JPS58111083A - Teaching aid clay - Google Patents

Teaching aid clay

Info

Publication number
JPS58111083A
JPS58111083A JP21196481A JP21196481A JPS58111083A JP S58111083 A JPS58111083 A JP S58111083A JP 21196481 A JP21196481 A JP 21196481A JP 21196481 A JP21196481 A JP 21196481A JP S58111083 A JPS58111083 A JP S58111083A
Authority
JP
Japan
Prior art keywords
glass
clay
powder
cracks
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21196481A
Other languages
Japanese (ja)
Inventor
賢治 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP21196481A priority Critical patent/JPS58111083A/en
Publication of JPS58111083A publication Critical patent/JPS58111083A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は乾燥後のひび割れをできるだけ防止し、焼く
ことが1能で、しかも、急熱急冷にも耐えることを目的
とした教材用粘土に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a clay for teaching materials which is intended to prevent cracking after drying as much as possible, to be able to bake it, and to withstand rapid heating and cooling.

従来、天然産の粘土に対して、ゴム系、繊維素系もしく
は合成樹脂系の物質を油!1IIf順もしくは糊剤等の
分散媒と混合した教材用粘土が多く用いられている。し
かし、このような教材用粘土の多くは、単独使用もしく
は芯材併用時に乾燥によるひひ割れは発生しにくいが、
有機物が主成分であることから焼成することはできず、
また、重量感も得られない。
Traditionally, natural clay has been replaced with rubber, cellulose, or synthetic resin substances! Clay for teaching materials mixed with 1IIf order or a dispersion medium such as a glue is often used. However, many of these clays for teaching materials are less likely to crack due to drying when used alone or in combination with a core material.
Since it is mainly composed of organic matter, it cannot be fired.
Also, it does not give a sense of weight.

この発明は、このような現状に着目してなされたもので
あって、lO〜90市1i1t%のガラス粉末と、90
〜10重量%のろう石、粘土、陶石、石粉、アルミナ等
の無機質粉末との混合物が主成分であることを特徴と、
する教材用粘土を提供するものであり、lal”にその
詳細を述べる。
This invention was made by paying attention to the current situation, and consists of glass powder of 10~90% and 90% of glass powder.
The main component is a mixture with ~10% by weight of inorganic powder such as waxite, clay, pottery stone, stone powder, alumina, etc.
The company provides clay for teaching materials, and the details are described in "lal".

ます、この発明に用いるガラスは、価格の点から通常広
く用いられている珪酸塩ガラス、燐酸塩ガラス、硼酸塩
ガラス等で、その中でも珪酸アルカリガラス、ソーダ石
灰ガラス、カリ石灰ガラス、鉛ガラス、バリウムガラス
、硼珪酸ガラス等が人手も容紡であり何かと好都合であ
る。石英ガラスのような高融点のものよりは、融点の低
いものの方が工作に便であり、したがって、釉(ゆう)
薬〔うわぐすり〕であっても、また、屑ガラス、回収さ
れたガラス等であっても、この発明に何等の支障も来た
さない。このようなガラスは単一種でもまた混合種でも
よく、いずれにしても扮未状で用いられるが、その粒麿
は、後述する無機質粉末との混合をより均質なものとす
るうえから、微細であるほど好ましく、特に粒度を限定
する必要はないが、実用的には200メツシュ全通を一
つの目安とすれば充分である。
The glass used in this invention is silicate glass, phosphate glass, borate glass, etc., which are usually widely used from the point of view of price.Among them, alkali silicate glass, soda lime glass, potash lime glass, lead glass, Barium glass, borosilicate glass, etc. are manufactured by hand and spinning, which is very convenient. Materials with a low melting point are easier to work with than materials with a high melting point such as quartz glass, and therefore glazes
Even if it is a medicine (glaze), scrap glass, recovered glass, etc., this invention will not be hindered in any way. Such glass may be a single type or a mixed type, and in any case, it is used in unformed form, but the grain size is fine so that it can be mixed more homogeneously with the inorganic powder described below. The more the particle size is, the more preferable it is, and there is no need to particularly limit the particle size, but it is practically sufficient to use 200 meshes as a guideline.

