JPH045968B2 - - Google Patents

Info

Publication number
JPH045968B2
JPH045968B2 JP56031518A JP3151881A JPH045968B2 JP H045968 B2 JPH045968 B2 JP H045968B2 JP 56031518 A JP56031518 A JP 56031518A JP 3151881 A JP3151881 A JP 3151881A JP H045968 B2 JPH045968 B2 JP H045968B2
Authority
JP
Japan
Prior art keywords
light
beams
angle
sub
objective lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56031518A
Other languages
Japanese (ja)
Other versions
JPS5738410A (en
Inventor
Kiichi Kato
Kenichi Ito
Tooru Musha
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP3151881A priority Critical patent/JPS5738410A/en
Publication of JPS5738410A publication Critical patent/JPS5738410A/en
Publication of JPH045968B2 publication Critical patent/JPH045968B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/12Beam splitting or combining systems operating by refraction only
    • G02B27/126The splitting element being a prism or prismatic array, including systems based on total internal reflection

Description

【発明の詳細な説明】 本発明は互いに僅かな角度を成す複数の光束を
分離して取出す方法、特にビデオテイスク、デジ
タルオーデイオデイスク等の光学的記録方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for separating and extracting a plurality of light beams forming a slight angle to each other, and particularly to an optical recording method for video tapes, digital audio discs, etc.

例えば記録媒体上に螺旋或いは同心円状に記録
された情報トラツクに対物レンズを経て書込む又
は読取光スポツトを集束して情報を書き込む又は
読み取る情報書込又は読取装置は従来より既知で
あり、情報トラツクを有する記録媒体には、例え
ばビデオデイスクと呼ばれているものがある。こ
のビデオデイスクには情報トラツクに符号化され
たビデオ信号や音声信号が、光学的透過特性、反
射特性、位相特製などの光学的情報として記録さ
れる。このような記録媒体の特長の一つは、情報
の記録密度が非常に高いことであり、そのため各
情報トラツクの幅が極めて狭いと共に、順次の情
報トラツク間の間隔も非常に狭くなつている。こ
のように幅もピツチも狭い情報トラツクに情報を
正確に書き込み、また斯る情報トラツクから元の
情報を正確に読む取るためには、書込又は読取光
スポツトが常に情報記録面に集束するよう制御す
るフオーカツシング制御と、書込又は読取光スポ
ツトが所定の情報トラツクから外れることなく常
にその上を走査するように制御するトラツキング
制御を行なう必要があり、これらの制御は一般に
互いに略々平行な2本又は3本のレーザビームを
用いて行なわれている。この場合これらビームを
同時に記録媒体上に照射し、その透過光または反
射光を別々に分離して別個の複数の光検出器を用
いて検出を行なう必要がある。
For example, information writing or reading apparatuses have been known for writing or reading information through an objective lens or focusing a reading light spot onto an information track recorded in a spiral or concentric form on a recording medium. For example, there is a recording medium called a video disk. On this video disk, video signals and audio signals encoded in information tracks are recorded as optical information such as optical transmission characteristics, reflection characteristics, phase characteristics, etc. One of the features of such recording media is that the information recording density is very high, so that the width of each information track is very narrow and the spacing between successive information tracks is also very narrow. In order to accurately write information onto information tracks with such narrow width and pitch, and to accurately read the original information from such information tracks, it is necessary to ensure that the writing or reading light spot is always focused on the information recording surface. It is necessary to perform focusing control to control the information, and tracking control to control the writing or reading light spot so that it always scans over a predetermined information track without deviating from it, and these controls are generally performed approximately parallel to each other. This is done using two or three laser beams. In this case, it is necessary to simultaneously irradiate these beams onto the recording medium, separate the transmitted light or reflected light, and perform detection using a plurality of separate photodetectors.

かかる複数光束の光路分離手段としては、光学
系の倍率を大きくとり、光束を空間的に分離する
手段や、各々の光束の波長を異なるものとし、ダ
イクロイツクミラーにより分離する等の方法が知
られている。
As such optical path separation means for a plurality of light beams, there are known methods such as increasing the magnification of the optical system and spatially separating the light beams, and making the wavelengths of each light beam different and separating them using a dichroic mirror. ing.

しかし、前者は、光路長を大きくとる必要があ
り、光学系が大きくなり、また後者は、波長の十
分異なる光源を必要とし、半導体レーザ等の利用
が難しいという欠点がある。
However, the former requires a large optical path length and the optical system becomes large, and the latter requires light sources with sufficiently different wavelengths, making it difficult to use semiconductor lasers or the like.

