JPS58110602A - Removing method for organic material in sintered magnetic alloy - Google Patents

Removing method for organic material in sintered magnetic alloy

Info

Publication number
JPS58110602A
JPS58110602A JP21223981A JP21223981A JPS58110602A JP S58110602 A JPS58110602 A JP S58110602A JP 21223981 A JP21223981 A JP 21223981A JP 21223981 A JP21223981 A JP 21223981A JP S58110602 A JPS58110602 A JP S58110602A
Authority
JP
Japan
Prior art keywords
vacuum
org
degree
materials
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21223981A
Other languages
Japanese (ja)
Inventor
Takayoshi Sato
隆善 佐藤
Makoto Ushijima
誠 牛嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP21223981A priority Critical patent/JPS58110602A/en
Publication of JPS58110602A publication Critical patent/JPS58110602A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To remove the org. materials in a sintered alloy effectively and efficiently in an org. material removing treatment in a vacuum by specifying the degree of vacuum. CONSTITUTION:In order to remove org. materials such as wax and the like from the inside of moldings in the stage of molding and sintering powder and producing the magnetic alloy, the moldings are held and treated for a specified time at 20-1X10<-4>Torr degree of vacuum from 400 deg.C up to the sintering temp. of said alloy. Here it is admitted that, if the temp. is below the lower limit, the removal of most of org. materials is impossible. If the degree of vacuum is in excess of the upper limit, the surfaces of the metallic powder are made active at low temp. and stabilize by reacting with the C and O of the decomposed org. materials; therefore, the degree of vacuum is kept lower than the upper limit. If said degree is below the lower limit, the decomposed gases of the org. materials fill the furnace, by which the moldings are contaminated and are sintered defectively.

Description

【発明の詳細な説明】 本発明は焼結磁性合金を製造する場合に合金粉末等の成
形体に混合あるいは付着している有機物を除去する方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for removing organic matter mixed with or attached to a compact such as alloy powder when producing a sintered magnetic alloy.

一般に焼結磁石合金を製造する場合に、粉末からプレス
成形体を製造する時、合金粉及び成形体に付着している
有機物、また合金粉末等の物理的性質を改良するために
有機物(例えばワックス。
Generally, when producing a sintered magnetic alloy, when producing a press-formed body from the powder, organic matter adhering to the alloy powder and the compact, and organic matter (e.g. wax .

ステアリン酸、オレイン酸等)を添加することが知られ
ている。これ等粉末からの成形体中に有機物が存在した
ま\焼結磁性合金を製造すると、焼成中で焼結を妨害し
て完全なる焼結体を得ることが1べ難である。また仮り
に焼結が完全であっても焼結体中に有機物中の炭素が残
在することになる。
It is known to add stearic acid, oleic acid, etc.). If a sintered magnetic alloy is produced from these powders while organic substances are present in the compact, it will interfere with the sintering during firing, making it difficult to obtain a complete sintered body. Furthermore, even if sintering is complete, carbon in the organic matter will remain in the sintered body.

この時に残留炭素意の多い場合は、焼結体の磁性を低下
させることが知られている。その一つとして焼結磁性合
金中の有機物の除去方法に水素気流中で加熱還元し除去
する方法がある。この方法は、成形体の内部の有機物の
除却処理をすると、成形体の大きさにもよるが成形体の
表面部分は十分除去されるか、中心部分は除去が不十分
という現象が起きる。この現象が焼結磁性合金の最終特
性にバラツキを生じさせる原因となる。
It is known that if there is a large amount of residual carbon at this time, the magnetism of the sintered body will be reduced. One such method is to remove organic matter from a sintered magnetic alloy by heating and reducing it in a hydrogen stream. In this method, when the organic matter inside the molded body is removed, depending on the size of the molded body, the surface portion of the molded body may be sufficiently removed, or the central portion may be insufficiently removed. This phenomenon causes variations in the final properties of the sintered magnetic alloy.

