt" is transmitted.The outermost reflected light 1Ia is equal to this transmitted amount.
The intensity of the reflected ray bundle including from the beam r to the central beam a is weakened.

一方、検出プリズムlの反射面デに入射する光のうち、
中心光線より図において上側の光束は、一番外側の入射
光線ailを籠頭としてすべての入射光線の入射角は臨
界角よりも大きくなる。したがって、この部分では透過
光が存在せず、入射した全ての光線が、一番外側の反射
光Marsから中心光4Iまでを含む光束に含まれて反
射する。シ九がってこの場合には、光検出器/#上での
光量分布は、受光領域10ムが暗くなり、受光領域〆0
Bは明るいまま変化しない。
On the other hand, among the light incident on the reflective surface D of the detection prism L,
For the luminous flux above the central ray in the figure, the incident angles of all the incident rays are larger than the critical angle with the outermost incident ray ail as the basket head. Therefore, there is no transmitted light in this part, and all the incident light rays are reflected as being included in the light flux including the outermost reflected light Mars to the central light 4I. Therefore, in this case, the light intensity distribution on the photodetector /# is such that the light receiving area 10mm becomes dark and the light receiving area 〆0mm becomes dark.
B remains bright and does not change.

これに対し、ディスク4がb方向に変位したときは、反
射面!への入射光線の傾きの関係が上述したa方向の場
合と逆になり、したがって光検出器10の領域10ムe
lOHの明暗の関係が逆になり、受光領域lσムは明る
い11変化しないが受光領域10 Bは暗くなる。この
場合の反射面tにおける反射光および透過光をそれぞれ
符号brl a t)rBおよびbtRで示す。
On the other hand, when the disk 4 is displaced in the b direction, the reflective surface! The relationship between the inclinations of the incident light beams on the photodetector 10 is opposite to that in the a direction described above, and therefore the area 10 of the photodetector 10 is
The relationship between the brightness and darkness of lOH is reversed, and the light-receiving area lσm remains bright (11), but the light-receiving area 10B becomes dark. In this case, the reflected light and the transmitted light at the reflective surface t are indicated by the symbols brl a t) rB and btR, respectively.

なお、合焦状態では光検出器10の受光領域IOkat
o Bへの入射光量はそれぞれ等しくなる。
Note that in the focused state, the light receiving area IOkat of the photodetector 10
o The amounts of light incident on B are equal.

したがって、各受光領域10ム、10Bの出力の差を差
動増幅器llで検出することによ秒、その量および極性
からずれの量および方向を表わす焦点誤差信号を得るこ
とができ、この信号に基いて対物レンズSを光軸方向に
移動制御するフオーカツシング制御を行なうことができ
るとともに、受光領域10ム、10Bの出力の和を加算
器12で検出6することによりディスク1に記鎌された
情報信号を検出することができる。しかも合焦状態では
反射面9での透過成分が殆んどないから、光量の損失が
極めて少ないとともに、合焦から外れた場合には、中心
光線を境にいずれか一方の側の光束が全反射され、他方
の側の光束の反射強度が極端に減少するから受光領域1
0ム、/DBにおける光量差が著しくなる。したがって
、十分正確に焦点検出を行なうことができる。
Therefore, by detecting the difference between the outputs of the light receiving areas 10M and 10B using the differential amplifier II, a focus error signal representing the amount and direction of the shift can be obtained from the amount and polarity of the difference, and this signal Based on this, focusing control can be performed to control the movement of the objective lens S in the optical axis direction, and the sum of the outputs of the light receiving areas 10 and 10B is detected by an adder 12 and recorded on the disk 1. information signals can be detected. Moreover, in the focused state, there is almost no transmitted component on the reflective surface 9, so the loss of light quantity is extremely small, and when the focus is out of focus, the light beam on either side of the center ray is completely absorbed. light receiving area 1 because the reflected intensity of the light beam on the other side is extremely reduced.
The difference in light amount at 0m and /DB becomes significant. Therefore, focus detection can be performed with sufficient accuracy.

