JPS5811084A - Desalting device for sea water - Google Patents

Desalting device for sea water

Info

Publication number
JPS5811084A
JPS5811084A JP56108640A JP10864081A JPS5811084A JP S5811084 A JPS5811084 A JP S5811084A JP 56108640 A JP56108640 A JP 56108640A JP 10864081 A JP10864081 A JP 10864081A JP S5811084 A JPS5811084 A JP S5811084A
Authority
JP
Japan
Prior art keywords
section
heat exchanger
seawater
absorption liquid
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56108640A
Other languages
Japanese (ja)
Other versions
JPS6344031B2 (en
Inventor
Akira Yamada
章 山田
Yasuo Koseki
小関 康雄
Sankichi Takahashi
燦吉 高橋
Ikuo Shimokawabe
下河辺 伊久夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56108640A priority Critical patent/JPS5811084A/en
Publication of JPS5811084A publication Critical patent/JPS5811084A/en
Publication of JPS6344031B2 publication Critical patent/JPS6344031B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/06Flash distillation
    • B01D3/065Multiple-effect flash distillation (more than two traps)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Abstract

PURPOSE:To make the reduction in water making costs possible by constituting a heating section of a regenerating section for absorbing liquid having a concentrator and a condenser contg. heat exchangers, and a diluting section for absorbing liquid having an evaporator and an absorber contg. heat exchangers. CONSTITUTION:Since a regenerating section 10 for absorbing liquid is held under the satd. pressure of heated absorbing liquid, the water of the absorbing liquid evaporates and steam migrates from a concentrator 11 to a condenser 12. Sea water 7 is kept flowed in the tubes of a heat exchanger 14 in the condenser 12, and the sea water 7 in the tubes is heated by receiving the heat of condensation of the steam in the tubes. The heated sea water is supplied to a sea water desalting device. Since a diluting section 20 for absorbing liquid is maintained at the satd. vapor pressure of the heated water, steam is generated and is absorbed in the absorbing liquid flowing from an evaporator 201 down into an absorber 22. Therefore, the absorbing liquid is heated by absorbing the enthalpy component that the condensed steam possesses and the sea water 7 in the heat transmitting tubes of a heat exchanger 24 is heated by such heated liquid.

Description

【発明の詳細な説明】 本発明は、海水淡水化装置、特に、多段フラッシュ蒸発
式の海水淡水化装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a seawater desalination apparatus, particularly a multistage flash evaporation type seawater desalination apparatus.

第1図は、従来の多段フラッシュ蒸発式の海水淡水化装
置の系統図で、1はブラインヒータ、2は熱回収部蒸発
段、3は熱放出部蒸発段、4は海水前処理装置、5はポ
ンプを示しており、通常は蒸気発生器(以下ボイラと称
する)より加熱用蒸気6ケブラインヒーターに尋人し、
この蒸気6の潜熱によって海水7が加熱される。この際
のブラインヒーター出口の海水温度は、一般に、100
C前後で運転されている。
Fig. 1 is a system diagram of a conventional multi-stage flash evaporation type seawater desalination equipment, in which 1 is a brine heater, 2 is a heat recovery section evaporation stage, 3 is a heat release section evaporation stage, 4 is a seawater pretreatment device, and 5 indicates a pump, and usually heating steam is supplied from a steam generator (hereinafter referred to as a boiler) to a 6-keb line heater,
Seawater 7 is heated by the latent heat of this steam 6. At this time, the seawater temperature at the outlet of the brine heater is generally 100
It is being driven around C.

特に、多段フラッシュ蒸発式海水淡水化装置は、大容敏
の海水淡水化に適しているが、海水の加熱源に高質の蒸
気を用いるため、その清水コストは年々高騰する一方で
あり、エネルギー源を輸入に頼っている国では、多段フ
ラッシュ蒸発式の海水淡水化装置の設置をためらいがち
で、このため、依然として渇水期の水不足を解消するの
に役立つ段階には致゛つていない。
In particular, multi-stage flash evaporative seawater desalination equipment is suitable for large-scale seawater desalination, but because it uses high-quality steam as a heating source for seawater, the cost of fresh water is rising year by year, and the energy Countries that rely on imported water sources tend to be reluctant to install multi-stage flash evaporation desalination systems, and as a result, they are still not at a stage where they can be useful in resolving water shortages during dry periods.