また、この発明における無機質粉末は、ろう石、粘土、
石粉、陶石等の天然岩石、もしくは、アルミナのような
人工的無機酸化物の粉末であって、これら粉末は単一種
でもまた混合種でもよく、その粒度は、前記ガラス粉末
と同様に、混合をより均質なものとするうえから、微細
であるほど好ましく、特に粒度を限定する必要はないが
、実用的には200メツシュ全通を一応の目安とすれば
よい。なお、このような無機質粉末は、ろう石が最も好
ましく、粘土がそれ番こっぎ、ざらに、陶石、石粉、ア
ルミナ等の順となる。
In addition, the inorganic powder in this invention includes waxite, clay,
Powders of natural rocks such as stone powder and pottery stone, or artificial inorganic oxides such as alumina, and these powders may be of a single type or a mixture of types, and the particle size is the same as that of the glass powder described above. In order to make the particles more homogeneous, the finer the particle size, the more preferable it is, and there is no need to particularly limit the particle size, but for practical purposes, 200 meshes may be used as a rough guideline. As for such inorganic powder, wax stone is most preferable, followed by clay, kogi, zarani, potter's stone, stone powder, alumina, etc.

つきに、以上述べたガラス粉末および無機質粉末を混合
するが、雨音の混合割合は、それぞれ、lO〜90屯量
%(好ましくは20〜80重量%)および90〜10重
量<(好ましくは80〜20@量%)とする。なぜなら
ば、ガラス粉末は、焼成後すなわち溶融後のバインダー
の役目をするものであって、lO市量%未満の少量では
その役目を果すには不充分であり、90市置呪を越える
多量になれば無機質粉末を混合する効果が現われなくな
るからである。一方、無機質粉末の混合割合は、10市
置%未満の少量ではひひ割ね防止性または急熱急冷に対
する耐性の効果が不充分であり、90屯量%を越える多
量ではガラス扮によるバインダー効果が低トして好まし
くない。
At the same time, the glass powder and inorganic powder described above are mixed, and the mixing ratio of the rain sound is 10 to 90 tonne weight% (preferably 20 to 80 weight%) and 90 to 10 weight% (preferably 80 weight%), respectively. ~20@amount%). This is because glass powder acts as a binder after firing, that is, after melting, and a small amount of less than 10% is insufficient to fulfill this role, and a large amount exceeding 90% This is because if this happens, the effect of mixing the inorganic powder will not appear. On the other hand, if the mixing ratio of the inorganic powder is less than 10% by weight, the effect of preventing cracking or resistance to rapid heating and cooling is insufficient, and if the mixing ratio is more than 90% by weight, the binder effect due to glass binding is insufficient. It's low and undesirable.

ここで、このようなガラス粉末と無機質粉末とを混合し
たのみでは、E’l I性や保形性は全くないので、た
とえば、カルボキシメチルセルロース(CMC)、アラ
ビアゴム、澱粉糊等の糊剤の水溶液を適量加えて充分に
練り上げる。この際の糊剤水溶液の濃度および級は、原
料粉末の種類や混合割合によって変化するため、予めこ
れらを限定することは不可能であるから、練り上がる混
合物が適度の粘度、町中性および°保形性を現わすよう
に適宜調整する必要がある。また、この練りtげる際に
、パルプ、わら、綿花、麻等の植物性繊維、獣毛等の動
物性繊維、もしくは合成繊維等の有機質繊維(これらの
繊維は、必らずしも長繊維のものでなければならないと
いう理由はなく、短繊維の屑物であってもよい)を少量
添加すれば、成形時の延性が向上し、これらの繊維およ
び糊剤は、焼成時には大半が焼失するが、焼成前のひび
割れを充分に防ぐうえで、きわめて効果的である。ただ
し、有機質繊維は多量に過きると焼成後の製品は脆くな
る傾向にあるので、およそ10%以下が好ましい。また
、弁柄その他の無機顔料のような着色剤を適宜添加して
もよいことは言うまでもない。
Here, simply mixing such glass powder and inorganic powder has no E'lI properties or shape retention properties, so for example, if a sizing agent such as carboxymethyl cellulose (CMC), gum arabic, or starch glue is used, Add an appropriate amount of the aqueous solution and mix thoroughly. The concentration and grade of the aqueous sizing solution at this time vary depending on the type and mixing ratio of the raw material powder, and it is impossible to limit these in advance. It is necessary to make appropriate adjustments to exhibit shape retention. In addition, when kneading, pulp, straw, cotton, hemp, and other vegetable fibers, animal fibers and other animal fibers, or synthetic fibers and other organic fibers (these fibers are not necessarily long) There is no reason that it has to be made of fibers; it may be scraps of short fibers), which improves ductility during forming, and most of these fibers and sizing agents are burned away during firing. However, it is extremely effective in sufficiently preventing cracks before firing. However, if the amount of organic fiber is too large, the product after firing tends to become brittle, so it is preferably about 10% or less. It goes without saying that colorants such as Bengara and other inorganic pigments may be added as appropriate.