これらの例として希土類磁性合金にIcA 0−WAX
(商品名)を添加した場合を示す。表1には残物炭素″
i]t(本発明では有機物の除去の有無は炭素量を分析
して判断した。)の関係を示し、表2にはその時の磁気
特性の違い示すものである。
Examples of these include IcA 0-WAX in rare earth magnetic alloys.
(Product name) is added. Table 1 shows residual carbon''
i]t (in the present invention, the presence or absence of removal of organic matter was determined by analyzing the amount of carbon), and Table 2 shows the differences in magnetic properties at that time.

表    1wt% 表    2 表1より外周部分と中心部分では明らかに残留炭素量に
差があることが判る。参考に成形体中の炭素量も示した
。表2には中心部と外周部を切断分離し、熱処理後の磁
気特性を示したが、炭素量の多い中心部はHc 200
0 oeと外周部の173の特性と低い値である。
Table 1wt% Table 2 From Table 1, it can be seen that there is a clear difference in the amount of residual carbon between the outer periphery and the center. The amount of carbon in the compact is also shown for reference. Table 2 shows the magnetic properties after heat treatment by cutting and separating the center and outer periphery.
It has a low value of 0 oe and a characteristic of 173 at the outer periphery.

本発明は上記従来技術の方式を改良し、焼結合金中の有
機物を有効かつ効率的に除去する方法を提供することを
目的とするものである。
An object of the present invention is to provide a method for effectively and efficiently removing organic matter from a sintered alloy by improving the above-mentioned prior art methods.

上記目的を達成するために真空中での脱有機物の従来技
術を改良し、多くの有機物の除去を可能処したものであ
る。ここでの有機物はパラビンワックス系、ステアリン
酸系、オレイン酸系、その他有機物と云われるもの全て
に適用する。
In order to achieve the above object, the conventional technology for removing organic substances in a vacuum has been improved, and it has become possible to remove many organic substances. The organic substances here apply to paravin wax-based, stearic acid-based, oleic acid-based, and all other organic substances.

本発明の有機物の除去条件400℃から焼結湿質で、真
空度20To r rからI XI W’Torrで一
定時間保持して処理するものであり、下限の温度は40
0℃とした400℃以下ではほとんどの有機物は除去不
明である墨が認められている。真空度は20Torrか
らI XI F’ Torrで行う。1 xl llr
’Torr 超える高真空で行った場合成形体中の菫属
粉の表面が低温度で活性になり、分解した有機物の炭素
及び酸・素と反応して安定化する。それ等を防止するた
めlX1(1−’Torrを超えない真空度で行う。ま
た20’l’Orr〜760Torrの真空度において
は有機物の分解ガスが充満し、成形体が汚染され焼結不
良となる。時間については装入蓋尋にもよるが参考にそ
れ等の1例を図1に示す。
The organic substance removal conditions of the present invention are sintered wet from 400°C and treated by holding for a certain period of time at a vacuum level of 20 Torr to IXI W'Torr, and the lower limit temperature is 40°C.
At temperatures below 400 degrees Celsius (0 degrees Celsius), black ink is observed in which most of the organic matter cannot be removed. The degree of vacuum is 20 Torr to IXI F' Torr. 1 xl llr
If the process is carried out under a high vacuum exceeding 100 Torr, the surface of the violet powder in the compact becomes active at low temperatures and stabilizes by reacting with the carbon and oxygen/element of the decomposed organic matter. In order to prevent this, the vacuum level is 1X1 (1-'Torr).In addition, at a vacuum level of 20'1'Orr to 760Torr, decomposition gas of organic matter will fill up, contaminating the compact and causing poor sintering. The time will depend on the charging capacity, but an example is shown in Figure 1 for reference.

図1はKAO−WAX (商品名)を希土類磁性合金に
使用した場合の温度700℃、真空度20To r r
〜1eTorr  処理での残留炭素量と時間との関係
を示す図でヘリ、図中1は2o′3x1sz (単位−
以下同じ)形状の成形体(約25F)の残留炭素量の変
化を、2は50X50X30形状の成形体(約4001
 )を、また3は多量の処理(約3両)の場合の変化量
を示したものである。これによれば少1の処理はもちろ
んであるが、多量処理においても2時間程度の処理で残
留炭素量が飽和していることがわかる。
Figure 1 shows KAO-WAX (product name) used in a rare earth magnetic alloy at a temperature of 700°C and a vacuum of 20 Torr.
This is a diagram showing the relationship between the amount of residual carbon and time in ~1eTorr treatment. 1 in the figure is 2o'3x1sz (unit -
2 is the change in the amount of residual carbon in a molded body (approximately 25F) with a shape of 50X50X30 (approximately 4001
), and 3 shows the amount of change in the case of processing a large amount (approximately 3 cars). According to this, it can be seen that the amount of residual carbon is saturated not only in a small amount of treatment but also in a large amount of treatment after about 2 hours of treatment.