一方、近年のエネルギー危機はあらゆる方面において省
エネルギー化を促進させており、海水淡水化においても
例外ではなく、従来から排熱利用による多段フラッシュ
蒸発式の海水淡水化装置が提案されているが、熱ダ換の
ための伝熱面積が大きかったシ、あるいは、抽気に要す
る動力が多大になったりするため、実用化のためには解
決すべき狸々の問題を含んでいる。
On the other hand, the recent energy crisis has promoted energy conservation in all areas, and seawater desalination is no exception. There are many problems that need to be solved in order to put them into practical use, such as the large heat transfer area for the heat exchange or the large amount of power required for extraction.

本発明は、これらの問題点を除去し、熱水(以下ドレン
と称する)の形の通常の排熱を低温まで有効に使用でき
、造水コストの低減可能な海水淡水化装置の提供を可能
とすることを目的とし、加熱部、蒸発部および凝縮部を
主要溝成部分とする多段フラツンユ蒸発式の海水淡水化
装置において、加熱部を、それぞれ熱交換器を内蔵する
凝縮器および凝縮器を有する吸収液再生部とそれぞれ熱
交換器を内蔵する蒸発器および吸収器を有する吸収液希
釈部とよりなる吸収式熱交換器によって構成したことを
第1の特徴とし、前述の加熱部を、熱交換器を内蔵する
濃縮器および海水淡水化装置を循環する海水を分散流下
させる直接接触型凝縮器とよシなる吸収液再生部とそれ
ぞれ熱交換器を内蔵する蒸発器および吸収器を有する吸
収液希釈部とよシなる吸収式熱交換器によって構成した
ことを第2の特徴とするものである。
The present invention eliminates these problems and makes it possible to provide a seawater desalination device that can effectively use normal waste heat in the form of hot water (hereinafter referred to as drain) down to low temperatures and can reduce the cost of water production. In a multi-stage flattened evaporation type seawater desalination equipment that has a heating section, an evaporation section, and a condensation section as its main groove components, the heating section is replaced by a condenser with a built-in heat exchanger and a condenser, respectively. The first feature is that the absorption type heat exchanger is composed of an absorption liquid regeneration section having a heat exchanger and an absorption liquid dilution section having an evaporator and an absorber, each having a built-in heat exchanger. An absorbent liquid that has an absorbent regeneration unit, an evaporator and an absorber each with a built-in heat exchanger, which is similar to a concentrator with a built-in exchanger and a direct contact condenser that distributes and flows down the circulating seawater through a seawater desalination device. The second feature is that it is constituted by an absorption heat exchanger that is similar to the dilution section.

すなわち、第1図の従来の多段フラッシュ蒸発式の海水
淡水化装置の熱源にドレンを用いる場合を考えてみると
、ブラインヒータは、液−液伝熱となるため熱負流率の
低下を来し、OEって、ブラインヒータの伝熱面を犬d
〕に増加させる必要があり、また、ドレンの使用温度の
最低が100C以上に限定されるか、または、最高温度
を下げる必要が生じる。このように、従来型の多段フラ
ッシュ蒸発式の海水淡水化装置は、ボイラによる加熱用
蒸気を熱源として駆動される場合には有効に遣水できる
ものの、ドレン等の排熱源では、問題点が多く含まれて
いることが明らかになった。このような多段フラッシュ
蒸発式の海水淡水化装置の熱源にドレンを用いる場合の
問題点を、その加熱部に吸収式の熱交換器を用いること
によって解決したのが本発明で、これによって所期の目
的の達成を可能としたものである。
In other words, if we consider the case where a drain is used as the heat source in the conventional multi-stage flash evaporation seawater desalination equipment shown in Figure 1, the brine heater causes a drop in the negative heat flow rate due to liquid-liquid heat transfer. OE is the heat transfer surface of the brine heater.
), and either the minimum operating temperature of the drain is limited to 100C or higher, or the maximum temperature needs to be lowered. In this way, conventional multi-stage flash evaporation seawater desalination equipment can effectively dissipate water when driven by heating steam from a boiler as a heat source, but there are many problems when using exhaust heat sources such as drains. It became clear that The present invention solves the problem of using condensate as a heat source in a multi-stage flash evaporation type seawater desalination equipment by using an absorption type heat exchanger in the heating section. This made it possible to achieve the objectives of

以下、実施例について説明する。Examples will be described below.