第1図に示し食倒では反射面tでの反射光を二分割した
受光領域10ム、10Bを有する光検出器10で受光す
るようにしているが、反射面9で屈折される透過光をコ
個の光検出器で受光したり、反射光と透過光rtJ個の
光検出器で受光することによって4Jl1点誤差信号を
得ることができる。
In the case shown in FIG. A 4Jl one-point error signal can be obtained by receiving the light with J photodetectors or by receiving the reflected light and transmitted light with rtJ photodetectors.

しかしながら、上述の如き構成の焦点検出装置の難点は
、臨界角検出プリズムlを用いるので、光学ヘッドが大
形化し、重量4重くなることである。tた、臨界角検出
プリズムlの反射面9を臨界角に設定しなければならな
い関係上、その臨界角検出プリズムの光学的位置の設定
やその検出プリズムにおける反射面の角度合わせ等が容
易でないことである。
However, a drawback of the focus detection device having the above-mentioned configuration is that since the critical angle detection prism 1 is used, the optical head becomes larger and weighs 4 times more. Furthermore, since the reflective surface 9 of the critical angle detection prism l must be set at a critical angle, it is not easy to set the optical position of the critical angle detection prism or adjust the angle of the reflective surface in the detection prism. It is.

本発明の目的は、上述の如き従来例における難点を解決
した構成簡易な合焦検出装置を提供しようとする4ので
ある。
The fourth object of the present invention is to provide a focus detection device with a simple configuration that solves the problems in the conventional example as described above.

本発明の合焦検出装置は、光源と、その光源からの光束
奢集束し被照射物体に微小スポット光として照射する!
物しンズと、当該対物レンズを介して得られた前記微小
スポット光の被照射物体による反射光束を前記光源とは
異なる方向へ導く手段と、当該手段によって前記光源と
は異なる方向に導かれた前記反射光束を受光するように
その反射光束の光軸に対し傾斜して設けられ、かつその
光軸に交わる方向を境界にして少なくとも1分割された
光検出器とを具え、その光検出器の指向感度特性に基づ
いて各受光領域から得られる前記反射光束の入射角に対
応しえそれぞれの出力信号の差を前記対物レンズの前記
被照射物体に対する焦点−差信号とするように構成し九
ことを特徴とするものである。
The focus detection device of the present invention includes a light source, and the light beam from the light source is focused and irradiated onto the irradiated object as a minute spot light!
an object lens, a means for guiding the reflected light flux of the minute spot light obtained through the objective lens by the irradiated object in a direction different from the light source; a photodetector that is provided at an angle with respect to the optical axis of the reflected light flux so as to receive the reflected light flux, and is divided into at least one segment with a direction intersecting the optical axis as a boundary; It is configured to correspond to the incident angle of the reflected light beam obtained from each light receiving area based on directional sensitivity characteristics, and to use the difference between the respective output signals as a focus-difference signal of the objective lens with respect to the irradiated object. It is characterized by:

以下図面を参照して本発明の詳細な説明する。The present invention will be described in detail below with reference to the drawings.

第2図は、本発明の合焦検出装置の一例の要部の構成を
示す線図であって、第1図に示した従来のものと同一部
分は同一符号をもって示しである。
FIG. 2 is a diagram showing the configuration of essential parts of an example of the focus detection device of the present invention, and the same parts as those of the conventional device shown in FIG. 1 are designated by the same reference numerals.