本発明の光学的記録方法は情報がトラツク状に
記録される記録媒体に2本のビームを対物レンズ
により集光させその反射光を光検出器へ導びき制
御信号を検出するに際し、前記記録媒体から反射
する2つの光束の光軸間に僅かな角度を形成され
これらの光束の内の一方の光速を高屈折率媒体と
低屈折率媒体との境界面にほぼ臨界角の角度で入
射せしめ、他方の光束を前記境界面に臨界角以下
の角度で入射せしめて、前記一方の光束を前記境
界面で全反射させると共に前記他方の光束を前記
境界面を透過させて前記光束を分離し、前記一方
の光束の光量分布を検出することによりフオーカ
ツシング制御信号を、前記他方の光束の光強度を
検出することによりトラツキング制御信号を得る
ようにしたことを特徴とするものである。
In the optical recording method of the present invention, two beams are focused by an objective lens on a recording medium on which information is recorded in a track shape, and the reflected light is guided to a photodetector to detect a control signal. A slight angle is formed between the optical axes of the two light beams reflected from the light beam, and the light velocity of one of these light beams is incident on the interface between the high refractive index medium and the low refractive index medium at an angle of approximately the critical angle, The other light beam is made incident on the boundary surface at an angle equal to or less than the critical angle, the one light beam is totally reflected on the boundary surface, and the other light beam is transmitted through the boundary surface to separate the light beams, and the The present invention is characterized in that a focusing control signal is obtained by detecting the light intensity distribution of one of the light beams, and a tracking control signal is obtained by detecting the light intensity of the other light beam.

以上図面につき本発明を詳細に説明する。 The present invention will be described in detail with reference to the drawings.

第1図は本発明による光束分離手段を具える光
学的情報記録装置の一例の構成を示す線図であ
る。
FIG. 1 is a diagram showing the configuration of an example of an optical information recording device equipped with a beam separating means according to the present invention.

第1図において、1はレーザ光源で、2つの発
光点A及びBを有する。本例では発光点Aからの
ビームを記録用の主ビーム(実線で示す)とし
て、発光点Bからのビームをトラツキング用の副
ビーム(破線で示す)として使用する。
In FIG. 1, 1 is a laser light source, which has two light emitting points A and B. In this example, the beam from the light emitting point A is used as the main beam for recording (indicated by a solid line), and the beam from the light emitting point B is used as the sub beam for tracking (indicated by a broken line).

主ビームと副ビームを得る手段としては2つの
発光点を持つレーザ光源に限らず、各々の光軸が
空間的に分離して互いに傾いていればよいので、
例えば結晶の偏光特性、グレーテイング等を利用
して1つのビームを2つのビームに分離すること
により、或はプリズム等で1つのビームを反射ビ
ームと透過ビームに分けることにより1つのビー
ムから主ビームと副ビームを得ることもできる。
The means for obtaining the main beam and sub-beam is not limited to a laser light source with two light emitting points; it is sufficient that the optical axes of each are spatially separated and tilted to each other.
For example, by separating one beam into two beams using the polarization characteristics of a crystal, grating, etc., or by dividing one beam into a reflected beam and a transmitted beam using a prism etc., one beam can be converted into a main beam. You can also get a secondary beam.

レーザ光源1を出射した2つのビームはコリメ
ータレンズ2に入射し、各ビームは平行光束にな
り、しかも互いの光軸は傾く。これは、主ビーム
はその中心光線(一点鎖線で示す)がコリメータ
レンズ2の中心に入射するのに対し、副ビームは
その中心光線(二点鎖線で示す)がコリメータレ
ンズ2の中心からずれて入射するためであり、コ
リメータレンズの焦点距離fが9mm、発光点A及
びB間の間隔が125μmのとき出射両ビームの光
軸の傾きは48′程度となる。
The two beams emitted from the laser light source 1 enter the collimator lens 2, and each beam becomes a parallel light beam, and the optical axes of the two beams are tilted to each other. This is because the center ray (indicated by a chain line) of the main beam is incident on the center of the collimator lens 2, whereas the center ray (indicated by a chain double dot line) of the sub beam is shifted from the center of the collimator lens 2. When the focal length f of the collimator lens is 9 mm and the distance between the light emitting points A and B is 125 μm, the inclination of the optical axes of both output beams is about 48'.