第2図は、−実施例の系統図で、本発明の基本的の構成
を示している。この図で第1図と同一の部分には同一の
符号が付してあり、第1図と異なるところは、加熱部に
、ブラインヒータの代りに吸収式熱交換器が設置されて
いる点である。
FIG. 2 is a system diagram of an embodiment, showing the basic configuration of the present invention. In this figure, the same parts as in Figure 1 are given the same symbols, and the difference from Figure 1 is that an absorption heat exchanger is installed in the heating section instead of a brine heater. be.

この吸収式熱交換器は、吸収液再生部10と吸収液希釈
部20からなっておシ、吸収液再生部10は濃縮器11
、凝縮器12から、吸収液希釈部20は蒸発器21.吸
収器22からなっており、それぞれの器内には、熱交換
器13,14,23゜24が内蔵されており、熱交換器
13.23の管内にはドレン8を流し管外の吸収液を加
熱する。
This absorption heat exchanger consists of an absorption liquid regeneration section 10 and an absorption liquid dilution section 20.
, the condenser 12, the absorption liquid dilution section 20 is connected to the evaporator 21. It consists of an absorber 22, and heat exchangers 13, 14, 23゜24 are built into each vessel, and the drain 8 is flowed into the pipes of the heat exchangers 13 and 23 to remove the absorbed liquid outside the pipes. heat up.

この時、吸収液再生部10は加温された吸収液の飽和圧
力に保持されているため、吸収液の水分は蒸発し凝縮器
11から凝縮器12へ蒸気が移動する。凝縮器12内の
熱交換器14の管内には海水7が流れており、管外蒸気
の凝縮熱を得て管内の海水7は加熱され、海水淡水化装
置へ供給される。
At this time, since the absorption liquid regeneration unit 10 is maintained at the saturation pressure of the heated absorption liquid, the moisture in the absorption liquid evaporates and steam moves from the condenser 11 to the condenser 12. Seawater 7 is flowing inside the tubes of the heat exchanger 14 in the condenser 12, and the seawater 7 inside the tubes is heated by the heat of condensation of the steam outside the tubes, and is supplied to the seawater desalination apparatus.

一方、謎縮された吸収液は吸収器22へ移送され、熱交
換器24の管外を流下し、との時、蒸発器21の熱交換
器23の管内は熱交換器13で使用し一度が低下したド
レンが再び導入され、管外の水を加熱する。この際の吸
収液希釈部20はその加温水の飽和蒸気圧に保持されて
いるために、水蒸気が発生し、蒸発器21から吸収器2
2へ流れ、上方から部下する吸収液に吸収される。した
がって吸収液は凝縮した蒸気の持つエンタルピ分を吸収
して昇温する。この昇温液により熱交換器24の伝熱管
内を流れる海水7は加温され、海水淡水化装置へ供給さ
れる。
On the other hand, the absorbed liquid is transferred to the absorber 22 and flows down outside the tube of the heat exchanger 24. At this time, the inside of the tube of the heat exchanger 23 of the evaporator 21 is used in the heat exchanger 13 and once The condensate that has dropped is reintroduced and heats the water outside the tube. At this time, since the absorption liquid diluting section 20 is maintained at the saturated vapor pressure of the heated water, water vapor is generated and flows from the evaporator 21 to the absorber 2.
2, and is absorbed by the absorption liquid flowing from above. Therefore, the absorption liquid absorbs the enthalpy of the condensed vapor and increases its temperature. The seawater 7 flowing through the heat exchanger tubes of the heat exchanger 24 is heated by this heated liquid and is supplied to the seawater desalination apparatus.

このように動作する吸収式熱交換器を加熱部に用いた多
段フラッシュ蒸発式海水淡水化装置の具体列について説
明する。火力発電所等における各糧プロードレンの内、
例えば、194Cのドレンを便用した場合の使用温1]
I状況ケよ、熱交換器13においては145Cまで、熱
交]Q器23においては145C〜75Cである。そし
て、この時の海水淡水化装置への供給海水温度は常に9
50一定であり、ドレンの排出温度よりも高い温度の海
水を供給できる。したがって、熱水の有効活用を図るこ
とができる。
A specific example of a multi-stage flash evaporation seawater desalination apparatus using an absorption heat exchanger operating in this manner as a heating section will be described. Of the various types of food waste at thermal power plants, etc.
For example, the operating temperature when using a 194C drain 1]
In the I situation, the temperature is up to 145C in the heat exchanger 13, and 145C to 75C in the heat exchanger 23. At this time, the temperature of the seawater supplied to the seawater desalination equipment is always 9
50 constant, and can supply seawater at a temperature higher than the drain discharge temperature. Therefore, effective use of hot water can be achieved.