すなわち、lは光源例えばレーザ光源、コはコリメート
レンズ、3は偏光膜を有する偏光プリズム、蓼は1/4
波長板、Sは対物レンズ、4は被照射物体例えばビデオ
ディスクである。なお、前記偏光プリズムJは、対物レ
ンズ!により捕捉されたディスク≦からの反射光束をレ
ーザ光源lとは異なる方向へ導く手段に相当するgh 
t 7t /Jは、偏向プリズムJによってレーサ光源
の方向とは異なる方向に導かれえディスク4からの反射
光束を受光するように、その光軸Oに対し角f0の傾斜
なもたせて設けられ、かつその光軸0に交わる方向・(
紙面に垂直な方向)を境界にして例えば光軸0に対し対
称に1分割され食費光領域/11ムおよびl#Bとから
なる光検出器である。
That is, l is a light source such as a laser light source, c is a collimating lens, 3 is a polarizing prism having a polarizing film, and 1/4 is a polarizing prism.
A wave plate, S is an objective lens, and 4 is an object to be irradiated, for example, a video disk. Note that the polarizing prism J is an objective lens! gh corresponds to a means for guiding the reflected light flux from the disk ≦ captured by in a direction different from the laser light source l.
t 7t /J is provided so as to be inclined at an angle f0 with respect to the optical axis O so as to receive the reflected light beam from the disk 4 which is guided in a direction different from the direction of the laser light source by the deflection prism J, And the direction intersecting the optical axis 0 (
The photodetector is divided into one area symmetrically with respect to, for example, the optical axis 0, with a boundary (direction perpendicular to the plane of the paper) as a boundary, and consists of an optical area /11 and l#B.

上述の構成において、レーザ光源lから放射さA*光(
紙面内に直線優先している亀のとする。)は、コリメー
トレンズコによって平行光とされ、偏向膜を有する偏光
プリズムJおよび凶波長板参を経て、対物レンズ!によ
り微小なスポット光に集束され、情報トラックを有する
ディスクを上に投射される。この光束は、凹凸のビット
形状を持つ情報トラック(記碌面)7で反射し、褐変対
物レンズ!およびl/4波長板参を経て偏光プリズムJ
に入射する。この偏光プリズムJに入射するディスク≦
からの反射光束は% 1/a波長板の作用により紙面に
対し垂直方向に偏光されているので、偏光プリズムJの
偏光膜によって反射し、前記し−f光源とは真なる方向
に導かれ、この反射光束を受光するように設けた光検出
器/3に入射する。
In the above configuration, A* light (
Let's assume a turtle that prioritizes straight lines on the page. ) is converted into parallel light by a collimating lens, passes through a polarizing prism J having a polarizing film and a wavelength plate, and then passes through an objective lens! The beam is focused into a tiny spot of light and projected onto a disk containing information tracks. This light flux is reflected by the information track (recording surface) 7, which has an uneven bit shape, causing browning of the objective lens! and polarizing prism J via l/4 wavelength plate reference.
incident on . Disc incident on this polarizing prism J ≦
The reflected light flux from the %1/a wavelength plate is polarized in the direction perpendicular to the plane of the paper, so it is reflected by the polarizing film of the polarizing prism J and guided in the true direction of the -f light source, This reflected light beam enters a photodetector /3 provided to receive the light.

光検出器/Jは、第一図中に平面図なも示したように、
光−〇に対して対称に少なくとも1つの受光領域l−ム
シよびl−Bにコ分割されており、さきに説明したよう
に反射光束の光軸0に対し角度0だけ傾斜させて配置し
である。しかしで、その光検出@/Jを構成する個々の
受光領域l#ムおよび4 Bは、例えばホト・ダイオー
ドによって構成されており、各独立に動作するようにな
っている。
As shown in the plan view in Figure 1, the photodetector/J is
It is symmetrically divided into at least one light-receiving area l-mushi and l-B with respect to light-〇, and as explained earlier, it is arranged at an angle of 0 with respect to the optical axis 0 of the reflected light beam. be. However, the individual light-receiving regions 1# and 4B constituting the photodetector @/J are composed of, for example, photodiodes, and are designed to operate independently.

の指向特性に基づき光の入射角によって感度が変化する
。その指向特性は、ノ(ツケージの形態によって異なる
が、パッケージ表面がフラットガラスおよびレンズ中ヤ
ンの4のについての指向特性を第3図に例示する。従っ
て前詠漬ように配置した光検出器13の各受光領域l#
ム、/参Bは、入射光の入射角に応じて各独立に感度が
第3図に示した指向特性に従って変化することとなる。
Sensitivity changes depending on the angle of incidence of light based on the directional characteristics of the sensor. Although the directional characteristics differ depending on the form of the cage, the directional characteristics for a case where the package surface is a flat glass and a lens with a flat surface are shown in FIG. Each light receiving area l#
The sensitivities of M and B vary independently according to the directional characteristics shown in FIG. 3 depending on the angle of incidence of the incident light.