コリメータレンズ2により平行光束とされたレ
ーザ光源1の主及び副ビームの光は偏光プリズム
3の反射面に対してS偏光特性を持つように構成
されているので、両光束は偏光プリズム3の反射
面で全て反射されて1/4波長板4に入射し、これ
を出射した両光束(円偏光に変換されている)は
対物レンズ5に入射する。
The main and sub beams of the laser light source 1, which are made into parallel beams by the collimator lens 2, are configured to have S polarization characteristics with respect to the reflective surface of the polarizing prism 3, so both beams are reflected by the polarizing prism 3. All of the light is reflected by the surface and enters the 1/4 wavelength plate 4, and both light beams (converted to circularly polarized light) that exit this light enter the objective lens 5.

本例ではコリメータレンズ2の焦点位置に対物
レンズ5を配置して主ビームと副ビームを対物レ
ンズにおいて完全に重なり合うようにしているが
両ビームのビーム径を対物レンズの口径に対しあ
る程度大きいか小さい状態にしておけば、両ビー
ムが完全に重なり合わない状態、つまり対物レン
ズを焦点距離からもつと離れた位置に配置しても
よい。
In this example, the objective lens 5 is placed at the focal point of the collimator lens 2 so that the main beam and the sub beam completely overlap at the objective lens, but the beam diameters of both beams are either larger or smaller to some extent than the aperture of the objective lens. In this case, the two beams may not completely overlap, that is, the objective lens may be placed at a distance from the focal length.

対物レンズ5を出射した各ビームはデイスク6
の記録面7上に焦点を結ぶ。即ち主ビームは対物
レンズ5の光軸と平行であるから光軸上にスポツ
トを形成し、副ビームは対物レンズ5の光軸に対
し傾いているので光軸からずれた位置にスポツト
を形成する。例えば、上述の例のように両ビーム
の光軸の傾きが48′程度の場合、対物レンズの焦
点距離を4.3mmとすると、両スポツトの間隔は60μ
m程度となる。
Each beam exiting the objective lens 5 is directed to the disk 6
The image is focused on the recording surface 7 of the image. That is, the main beam is parallel to the optical axis of the objective lens 5, so it forms a spot on the optical axis, and the sub beam is tilted with respect to the optical axis of the objective lens 5, so it forms a spot at a position offset from the optical axis. . For example, if the optical axes of both beams are tilted approximately 48' as in the example above, and the focal length of the objective lens is 4.3 mm, the distance between the two spots is 60 μ.
It will be about m.

記録面7で反射された両光束は対物レンズ5を
通つた後に、1/4波長板4に入射する。1/4波長板
4を通つた光は入射時と偏光方向を90°変換され、
つまりP偏光となるので偏光プリズム3を全て透
過し、検出プリズム8に入射する。
Both light beams reflected by the recording surface 7 pass through the objective lens 5 and then enter the 1/4 wavelength plate 4. The light that has passed through the quarter-wave plate 4 has its polarization direction changed by 90 degrees from that at the time of incidence.
In other words, since it becomes P-polarized light, it completely passes through the polarizing prism 3 and enters the detection prism 8.