また、との実施列のように、濃縮器13と吸収器22と
の間に吸収液の貯留槽30が設けられている場合には、
この貯留槽30によシドレン績度が低下した場合、およ
び、流量が変化した場合でも、吸収液再生部10におけ
る海水加熱量を低下させ、吸収液希釈部20における海
水の加熱を行なわせることによって、海水淡水化装置へ
の入熱量を一定として安定な運転を行なうことが可能で
ある。
In addition, when an absorption liquid storage tank 30 is provided between the concentrator 13 and the absorber 22, as in the case of the example shown in FIG.
Even when the storage tank 30 causes a decrease in the performance of the sydren, or even when the flow rate changes, the amount of seawater heating in the absorption liquid regeneration unit 10 is reduced and the seawater is heated in the absorption liquid dilution unit 20. , it is possible to perform stable operation by keeping the amount of heat input to the seawater desalination equipment constant.

第3図は、他の実施例の系統図で、第2図と同一部分に
は同一符号が付しであるが、これが嬉2図の実施例と異
なるところは、吸収液再生部10と吸収液希釈部20と
の中間に通常の多管式熱交換器(以下中間ヒータと称す
る)40が設置しである点である。この実施例では、吸
収液再生部10と吸収液希釈部20において使用するド
レンの温度を最適化することができる。すなわち、前述
の実施例の説明で示した具体例では、吸収液再生部にお
けるドレンの使用温度は194C〜145C1一方吸収
液希釈部においては99C〜75Cとすることによって
同一流量のドレン量を処理でき、この場合の145C〜
75CIlま不要であったが、この実施例では、この部
分に中間ヒータ40を設置しておるので、この温度を利
用して海水を加熱することができる。すなわち、前述の
実施例の説明で示した具体例では不要であった温度の間
でも海水を加熱することができ、ドレンの有効利用をさ
らに進めることができ、熱水針当りの造水量が増大でき
る。
Figure 3 is a system diagram of another embodiment, in which the same parts as in Figure 2 are given the same reference numerals. An ordinary multi-tubular heat exchanger (hereinafter referred to as an intermediate heater) 40 is installed between the liquid diluting section 20 and the liquid diluting section 20. In this embodiment, the temperature of the drain used in the absorption liquid regeneration unit 10 and the absorption liquid dilution unit 20 can be optimized. That is, in the specific example shown in the explanation of the above-mentioned embodiment, the operating temperature of the condensate in the absorption liquid regeneration section is 194C to 145C1, while the same flow rate of condensate can be processed by setting it to 99C to 75C in the absorption liquid dilution section. , in this case 145C~
Although up to 75 CIl was not necessary, in this example, since the intermediate heater 40 is installed in this part, this temperature can be used to heat the seawater. In other words, it is possible to heat seawater to a temperature that was not necessary in the specific example shown in the explanation of the above-mentioned embodiment, and the effective use of drain can be further promoted, and the amount of fresh water produced per hot water needle is increased. can.

第4図は、さらに曲の実施例の系統図で、第2図および
第3図と同一部分には同一符号が付しである。この実施
例が、第3図の実施例と異なるところは、凝縮器120
代シに、海水を用いた直接接触式凝縮器15を用いてい
る点で、海水淡水化装置を循環する海水が分散用ノズル
16から分散流下して一、1器11から移動する蒸気と
直接接触して加熱され海水淡水化装置へ供給される。ま
た、(9) 蒸発器21への水の補給には、海水淡水化装置のブロー
ダウン海水9の一部を使用している。海水淡水化装置に
おけるブローダウン海水9はほぼ完全に脱気されている
ため、蒸発器21への補給水としては好適である。なお
、蒸発器21への補給水は真空で脱気されていれば、ブ
ローダウンした海水以外のものを用いることもできる。
FIG. 4 is a systematic diagram of an embodiment of the music, in which the same parts as in FIGS. 2 and 3 are given the same reference numerals. This embodiment differs from the embodiment of FIG.
In addition, since a direct contact condenser 15 using seawater is used, the seawater circulating in the seawater desalination equipment is dispersed and flowed down from the dispersion nozzle 16 and directly interacts with the steam moving from the first and second vessels 11. It is heated upon contact and supplied to the seawater desalination equipment. (9) To replenish water to the evaporator 21, a part of the blowdown seawater 9 of the seawater desalination apparatus is used. Since the blowdown seawater 9 in the seawater desalination apparatus is almost completely deaerated, it is suitable as makeup water to the evaporator 21. Note that the make-up water to the evaporator 21 may be other than blown-down seawater as long as it is deaerated in a vacuum.