このようにして練り上げられたガラス粉末と無機質粉末
の混合物を、ガラス粉末の融点以上の温度で焼成する。
The mixture of glass powder and inorganic powder thus kneaded is fired at a temperature equal to or higher than the melting point of the glass powder.

この際焼失する糊剤や有機質繊維に代わって、ガラス粉
末が溶融し、保形剤である無機質粉末のバインダーとし
て、焼成前に成形された形状を維持することになる。
At this time, instead of the glue and organic fibers that are burned out, the glass powder is melted and serves as a binder for the inorganic powder, which is a shape-retaining agent, to maintain the shape formed before firing.

121述べたこの発明の粘土は、芯材(たとえば、針金
のような金@製品、または、ガラス瓶のような窯業製品
)の円囲に張り付けて成形し、これを乾燥してもひび割
れを生じることはなく、さらに、これを焼成しても、ひ
ひ割れ等の異常は殆んど認められないので、きわめて安
価で優れた粘土であって、特に児童や生徒に対する教材
として格好のものである。以Fにこの発明の実施例およ
び比較例を示す。なお、%はすべてff11%を表わす
121 The clay of this invention mentioned above does not crack even if it is pasted around a core material (for example, a metal product such as wire or a ceramic product such as a glass bottle) and then dried. Furthermore, even when it is fired, there are almost no abnormalities such as cracks, so it is an extremely inexpensive and excellent clay, and is especially suitable as a teaching material for children and students. Examples and comparative examples of the present invention are shown below. Note that all % represents ff11%.

〔実施例1〕 融点800℃、粒度200メツシュ全通のガラス粉末6
0%に、粒度200メツシュ全通のろう石粉末35%お
よびパルプ繊維5呪を加えて、澱粉糊の適当量とを混合
して練り、これを外径約5G、高さ約10cmの細口瓶
(芯は)の全表面に、約6朋の厚さになるように張り付
けた。この時の張り付は材(以F粘土と呼ぶ)の色は薄
い灰色のものであった。これを室温(12℃)で自然乾
燥したところ乾燥が進む≦こつれで白味が増加したが、
ひび割れ等の異常は全く認められず、20時間経過後3
0時間番こ至る間は屋外で天日乾燥し、その後50時間
に至るまでは再廖室温10’Cの室内で自然乾燥し、5
0時間後から強風下で天日乾燥して約60時間後に完全
乾燥に到達した。しかし、この間に色が僅かに灰色を帯
びた白色に変化した以外は、ひび割れ等の異常は現われ
なかった。そこで約5時間をかけて徐々に温度を9oo
′cに上昇させて焼成を行なったところ、粘土はひび割
れを生ずることもなく完全に焼結し、白色のがった薄茶
色の素焼となった。この素焼は冷却した後も亀裂を生ず
ることはなく、きわめて好ましいものであった。以上の
峰過の要約を表にまとめた。
[Example 1] Glass powder 6 with a melting point of 800°C and a particle size of 200 mesh
0%, 35% waxite powder with a particle size of 200 mesh, and 5 pieces of pulp fiber, mixed with an appropriate amount of starch paste, and kneaded. The core was pasted on the entire surface to a thickness of about 6 mm. At this time, the color of the material (hereinafter referred to as F clay) used was light gray. When this was air-dried at room temperature (12℃), the drying progressed ≦ The whiteness increased due to tangles, but
No abnormalities such as cracks were observed, and after 20 hours 3
Dry outdoors in the sun until the 0th hour, then dry naturally indoors at a room temperature of 10'C until the 50th hour.
After 0 hours, it was dried in the sun under strong wind, and it reached complete dryness after about 60 hours. However, during this time, no abnormalities such as cracks appeared, except for the color changing to a slightly grayish white. Then, over a period of about 5 hours, the temperature was gradually lowered to 9oo.
When the clay was fired at a temperature of 1.5'c, the clay was completely sintered without cracking, resulting in a light brown bisque with white edges. This bisque fired material did not develop any cracks even after cooling, and was extremely desirable. A summary of the above findings is summarized in the table below.