本発明ではこの検出プリズム8の反射面、即ち
高屈折率媒体と低屈折率媒体との境界面9−1及
び9−2をそれぞれ主ビームの光軸に対してほぼ
臨界角もしくはそれ以上となるように、副ビーム
の光軸に対しては臨界角以下になるように設定す
る。このようにすると、斯る反射面の入射角と反
射率の関係を示す第2図から明らかなように、対
物レンズ5及びプリズム3を経て反射面9−1及
び9−2にほぼ臨界角もしくはそれ以上の角度で
入射する主ビームは略々その全光線が反射面9−
1及び9−2で3回全反射されて左横方向に進む
のに対し、主ビームに対し僅かに傾いて反射面9
−1及び9−2に臨界角以下の角度で入射する副
ビームは略々その全光線がこれら反射面に透過し
て左斜め上方向に進み、従つて互いに僅かな角度
を成す主ビームと副ビームの光路を大きく分離し
て取り出し、それぞれ光検出器10及び11で検
出することができる。なお、第2図は検出プリズ
ム8の屈折率が1.50の場合におけるその反射面の
P偏光及びS偏光に対する入射角対反射率特性
RP及びRSを示したものであり(偏光してない光
に対する反射率はこれらの中間値(RP+RS)/
2となる)、本例ではP偏光なので分離効率が良
い。例えば前述したように検出プリズム8に直角
に入射する主ビームに対し副ビームが48′傾いて
入射する場合、反射面9−1,9−2に入射する
ときの両者の傾き角は検出プリズム8の屈折率が
1.5のとき32′程度となり、この場合1回反射当り
の透過率は第3図から明らかなように本例のP偏
光に対し69%程度であるから、3回の反射で総合
透過量は96%程度となる。つまり4%程度の微量
の副ビームが主ビーム用光検出器10に入射する
のみとなる。なお、第1及び第2図は図を簡単と
するため検出プリズム8の屈折率がn=√2、即
ち臨界角が約45°の場合を図示してある。
In the present invention, the reflective surfaces of the detection prism 8, that is, the interface surfaces 9-1 and 9-2 between the high refractive index medium and the low refractive index medium, are set at substantially critical angles or larger than the critical angle with respect to the optical axis of the main beam. The angle is set to be less than or equal to the critical angle with respect to the optical axis of the sub beam. In this way, as is clear from FIG. 2 which shows the relationship between the incident angle and the reflectance of such reflective surfaces, the approximately critical angle or For the main beam incident at an angle greater than that, almost all of the rays are reflected on the reflecting surface 9
1 and 9-2 and travels laterally to the left, the reflection surface 9 is slightly tilted with respect to the main beam.
-1 and 9-2 at an angle less than the critical angle, almost all of the rays are transmitted through these reflecting surfaces and proceed diagonally upward to the left, so the main beam and the sub-beam make a slight angle to each other. The optical paths of the beams can be largely separated and extracted, and detected by photodetectors 10 and 11, respectively. Furthermore, Fig. 2 shows the incident angle vs. reflectance characteristics of the reflecting surface for P-polarized light and S-polarized light when the refractive index of the detection prism 8 is 1.50.
R P and R S (reflectance for unpolarized light is the intermediate value of these (R P + R S )/
2), and in this example, since it is P-polarized light, the separation efficiency is good. For example, as described above, when the sub beam is incident at an angle of 48' with respect to the main beam that is incident at right angles to the detection prism 8, the angle of inclination of both when incident on the reflecting surfaces 9-1 and 9-2 is the angle of inclination of the detection prism 8. The refractive index of
When it is 1.5, it is about 32', and in this case, the transmittance per one reflection is about 69% for the P polarized light in this example, as is clear from Figure 3, so the total transmission amount is 96' with three reflections. %. In other words, only a small amount of the sub beam of about 4% is incident on the main beam photodetector 10. In addition, in order to simplify the drawings, FIGS. 1 and 2 illustrate the case where the refractive index of the detection prism 8 is n=√2, that is, the critical angle is about 45°.

主ビーム用光検出器10に混入する副ビームの
光量をもつと減らしたいときは主ビームに対する
副ビームの発光強度を弱めればよい。
If it is desired to reduce the amount of light of the sub-beam that enters the main beam photodetector 10, it is sufficient to weaken the emission intensity of the sub-beam relative to the main beam.

本例では第1回目の反射で生ずる副ビームの透
過光束a1と第3回目の透過光束a3を副ビーム用光
検出器11で検出する。しかし、第2回目の反射
で生ずる副ビームの透過光束a2を検出してもよい
し、また副ビーム光検出器を2個設けて3つの透
過光束すべてを検出してもよい。
In this example, the sub-beam transmitted light flux a 1 generated by the first reflection and the third transmitted light flux a 3 are detected by the sub-beam photodetector 11 . However, the transmitted light flux a2 of the sub-beam generated by the second reflection may be detected, or two sub-beam photodetectors may be provided to detect all three transmitted light fluxes.

このように臨界角に設定された検出プリズムを
使うことにより主ビームと副ビームのわずかな角
度ずれを敏感に検出して両ビームを空間的に分離
することができる。これに対し、対物レンズの焦
点距離に対して十分長い焦点距離を有するレンズ
を使つてその焦点面で空間的に分離することもで
きるが、この場合には、光学系が大きなものとな
る不利がある。
By using a detection prism set at a critical angle in this way, it is possible to sensitively detect a slight angular deviation between the main beam and the sub beam, and to spatially separate the two beams. On the other hand, spatial separation can be achieved at the focal plane by using a lens with a sufficiently long focal length compared to the focal length of the objective lens, but in this case, the disadvantage is that the optical system becomes large. be.

このように分離された主ビームと副ビームは光
スポツトを常に情報記録面に集束するよう制御す
るフオーカツシング制御及び光スポツトが所定の
螺旋或いは同心円トラツクから外れることなく常
にその上に走査するように制御するトラツキング
制御に使用され、以下これらの制御について説明
する。
The main beam and sub beams separated in this way are controlled so that the optical spot is always focused on the information recording surface, and focusing control is performed so that the optical spot always scans on a predetermined spiral or concentric track without deviating from it. This control is used for tracking control, and these controls will be explained below.