この実施例は、第3図の実施例で最も伝熱面積の大きい
熱交換器14を省略することができるため、装置コスト
をさらに低減することができる。
In this embodiment, the heat exchanger 14, which has the largest heat transfer area in the embodiment of FIG. 3, can be omitted, so that the device cost can be further reduced.

第5図は、また、さらに他の実施例の要部系統図で、第
4図と同一部分には同一符号が付してあシ、この実施例
が第4図のものと異なるところは、第4図の実施例の中
間ヒータ40を直接接触式凝縮器15内に中間ヒータ4
1として設置しである点、および海水淡水化装置からの
海水の一部をこの中間ヒータ41の伝熱管に噴射させる
ノズル42が設けられている点である。なお、この実施
例では吸収液再生部10と吸収液希釈部2oとの間は貯
留槽を介さずに接続されている。
FIG. 5 is a system diagram of the main parts of still another embodiment, in which the same parts as in FIG. The intermediate heater 40 of the embodiment shown in FIG.
1, and a nozzle 42 is provided for injecting a portion of the seawater from the seawater desalination apparatus into the heat transfer tube of the intermediate heater 41. In this embodiment, the absorbent regenerating section 10 and the absorbent diluting section 2o are connected without a storage tank.

(10) この実施例では、中間ヒータのシェルを省略することが
でき、また、海水の一部を伝熱管に噴射させているので
、管表面を流下する流の攪拌を促進して熱貫流率を向上
させることが可1目となったのに伴ない伝熱面積を低減
できる効果がある。
(10) In this example, the shell of the intermediate heater can be omitted, and a portion of the seawater is injected into the heat transfer tube, which promotes agitation of the flow flowing down the tube surface and increases the heat transfer rate. It is now possible to improve the heat transfer area, which has the effect of reducing the heat transfer area.

このように、実施例の海水淡水化装置は、(1)排ドレ
ンを低温まで有効に使用することができるため、ドレ7
景当りの造水社が従来の装置の場合よシ増加する。
As described above, the seawater desalination apparatus of the embodiment has the following advantages: (1) The drain can be effectively used down to low temperatures;
The amount of water produced per unit will increase compared to the case with conventional equipment.

(2)装置コストの大半を占める伝熱面積を低減するこ
とができるため、安価な装置の提供が可能である。
(2) Since the heat transfer area, which accounts for most of the device cost, can be reduced, it is possible to provide an inexpensive device.

(3)吸収液貯留槽を設けることによシ、ドレンの温度
、流量変化を吸収することができ、安定した海水淡水装
置の運転条件が得られる。
(3) By providing an absorption liquid storage tank, changes in the temperature and flow rate of the drain can be absorbed, and stable operating conditions for the seawater freshwater apparatus can be obtained.

以上の如く、本発明の海水淡水化装置は、熱水の形の通
常の排熱を低温まで有効に使用でき、造水コストの低減
を可能とするもので、産業上の効果の犬なるものである
As described above, the seawater desalination apparatus of the present invention can effectively use normal waste heat in the form of hot water down to low temperatures, and can reduce the cost of water production, making it an industrially effective device. It is.