〔実施例2] 実施例1で用いたと同じガラス粉末70%とろう石粉末
30%の混合物にCMC糊ill水溶液を加えて練り、
実施例1と同様のガラス瓶に厚さ6 amになるように
張り付け、実施例1の試料と全く同じ処理を行なった。
[Example 2] CMC glue ill aqueous solution was added to a mixture of 70% of the same glass powder and 30% of waxite powder used in Example 1, and kneaded.
The sample was pasted to a thickness of 6 am on the same glass bottle as in Example 1, and subjected to exactly the same treatment as the sample in Example 1.

その結果は表にまとめたが、乾燥を始めてから約10時
間後には首部に長さ1.5σ程度の細いひび割れが発生
し、約20時間後には、このひび割れは約3−の長さに
生長し、一方、胴部の一部に長さ約1σの新たなひびが
現われたが、60時間後の完全乾燥時においては、これ
らのひびはほとんど変化することはなく、実質的には何
等の支障もない程度のものであった。また、焼成後にお
いても、前記2本のひびは著しい生長をすることもなく
、変化は殆んど認めらねながった。
The results are summarized in the table. Approximately 10 hours after the start of drying, thin cracks with a length of about 1.5σ appeared on the neck, and after about 20 hours, these cracks had grown to a length of about 3. However, new cracks with a length of approximately 1σ appeared in a part of the body, but these cracks hardly changed after 60 hours when it was completely dry. It was not a problem. Further, even after firing, the two cracks did not grow significantly, and almost no changes were observed.

表 〔実施例3〕 実施例1で用いたと同じガラス粉末70%と蛙目粘土3
0%の混合物に実施例2と同様にCMC水溶液を加えて
練り、実施例1において用いた芯材のガラス瓶と同形の
熱oT eJ性樹脂製の容器に厚さ6 mmになるよう
に張り付け、実施例1の試料と全く同じ処理を行なった
。その結果も表にまとめたが、乾燥開始後約10時間で
胴部に長さ約2cmの細いひびが1本発生し、約20時
間後に、このひびは3.5 cm程度に長くなったが、
60時間後の完全乾燥時までにはそれ以外の異常は認め
られなかった。また、焼成後においては、前記した1本
のひひのほかに、長さ1cIn以下の小さい新たなひび
が2個所に発生していた。この際の芯材は焼成時に溶融
して原形をとどめない程度番こまで変形し、この変形の
ためにひび割れが増加したと判断される節が多分にある
が、それ番こしても、この程度のひび割れであれば実笛
的番こは何等の支障にもならないことがわかった。
Table [Example 3] Same glass powder 70% as used in Example 1 and frog's eye clay 3
A CMC aqueous solution was added to the 0% mixture and kneaded in the same manner as in Example 2, and the mixture was pasted to a thickness of 6 mm in a thermoplastic resin container of the same shape as the core glass bottle used in Example 1. Exactly the same treatment as the sample of Example 1 was performed. The results are summarized in the table, and one thin crack about 2 cm in length appeared on the body about 10 hours after the start of drying, and about 20 hours later, this crack had grown to about 3.5 cm. ,
No other abnormality was observed by the time of complete drying 60 hours later. Furthermore, after firing, in addition to the one crack mentioned above, two new small cracks with a length of 1 cIn or less were generated. The core material at this time melts during firing and deforms to the extent that it no longer retains its original shape, and there are many joints where it is judged that cracks have increased due to this deformation. It turns out that if there are cracks in the pipe, it won't cause any problems with the real flute guard.