先ず、フオーカツシング制御は主ビームを用い
て行なわれる。合焦状態では対物レンズ5及びプ
リズム3を経て反射面9−1及び9−2に入射す
る主ビームは平行光束であるから略々その全光線
が反射面9−1及び9−2で3回全反射されて光
検出器10に入射する。デイスク6が合焦状態か
らa方向又はb方向にずれると、反射面9−1及
び9−2に入射する主ビームは傾き成分をもつた
光線束となり、図において検出プリズム8に入射
する主ビームの中心光線より左側半分の光線又は
中心光線より右側半分の光線の入射角が臨界角よ
り小さくなり、右側半分の光線又は左側半分の光
線のみが全反射されて光検出器10に入射する。
光検出器10は主ビームの中心光線を境に二分割
した受光領域10A及び10Bを有し、合焦状態
であるか否かに応じて上述のように変化する反射
面9−1及び9−2からの主ビームの反射光の光
量分布を検出して焦点誤差信号を得るものであ
る。
First, focusing control is performed using the main beam. In the focused state, the main beam that passes through the objective lens 5 and prism 3 and enters the reflective surfaces 9-1 and 9-2 is a parallel beam, so approximately all the rays are reflected three times on the reflective surfaces 9-1 and 9-2. The light is totally reflected and enters the photodetector 10. When the disk 6 deviates from the focused state in the direction a or b, the main beams incident on the reflecting surfaces 9-1 and 9-2 become a bundle of rays with a tilt component, and in the figure, the main beams incident on the detection prism 8 The incident angle of the left half of the rays from the center ray or the right half of the rays from the center ray becomes smaller than the critical angle, and only the right half of the rays or the left half of the rays are totally reflected and enter the photodetector 10.
The photodetector 10 has light-receiving areas 10A and 10B divided into two with the center ray of the main beam as the border, and has reflective surfaces 9-1 and 9- that change as described above depending on whether or not they are in focus. The focus error signal is obtained by detecting the light amount distribution of the reflected light of the main beam from 2.

したがつて、各受光領域10A,10Bの出力
の差を検出することにより、その量および極性か
らずれの量および方向を表わす焦点誤差信号を得
ることができ、この信号に基いて対物レンズ5を
矢印Yで示す光軸方向に移動制御するフオーカツ
シング制御を行なうことができる。しかも合焦状
態では反射面9での透過成分が殆んどないから、
光量の損失が極めて少ないと共に、合焦から外れ
た場合には、中心光線を境にいずれか一方の側の
光束が全反射され、他方の側の光束の反射強度が
極端に減少するから受光領域10A,10Bにお
ける光量差が著しくなる。したがつて、十分正確
に焦点検出を行なうことができる。
Therefore, by detecting the difference in output between the light receiving areas 10A and 10B, a focus error signal representing the amount and direction of deviation can be obtained from the amount and polarity, and the objective lens 5 is adjusted based on this signal. Focusing control that controls movement in the optical axis direction indicated by arrow Y can be performed. Moreover, in the focused state, there is almost no transmitted component on the reflective surface 9,
The loss of light quantity is extremely small, and if the focus is out of focus, the light beam on either side of the central ray will be totally reflected, and the reflection intensity of the light beam on the other side will be extremely reduced. The difference in light amount between 10A and 10B becomes significant. Therefore, focus detection can be performed with sufficient accuracy.

次に、トラツキング制御は副ビームを用いて行
なわれ、これを第3及び第4図を参照して説明す
る。
Next, tracking control is performed using the sub beam, which will be explained with reference to FIGS. 3 and 4.

第3図は第1図の光学系によりデイスク上の記
録面に照射された記録用の主ビームとトラツキン
グ用の副ビームのスポツト(それぞれM及びSで
示す)の位置関係と主ビームにより記録されたビ
ツトPの様子を示し、主ビームは記録すべき符号
化されたビデオ信号や音声信号、データ信号など
の情報信号に応じてオンオフされて記録面にピツ
トを形成していき、副ビームは隣りの記録済トラ
ツクのエツジにその中心が位置する。主ビームと
副ビームの位置関係は一定であるから、副ビーム
の位置を常に隣りの記録済トラツクのエツジにそ
の中心が位置するように制御すれば、新たに記録
されるピツトは常に隣りのトラツクと一定の間隔
で記録される。
Figure 3 shows the positional relationship between the recording main beam and the tracking sub-beam spots (indicated by M and S, respectively) that are irradiated onto the recording surface of the disk by the optical system in Figure 1, and the information recorded by the main beam. The main beam is turned on and off according to information signals such as encoded video signals, audio signals, and data signals to be recorded, forming pits on the recording surface, and the sub beams form pits on the recording surface. Its center is located at the edge of the recorded track. Since the positional relationship between the main beam and the sub beam is constant, if the position of the sub beam is controlled so that its center is always located at the edge of the adjacent recorded track, the newly recorded pit will always be located at the edge of the adjacent track. are recorded at regular intervals.