【図面の簡単な説明】[Brief explanation of the drawing]

(11) 第1図は、従来の海水淡水化装置の系統図、第2図、第
3図および第4図は、本発明の海水淡水化装置のそれぞ
れ異なる実施例の系統図、第5図は、同じ〈実施例の要
部の系統図である。 7・・・海水、8・・・ドレン、9・・・ブローダウン
海水、10・・・吸収液再生部、11・・・濃縮器、1
2・・・凝縮器、13.14・・・熱交換器、15・・
・直接接触式凝縮器、20・・・吸収液希釈部、21・
・・蒸発器、22・・・吸収器、23.24・・・熱交
換器、30・・・貯留槽、40.41・・・多管式熱交
換器。 代理人 弁理士 長崎博男 (ほか1名) (12) \0  1        \ \”1 ■
(11) FIG. 1 is a system diagram of a conventional seawater desalination device, FIGS. 2, 3, and 4 are system diagrams of different embodiments of the seawater desalination device of the present invention, and FIG. 5 is a system diagram of a conventional seawater desalination device. is a system diagram of the main parts of the same embodiment. 7... Seawater, 8... Drain, 9... Blowdown seawater, 10... Absorbent regeneration section, 11... Concentrator, 1
2... Condenser, 13.14... Heat exchanger, 15...
・Direct contact condenser, 20... Absorption liquid dilution section, 21.
...Evaporator, 22...Absorber, 23.24...Heat exchanger, 30...Storage tank, 40.41...Multiple tube heat exchanger. Agent Patent attorney Hiroo Nagasaki (and 1 other person) (12) \0 1 \\”1 ■

Claims (1)

【特許請求の範囲】 1、加熱部、蒸発部および凝縮部を主要]141部分と
する多段フラッシュ蒸発式の−N水淡水化装置において
、前記加熱部を、それぞれ熱交1匁器を内蔵する謎縮器
および凝縮器を有する吸11X液内生部とそれぞれ熱交
換器を内蔵する蒸発器および吸収器を有する吸収液希釈
部とよりなる吸収式熱交換器によって構成したことを特
徴とする海水淡水化装置。 2、前記吸収液再生部と前記吸収液希釈部との中間に多
管式熱交換器が設けである特許請求の範囲第1項記載の
海水淡水化装置。 3、前記吸収液再生部と前記吸収液希釈部との間に、前
記吸収液再生部からの礎縮液の貯留槽が設けである特許
請求の範囲第1項盪たは第2項記載の海水淡水化装置。 4、加熱部、蒸発部および凝縮部を主閥構成部分とする
多段フラッシュ蒸発式の海水淡水化装置において、前m
l加熱部を、熱交換器を内蔵する濃縮器および海水淡水
化装置を循環する海水を分散流下させる直接接触型凝縮
器よりなる吸収液再生部とそれぞれ熱交換器を内蔵する
蒸発器および吸収器を有する吸収液希釈部とよりなる吸
収式熱交換器によって構成したことを特徴とする海水淡
水化装置。 5、前記吸収液相、生部と前記吸収液希釈部との中間に
多管式熱交換器が設けである特許請求の範囲第4項記載
の河水淡水化装置。 6、前記多管式熱交換器が、前記直接接触型凝縮器内に
設けられ、かつ、海水淡水化装置を循環する海水の一部
を伝熱管に噴射させるノズルを有している特許請求の範
囲第5項記載の海水淡水化装置。 7゜前記吸収液再生部と前記吸収液希釈部との間に、前
記吸収液再生部からの濃縮液の貯留槽が設けである特許
請求の範囲第4項まだは第5項または第6項記載の汚水
飲水化装置。
[Claims] 1. A multi-stage flash evaporation type -N water desalination apparatus having 141 main parts including a heating part, an evaporation part and a condensation part, each of which has a built-in heat exchanger. Seawater characterized by being constituted by an absorption type heat exchanger consisting of an absorption liquid internal part having an enigma condenser and a condenser, and an absorption liquid dilution part having an evaporator and an absorber each having a built-in heat exchanger. Desalination equipment. 2. The seawater desalination apparatus according to claim 1, wherein a shell-and-tube heat exchanger is provided between the absorption liquid regeneration section and the absorption liquid dilution section. 3. The method according to claim 1 or 2, wherein a storage tank for condensate from the absorbent regenerating section is provided between the absorbent regenerating section and the absorbent diluting section. Seawater desalination equipment. 4. In a multi-stage flash evaporation type seawater desalination device whose main constituent parts are a heating section, an evaporation section and a condensation section,
The heating section is divided into an absorption liquid regeneration section consisting of a concentrator with a built-in heat exchanger and a direct contact condenser that distributes and flows down the seawater circulating through the seawater desalination device, and an evaporator and absorber each with a built-in heat exchanger. 1. A seawater desalination apparatus comprising an absorption heat exchanger comprising an absorption liquid diluting section having the following features: 5. The river water desalination apparatus according to claim 4, wherein a multi-tubular heat exchanger is provided between the absorbent liquid phase, raw part and the absorbent diluted part. 6. The multi-tubular heat exchanger is provided in the direct contact condenser and has a nozzle for injecting a part of the seawater circulating through the seawater desalination device into the heat transfer tubes. The seawater desalination device according to scope item 5. 7゜A storage tank for the concentrated liquid from the absorption liquid regeneration unit is provided between the absorption liquid regeneration unit and the absorption liquid dilution unit, claim 4 or claim 5 or 6. The sewage drinking water system described above.
JP56108640A 1981-07-10 1981-07-10 Desalting device for sea water Granted JPS5811084A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56108640A JPS5811084A (en) 1981-07-10 1981-07-10 Desalting device for sea water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56108640A JPS5811084A (en) 1981-07-10 1981-07-10 Desalting device for sea water