Claims (1)

【特許請求の範囲】[Claims] lO〜90喧量鴫のガラス粉末と、90〜10唄置%の
ろう石、粘土、陶石、石粉、アルミナ等の無機質粉末と
の混合物が主成分であることを特徴とする教材用粘土。
A clay for teaching materials, characterized in that the main component thereof is a mixture of glass powder of 10 to 90% and inorganic powder such as waxite, clay, pottery stone, stone powder, alumina, etc. of 90 to 10%.
JP21196481A 1981-12-23 1981-12-23 Teaching aid clay Pending JPS58111083A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21196481A JPS58111083A (en) 1981-12-23 1981-12-23 Teaching aid clay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21196481A JPS58111083A (en) 1981-12-23 1981-12-23 Teaching aid clay

Publications (1)

Publication Number Publication Date
JPS58111083A true JPS58111083A (en) 1983-07-01

Family

ID=16614615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21196481A Pending JPS58111083A (en) 1981-12-23 1981-12-23 Teaching aid clay

Country Status (1)

Country Link
JP (1) JPS58111083A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62156689A (en) * 1985-12-27 1987-07-11 瀬戸製土株式会社 Handicraft clay
JPH02107548A (en) * 1988-10-13 1990-04-19 Tsukasa Nakatsu Artificial stone and production thereof
US5171614A (en) * 1987-10-15 1992-12-15 Sandee Craft, Inc. Method of forming and using sculptable article

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62156689A (en) * 1985-12-27 1987-07-11 瀬戸製土株式会社 Handicraft clay
JPH0417436B2 (en) * 1985-12-27 1992-03-25 Seto Seido Kk
US5171614A (en) * 1987-10-15 1992-12-15 Sandee Craft, Inc. Method of forming and using sculptable article
JPH02107548A (en) * 1988-10-13 1990-04-19 Tsukasa Nakatsu Artificial stone and production thereof

Similar Documents

Publication Publication Date Title
US5763345A (en) Synthetic clay for ceramics and process for production thereof
DE102012015026A1 (en) Refractory product and use of the product
CN110655379A (en) Nano composite heat insulation plate and preparation method thereof
JPS5820751A (en) Calcium aluminum silicate glass and manufacture
CN109082942B (en) Fire-proof imitation Xuan paper "
JPS58111083A (en) Teaching aid clay
DE1471528A1 (en) Integrated ceramic body
JPS5988378A (en) Lightweight refractories and manufacture
JPH0611668B2 (en) Manufacturing method of high strength porcelain products
CN102166784A (en) Production method for forming attapulgite porous ceramic by pressing method
CN102180651B (en) Hollow grouting method for producing attapulgite porous ceramic
US3752682A (en) Zircon-pyrophyllite unfired refractory bricks and method for the manufacture of the same
JP3966411B2 (en) Artificial fishing reef and its manufacturing method
JPH11228219A (en) Production of high-density ito sintered compact utilizing ito recycled powder
JPS58100881A (en) Artificial clay
SU802237A1 (en) Charge for making ceramic articles
SU1020402A1 (en) Ceramic composition for making procelain products
JP3121937B2 (en) Vitreous sintered body
DE658893C (en) Process for the production of refractory products with practically no shrinkage
JP2001140319A (en) Manufacturing method for antibacterial pottery
SU1203071A1 (en) Ceramic compound
JP3033916B2 (en) Combined body composed of multiple porous ceramic particles
CN102180648B (en) Production method of porous attapulgite ceramic clay powder
TW574158B (en) Manufacturing method of glass ceramics and glaze through recycling display glass material
SU990733A1 (en) Binder for making products from oxide compositions