第4図は副ビームと主ビームの半径方向位置と
記録面から反射されて戻る副ビームと主ビームの
光量の関係を示し、PSはピツトのエツジに中心が
位置する副ビームの位置、PMはピツトの中心に
位置する主ビームの位置を示す。これから明らか
なように、副ビームがピツトのエツジを中心にデ
イスク半径方向に変位すると、副ビームの戻り光
量は副ビームの中心がピツトのエツジに位置する
ときの光量(VO)を中心に急激に増減し、第1
図の副ビーム用光検出器11から副ビームのピツ
トのエツジに対するずれに応じてVOを中心に両
方向に変化する信号が得られる。従つてこの信号
をVOに対応する基準値と比較することにより副
ビームのピツトのエツジ、即ち記録トラツクのエ
ツジに対するずれの大きさ及び方向を表わす信
号、即ちトラツキング誤差信号を得ることがで
き、これにより第1図の対物レンズ5を記号Xで
示すようにデイスク半径方向に移動させて副ビー
ムの戻り光量が常にこの値VOになるように、即
ち副ビームの中心が記録済トラツクのエツジに位
置するようにトラツキング制御すれば主ビームは
常に隣りの記録済トラツクと一定の間隔に維持さ
れる。尚、デイスク面にトラツキング用のトラツ
クが予め設けられている場合には副ビームをこの
条溝のエツジに位置させて同様のトラツキング制
御を行なうことができる。
Figure 4 shows the relationship between the radial positions of the sub beam and the main beam and the light quantities of the sub beam and main beam reflected from the recording surface, where P S is the position of the sub beam whose center is located at the edge of the pit, and P M indicates the position of the main beam located at the center of the pit. As is clear from this, when the sub-beam is displaced in the disk radial direction centering on the edge of the pit, the amount of return light of the sub-beam suddenly changes around the amount of light (V O ) when the center of the sub-beam is located at the edge of the pit. The first
A signal is obtained from the sub-beam photodetector 11 shown in the figure that changes in both directions around V O in accordance with the deviation of the pit of the sub-beam from the edge. Therefore, by comparing this signal with the reference value corresponding to V O , a signal representing the magnitude and direction of the deviation from the edge of the pit of the sub beam, that is, the edge of the recording track, that is, a tracking error signal, can be obtained. As a result, the objective lens 5 in FIG. 1 is moved in the disk radial direction as indicated by the symbol If the tracking is controlled so that the main beam is positioned at the adjacent recorded track, the main beam is always maintained at a constant distance from the adjacent recorded track. Incidentally, if a tracking track is previously provided on the disk surface, similar tracking control can be performed by positioning the sub-beam at the edge of this groove.

第5図は第1図の光学系の変形例を示し、第1
図と対応する素子は同一の符号で示す。本例では
第1図のコリメータレンズ2の代りに凸レンズ
2′を用いてデイスクから反射され対物レンズ5
を経て戻る主及び副ビームが集束光束となるよう
にし、検出プリズム8と偏光プリズム3の間に凹
レンズ12を配置して前記集束光束を平行光束に
して検出プリズム8に入射せしめるようにしたも
ので、このようにすると検出プリズムの入射光束
の断面積を小さくできるので、検出プリズムを小
型にすることができ特に検出プリズムの屈折率が
大きい場合に有利であり、また検出プリズムの入
射光束の断面積を第1図の場合と同一にするとき
は対物レンズの入射光束の断面積を第1図の場合
より大きくすることができる利点がある。尚、こ
れとは逆にデイスクから対物レンズ5を経て戻る
主及び副ビームを発散光束とし、検出プリズムと
偏光プリズム3との間に適当なレンズを配置して
この光束を平行光束にして検出プリズムに入射す
るようにすることもできる。
FIG. 5 shows a modification of the optical system in FIG.
Elements corresponding to those in the figures are designated by the same reference numerals. In this example, a convex lens 2' is used in place of the collimator lens 2 shown in FIG.
A concave lens 12 is disposed between the detection prism 8 and the polarizing prism 3 so that the main and sub-beams returning through the polarization prism 3 are made into parallel light fluxes and are made to enter the detection prism 8. In this way, the cross-sectional area of the incident light beam on the detection prism can be reduced, so the detection prism can be made smaller, which is particularly advantageous when the detection prism has a large refractive index. 1, there is an advantage that the cross-sectional area of the incident light beam on the objective lens can be made larger than in the case of FIG. 1. On the other hand, the main and sub beams returning from the disk through the objective lens 5 are treated as diverging beams, and an appropriate lens is placed between the detection prism and the polarizing prism 3 to convert these beams into parallel beams. It is also possible to make it incident on .