Publications (2)

Publication Number Publication Date
JPS5811084A true JPS5811084A (en) 1983-01-21
JPS6344031B2 JPS6344031B2 (en) 1988-09-02

Family

ID=14489912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56108640A Granted JPS5811084A (en) 1981-07-10 1981-07-10 Desalting device for sea water

Country Status (1)

Country Link
JP (1) JPS5811084A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006095397A1 (en) * 2005-03-07 2006-09-14 Hitachi Zosen Corporation Multi-stage flush type desalination system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5226373A (en) * 1975-08-22 1977-02-26 Sasakura Eng Co Ltd Brine heating method in evaporating apparatus for desalting of salt wa ter
JPS5551401A (en) * 1978-10-13 1980-04-15 Yazaki Corp Distilling apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5226373A (en) * 1975-08-22 1977-02-26 Sasakura Eng Co Ltd Brine heating method in evaporating apparatus for desalting of salt wa ter
JPS5551401A (en) * 1978-10-13 1980-04-15 Yazaki Corp Distilling apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006095397A1 (en) * 2005-03-07 2006-09-14 Hitachi Zosen Corporation Multi-stage flush type desalination system

Also Published As

Publication number Publication date
JPS6344031B2 (en) 1988-09-02

Similar Documents

Publication Publication Date Title
CN104769371A (en) Apparatus and method for vapor driven absorption heat pumps and absorption heat transformer with applications
CN105923676A (en) Efficient solar seawater desalination and air conditioner refrigeration combined operation method and system thereof
CN105819531A (en) Energy-saving heat pump type intermediate-temperature spray evaporation system
JPH06185828A (en) Absorption heat pump using low temperature heat source
JPS5811084A (en) Desalting device for sea water
JPH0742844B2 (en) Hot water turbine plant
JPS5886357A (en) Air-conditioning method utilizing solar heat and its device
CN207585143U (en) A kind of first-class absorption type heat pump of solar energy auxiliary heating
CN103145207B (en) Sea water desalting device for twin-stage recovery of flue gas waste heat of marine steam turbine
KR20130090477A (en) Marine vertical multistage desalinator
CN215161150U (en) Low-temperature multi-effect seawater desalination process system taking flue gas as heat source
JP2766741B2 (en) Exhaust heat recovery equipment for nuclear power plants
CN208856938U (en) A kind of desulfurization wastewater concentration structure
CN204778912U (en) Concentrated processing system of evaporation formula liquid
CN1962467B (en) Cyclic cooling water desalting method
CN207585131U (en) A kind of second-kind absorption-type heat pump of solar energy auxiliary heating
JPS58219371A (en) Double effect absorption type heat pump
JPS61161189A (en) Sea water desalting device
JPS5888002A (en) Distillation apparatus
JPS61141985A (en) Seawater desalting system
CN214840954U (en) System for recovering waste heat in seawater desalination process and using waste heat for heat source of boiler air heater
CN107651720A (en) A kind of multistage humidification dehumidification type sea water desalinating unit with loop type gravity assisted heat pipe structure
JP2018096673A (en) Absorption type heat exchanging system
CN217057589U (en) Flue gas waste heat utilization system
CN214399885U (en) Device for desalting seawater by using waste heat of thermal power