第2図において、ディスク≦が対物レンズ!)合焦位置
にあるときは、光検出器IIの各受光領域陣ムおよびl
参Bに入射する光束は、光軸0に対し共に平行となり入
射角が等しいので各受光領域l#ム、/#Bの感度は等
しくなる。いま、ディスク6が合焦位置からa方向にず
れると偏光プリズム3で反射され九光束は、光検出器1
3に対して最大al −alで示す傾き成分を持つ光線
束となって、受光領域l#ムへの入射光a1の入射角は
0より本小さくなり、反対に受光領域/l Bに入射す
る入射光a20入射角は−よりも大きくなる。tたディ
スク≦が合焦状態からb方向にずれると、光検出器13
への入射光線はb1〜b2で示す傾き成分を持つ光線束
となって、受光領域l−ムへの入射光b1の入射角が−
よりも大きくなり、受光領域te Bへの入射光blの
入射角は0よりも小さくなる。すなわち、ディスク6に
対し対物レンズSが合焦状態のときは、各受光領域に入
射する入射光の入射角は−であるのに対し、ディスク1
が合焦状態からずれると、各受光領域への入射光は光軸
0上の中心光線を除いて、焦点のずれ方向に応じ合焦時
の入射角0を中心に入射角が連続的に変化する。したが
って、光検出器/Jの各受光領域l#ム、/$Bの感度
も、それぞれに入射する入射光−の入射^に応じて、第
3図に示し九指向特性にしたがって変化する仁ととなり
、各受光領域4ム#l参Bの感度とディスク6のずれ量
aおよびbの関係は、第4図に示すようになる。すなわ
ち、ディスク4がa方向へずれると、受光領域/lムの
感度は、他方の受光領域4Bの感1工りも大きくなり、
ディスク4がb方向へずれるとそれとは逆の特性を示す
、iた合焦状態ではさきに記したように各受光領域l#
ム、/#Bの感度は等しくなる。よって第一図に示した
よりに光検出器13の各受光領域/#A、l#Bの各出
力を差動増幅1)//に導いて、それら両市力の差をと
り、これを焦点誤差信号として取り出せば、この焦点誤
差信号は、第5図に示したようにa方向にディスク≦が
ずれたときと、b方向にディスク4がずれたときとでは
、差動増幅器nの出力すなわち、前記焦点誤差信号の極
性が反転することとなるので、この極性により焦点のぼ
け方向が、またその焦点誤差信号の振幅によりディスク
基の焦点からのずれ量がそれぞれ検出でき、合焦してい
るときはその焦点誤差信号が零となるから容易に合焦状
態な検出することができる。
In Figure 2, disk ≦ is the objective lens! ) When in the in-focus position, each light-receiving area array and l of photodetector II
Since the light beams incident on the reference B are both parallel to the optical axis 0 and have the same angle of incidence, the sensitivities of the respective light receiving areas l#m and /#B are equal. Now, when the disk 6 deviates from the in-focus position in the direction a, the nine beams reflected by the polarizing prism 3 are transmitted to the photodetector 1.
3, the incident light a1 becomes a bundle of rays with a maximum slope component represented by al -al, and the angle of incidence of the incident light a1 on the light receiving area l#m becomes smaller than 0 by an order of magnitude, and conversely, it enters the light receiving area /lB. The incident angle of the incident light a20 becomes larger than -. When the disc ≦ deviates from the in-focus state in the b direction, the photodetector 13
The incident light beam becomes a bundle of light beams having tilt components shown by b1 to b2, and the incident angle of the incident light b1 to the light-receiving area l-m is -
, and the angle of incidence of the incident light bl on the light receiving area te B becomes smaller than zero. That is, when the objective lens S is in focus with respect to the disk 6, the incident angle of the incident light entering each light receiving area is -;
deviates from the focused state, the incident angle of the incident light to each light-receiving area, except for the central ray on the optical axis 0, changes continuously around the incident angle 0 at the time of focus, depending on the direction of the focus shift. do. Therefore, the sensitivity of each light-receiving area l#m, /$B of the photodetector /J also changes according to the nine directivity characteristics shown in Fig. 3, depending on the incidence of the incident light incident on each. The relationship between the sensitivity of each light-receiving area #1 and B and the displacement amounts a and b of the disk 6 is as shown in FIG. That is, when the disk 4 shifts in the direction a, the sensitivity of the light receiving area/lm increases as well as the sensitivity of the other light receiving area 4B.
When the disk 4 shifts in the b direction, the opposite characteristics occur.In the in-focus state, each light-receiving area l#
The sensitivities of #B and /#B become equal. Therefore, as shown in Figure 1, each output of each light receiving area /#A, l#B of the photodetector 13 is guided to the differential amplifier 1) //, the difference between these two forces is taken, and this is calculated as the focus error. If extracted as a signal, this focus error signal will be the output of the differential amplifier n, that is, when the disk 4 is displaced in the a direction as shown in FIG. 5, and when the disk 4 is displaced in the b direction. Since the polarity of the focus error signal is reversed, the direction of defocus can be detected based on this polarity, and the amount of deviation of the disc base from the focus can be detected based on the amplitude of the focus error signal. Since the focus error signal becomes zero, the in-focus state can be easily detected.