以上、本発明の特定の例について説明したが、
本発明はこれに限定されるものでなく、幾多の変
形又は変更が可能である。例えば上述の例では2
つの反射面を用いて3回の反射で互いに略々平行
な2本の光束を分離するようにしたが、この反射
回数は任意であり、例えば1つの反射面を用いて
1回の反射で分離することもできること勿論であ
る。また、上述の例では2本のビームを分離して
いるが、本発明によれば3本以上のビームを分離
することもでき、例えば公知の3ビーム方式の読
取装置において3本のビームを分離するにはその
第1ビームを第1反射面に臨界角以下の角度で、
第2及び第3ビームを略々臨界角以上の角度で入
射させ、この反射面で全反射される第2及び第3
ビームの内の第2ビームを次いで第2の反射面に
臨界角以下の角度で、第3ビームを略々臨界角以
上の角度で入射させることにより第1〜第3のビ
ームを順次の反射面で順次に分離することができ
ること明らかである。また上述した例では検出プ
リズムの屈折率を1.50としたが、検出プリズムの
反射面を臨界角近辺に設定しさえすれば任意の屈
折率を使用することができる。更にまた、上述の
例では偏光された光を使用するものとしたが、偏
光されていない光を使用する場合でも本発明を有
効に適用することができる。更にまた、本発明は
互いに略々平行な複数の光束を使用する他の種々
の装置にも適用することができること勿論であ
る。
Although specific examples of the present invention have been described above,
The present invention is not limited thereto, and numerous modifications and changes are possible. For example, in the example above, 2
Two reflective surfaces are used to separate two nearly parallel beams of light by three reflections, but the number of reflections is arbitrary. Of course, you can also do so. Further, in the above example, two beams are separated, but according to the present invention, three or more beams can also be separated. For example, in a known three-beam reading device, three beams are separated. To do this, direct the first beam to the first reflecting surface at an angle less than the critical angle,
The second and third beams are made incident at an angle approximately equal to or greater than the critical angle, and the second and third beams are totally reflected by this reflecting surface.
The second beam of the beams is then incident on the second reflecting surface at an angle less than or equal to the critical angle, and the third beam is incident on the reflecting surface at an angle substantially greater than the critical angle. It is clear that it can be separated sequentially. Further, in the above example, the refractive index of the detection prism was set to 1.50, but any refractive index can be used as long as the reflective surface of the detection prism is set near the critical angle. Furthermore, although polarized light is used in the above example, the present invention can be effectively applied even when non-polarized light is used. Furthermore, it goes without saying that the present invention can be applied to various other devices that use a plurality of light beams that are substantially parallel to each other.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による光束分離手段を具える記
録装置の一例の構成を示す線図、第2図は光束分
離反射面の入射角対反射率特性を示す図、第3図
及び第4図は第1図の装置のトラツキングの原理
説明図、第5図は第1図の記録装置の変形例の構
成を示す線図である。 1……光源、A,B……発光点、2……コリメ
ータレンズ、3……偏光プリズム、4……1/4波 長板、5……対物レンズ、6……デイスク、7…
…記録面、8……検出プリズム、9−1,9−2
……反射面、10……主ビーム用光検出器、11
……副ビーム用光検出器、2′……凸レンズ、1
2……凹レンズ。
FIG. 1 is a diagram showing the configuration of an example of a recording device equipped with a beam separating means according to the present invention, FIG. 2 is a diagram showing the incident angle versus reflectance characteristics of a beam separating reflective surface, and FIGS. 3 and 4 1 is a diagram explaining the principle of tracking of the apparatus shown in FIG. 1, and FIG. 5 is a diagram showing the configuration of a modification of the recording apparatus shown in FIG. 1. 1... Light source, A, B... Luminous point, 2... Collimator lens, 3... Polarizing prism, 4... 1/4 wavelength plate, 5... Objective lens, 6... Disk, 7...
...Recording surface, 8...Detection prism, 9-1, 9-2
... Reflection surface, 10 ... Main beam photodetector, 11
...Sub-beam photodetector, 2'...Convex lens, 1
2...Concave lens.