なお上述の実施例では、第1図に示したように光検出器
/Jを構成する各受光領域l#ム、/#Bのそれぞれの
出力を加算器/2に導いて加算して得た出力信号を、デ
ィスクtから再生した情報信号としている。
In the above-mentioned embodiment, as shown in FIG. The output signal is an information signal reproduced from the disk t.

以上説明したように本発明によれば、被照射物体からの
反射光の光軸に対し傾斜して設けた光検出器の光入射角
に応じて変化する感度特性を利用して、合焦状態に応じ
て変化する前記反射光の当該光検出器への入射角に対応
しえ出力を直接得るようにし九構成であるから、第1図
に示した如き反射面を臨界角に設定した検出プリズムが
省略できるので、構造の簡単化、小形軽量化し得るばか
りではなく、ま九光検出器の反射光束の光軸に対する傾
斜の角度本、それ程厳密に設定する必要がなくその角度
の許容範囲が広いので、製作および光学的調節がともに
容易である等、本発明の奏する効果は極めて大きい。
As explained above, according to the present invention, the in-focus state is determined by utilizing the sensitivity characteristic that changes depending on the light incidence angle of the photodetector provided at an angle with respect to the optical axis of the reflected light from the irradiated object. The detection prism has a reflecting surface set at a critical angle as shown in FIG. can be omitted, which not only simplifies the structure, makes it smaller and lighter, but also allows the angle of inclination of the reflected light beam of the photodetector with respect to the optical axis to be set so precisely, and the permissible range of the angle is wide. Therefore, the effects of the present invention are extremely large, such as ease of manufacturing and easy optical adjustment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本−人が先に開発し光焦点検出装暫の構成の
一例の要部を示す線図、第2図は本発明に係る合焦検出
装置の一例の構成の要部を示す1図、第3図は光検出器
の指向特性の一例を示す曲#図、第参図は2分割され九
光検出器の各受光−城の装置とディスタのずれ量の関係
を示す曲線図、第3図は本発明によって得られる無点ず
れ量に対する焦点誤差信号の関係を示す曲線図である。 !・・・レーザ光源、コ・・・コリメートレンズ、3・
・・偏光プリズム、ダ・・・1/4波長板、!・・・対
物レンズ、t・・・ビデオディスク、7・・・情報トラ
ック、ll・・・差1増幅器、12・・・加算器、 /
3・・・光検出器、1llAll#B・・・光検出器の
受光領域。 第1図 第2図 第8図 入射*(71) 第4図 第5図
FIG. 1 is a diagram showing the main parts of an example of the configuration of an optical focus detection device developed by the author first, and FIG. 2 shows the main parts of the structure of an example of the focus detection device according to the present invention. Figures 1 and 3 are curves showing an example of the directional characteristics of a photodetector, and Figure 3 is a curve showing the relationship between each light reception of the nine photodetectors and the amount of deviation between the Shiro device and the distal. 3 are curve diagrams showing the relationship between the focus error signal and the pointless shift amount obtained by the present invention. ! ...laser light source, collimating lens, 3.
...polarizing prism, da...1/4 wavelength plate,! ...Objective lens, t...Video disk, 7...Information track, ll...Difference 1 amplifier, 12...Adder, /
3... Photodetector, 1llAll#B... Light receiving area of the photodetector. Figure 1 Figure 2 Figure 8 Incidence * (71) Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] L 光源と、その光源からの光束を集束し被照射物体に
微小スポット光として照射する対物レンズと、当該対物
レンズを介して得られた前記微小スポット光の被照射物
体による反射光束を前記光源とは異なる方向へ導く手段
と、当該手段によって前記光源とは異なる方向に導かれ
た前記反射光束を受光するようにその反射光束の光軸に
対し傾斜して設けられ、かつその光軸に交わる方向を境
界にして少なくともコ分割された光検出器とを具え、そ
の光検出器の指向部f%性に基づいて各受光領域から得
られる前記反射光束の入射角に対応したそれぞれの出力
信号の差を前記対物レンズの前記?lll111射物体
に対する焦点誤差信号とするように構成したことを特徴
とする合焦検出装置。
L: a light source, an objective lens that focuses a light beam from the light source and irradiates it onto an irradiated object as a minute spot light, and a light beam reflected by the irradiated object of the minute spot light obtained through the objective lens. means for guiding in different directions, and a direction that is inclined with respect to the optical axis of the reflected light beam so as to receive the reflected light beam guided by the means in a direction different from that of the light source, and a direction that intersects with the optical axis. and a photodetector divided into at least co-divided parts with the boundary being , and a difference between respective output signals corresponding to the incident angle of the reflected light beam obtained from each light receiving area based on the directivity part f% of the photodetector. What about the objective lens? A focus detection device characterized in that it is configured to generate a focus error signal for a projectile object.
JP20827681A 1981-12-23 1981-12-23 Focusing detecting device Pending JPS58111138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20827681A JPS58111138A (en) 1981-12-23 1981-12-23 Focusing detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20827681A JPS58111138A (en) 1981-12-23 1981-12-23 Focusing detecting device

Publications (1)

Publication Number Publication Date
JPS58111138A true JPS58111138A (en) 1983-07-02

Family

ID=16553550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20827681A Pending JPS58111138A (en) 1981-12-23 1981-12-23 Focusing detecting device

Country Status (1)

Country Link
JP (1) JPS58111138A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4768913A (en) * 1986-02-10 1988-09-06 Kabushiki Kaisha Komatsu Seisakusho Destacker

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4768913A (en) * 1986-02-10 1988-09-06 Kabushiki Kaisha Komatsu Seisakusho Destacker

Similar Documents

Publication Publication Date Title
JPS6227456B2 (en)
JPS6339979B2 (en)
JPH0372965B2 (en)
JPS63261539A (en) Focus detecting device
JPH0219536B2 (en)
JPS58111138A (en) Focusing detecting device
JPS62277640A (en) Optical head device
JPH0219537B2 (en)
JPS62277635A (en) Optical head device
JPH0373425A (en) Focus detector
US6396638B1 (en) Optical pickup device capable of stable tracking
JPS6159630A (en) Focus detector
JPH0120498B2 (en)
JPS639305B2 (en)
JPH07169071A (en) Optical pickup system for detection of focusing error
JPS641858B2 (en)
JP2695437B2 (en) Optical information reproducing device
JPH0146925B2 (en)
KR850000421B1 (en) Forcus detecting method
JPS6224443A (en) Focus detector
KR850000649Y1 (en) Forcus detecting device
JPH045968B2 (en)
JPS6223375B2 (en)
JPS5829151A (en) Focus error detector in optical recorder and reproducer
JPH0323977B2 (en)