Claims (1)

【特許請求の範囲】[Claims] 1 情報がトラツク状に記録される記録媒体に2
本のビームを対物レンズにより集光させその反射
光を光検出器へ導びき制御信号を検出するに際
し、前記記録媒体から反射する2つの光束の光軸
間に僅かな角度を形成させこれらの光束の内の一
方の光束を高屈折率媒体と低屈折率媒体との境界
面にほぼ臨界角の角度で入射せしめ、他方の光束
を前記境界面に臨界角以下の角度で入射せしめ
て、前記一方の光束を前記境界面で全反射させる
と共に前記他方の光束を前記境界面を透過させて
前記光束を分離し、前記一方の光束の光量分布を
検出することによりフオーカツシング制御信号
を、前記他方の光束の光強度を検出することによ
りトラツキング制御信号を得るようにしたことを
特徴とする光学的記録方法。
1. Information is recorded on a recording medium in the form of a track. 2.
When the beam of a book is focused by an objective lens and the reflected light is guided to a photodetector to detect a control signal, a slight angle is formed between the optical axes of the two light beams reflected from the recording medium. One of the light beams is made incident on the interface between a high refractive index medium and a low refractive index medium at an angle approximately equal to the critical angle, and the other light beam is made incident on the interface at an angle less than or equal to the critical angle. A focusing control signal is generated by totally reflecting the luminous flux on the boundary surface and transmitting the other luminous flux through the boundary surface to separate the luminous fluxes, and detecting the light intensity distribution of the one luminous flux. An optical recording method characterized in that a tracking control signal is obtained by detecting the light intensity of a luminous flux.
JP3151881A 1981-03-05 1981-03-05 Separating method of luminous flux Granted JPS5738410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3151881A JPS5738410A (en) 1981-03-05 1981-03-05 Separating method of luminous flux

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3151881A JPS5738410A (en) 1981-03-05 1981-03-05 Separating method of luminous flux

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP11447080A Division JPS5737742A (en) 1980-08-19 1980-08-19 Method and device for optical information recording

Publications (2)

Publication Number Publication Date
JPS5738410A JPS5738410A (en) 1982-03-03
JPH045968B2 true JPH045968B2 (en) 1992-02-04

Family

ID=12333412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3151881A Granted JPS5738410A (en) 1981-03-05 1981-03-05 Separating method of luminous flux

Country Status (1)

Country Link
JP (1) JPS5738410A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6310340A (en) * 1986-07-02 1988-01-16 Nec Corp Multibeam optical head

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5129955A (en) * 1974-09-06 1976-03-13 Asahi Chemical Ind ITONOHINSHITSUHYOKASOCHI

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5129955A (en) * 1974-09-06 1976-03-13 Asahi Chemical Ind ITONOHINSHITSUHYOKASOCHI

Also Published As

Publication number Publication date
JPS5738410A (en) 1982-03-03

Similar Documents

Publication Publication Date Title
US4085423A (en) Information reproducing apparatus with plural beam readout
JPH047016B2 (en)
JPS6227456B2 (en)
JPH0372965B2 (en)
JPH0230094B2 (en)
US5771219A (en) Optical information recording and/or reproducing apparatus
JPH045968B2 (en)
JPS6038742A (en) Error signal detecting system
JPH0219537B2 (en)
JP2578203B2 (en) Light head
JPS641858B2 (en)
JPH0644601A (en) Optical information recording and reproducing device and adjusting method therefor
JPH08338904A (en) Optical element and optical information recording and reproducing device
JPH0721866B2 (en) Optical head device
KR850000421B1 (en) Forcus detecting method
JPS639305B2 (en)
JPH0120498B2 (en)
JPH0482028A (en) Information recording and reproducing device
JPH0146925B2 (en)
JPS5829151A (en) Focus error detector in optical recorder and reproducer
JPH07169085A (en) Optical information recorder/reproducer
JPH03116546A (en) Information recording and reproducing device
JPH0785498A (en) Optical information recorder/reproducer
JPH02236828A (en) Optical disk device
JPS63231738A (en) Optical recording and reproducing device