以下本発明の実施例について説明する。Examples of the present invention will be described below.

実施例1 希土類磁性合金な焼結にて製造する場合に、合金粉末を
粉砕後KAO−WAXを添加しプレス成形後(炭素量分
析値α21 wt ’Ir )真空度20Tor r〜
I Ir4Torr温度700℃、時1’l!1i60
分のワックス除去処理を行い、次に本焼結を1200℃
で行りた。その後の試料を熱処理し残留炭素量と磁気特
性を調べた。表4にその結果を示す。
Example 1 When manufacturing a rare earth magnetic alloy by sintering, KAO-WAX is added after pulverizing the alloy powder, and after press molding (carbon content analysis value α21 wt'Ir) vacuum degree is 20 Tor r~
I Ir4Torr temperature 700℃, hour 1'l! 1i60
Wax removal treatment is performed for 1 minute, and then main sintering is performed at 1200℃.
I went there. The samples were then heat treated and the amount of residual carbon and magnetic properties were investigated. Table 4 shows the results.

表   4 表4より明らかなようにワックス泳去が行われた場合に
炭′Xthtが減少し、同時に密度および磁気特性も十
分な伽を得た。ここで脱ワックス工程無しのものは、炭
素が脱ワックス工程上りと比較して高いため、磁気特性
Hc 5500°e−(BH)max 160MQ−o
 eと低いことが明白である。
Table 4 As is clear from Table 4, when the wax was evaporated, the carbon'Xtht decreased, and at the same time, sufficient density and magnetic properties were obtained. Here, the one without the dewaxing process has a higher carbon content than the one after the dewaxing process, so the magnetic property Hc 5500°e-(BH)max 160MQ-o
It is clear that the value is low.

実施例2 希土類磁性合金を焼結に製板する場合に、合金粉末を粉
砕後ステアリン酸カルシウムを添加しプレス成形後(炭
素分析値は0.15wt%)真空度20To r r〜
10’ To r r 、温度500℃、時間60分の
ステアリン酸カルシウム除去処理を行い、次に1200
℃で本焼結を行った。その後の試料を熱処理し残留炭素
量と磁気特性を調べた。表5にその結果を示す。
Example 2 When producing a rare earth magnetic alloy by sintering, the alloy powder was crushed, calcium stearate was added, and after press molding (carbon analysis value was 0.15 wt%), the degree of vacuum was 20 Torr~
Calcium stearate removal treatment was performed at 10' Torr, temperature 500°C, and time 60 minutes, and then 1200° C.
Main sintering was performed at ℃. The samples were then heat treated and the amount of residual carbon and magnetic properties were investigated. Table 5 shows the results.

表    5 表5より明らかなようにステアリン酸カルシウム除去が
行われた場合に炭素量が減少し、同時に密度および磁気
特性も十分な値を得た。ここで脱ステアリン酸カルシウ
ム工程無しのものは、炭素が脱ステアリン酸カルシウム
工程有りと比較して高いため、磁気特性が低い。一方脱
ステアリン嘔カルシウム工程有りの場合では両特性を示
し、Hc6200 oe 、  (131()max 
22.6 MQ、oe ’fで得ら°れた。
Table 5 As is clear from Table 5, when calcium stearate was removed, the amount of carbon decreased, and at the same time, sufficient values for density and magnetic properties were obtained. Here, the material without the calcium stearate process has a higher carbon content than the material with the calcium stearate process, and thus has lower magnetic properties. On the other hand, the case with the destearinization step showed both characteristics, Hc6200 oe, (131()max
Obtained at 22.6 MQ, oe 'f.

実施例3 アルニコ磁石を焼結にて製造する場合、アルニコ合金成
分の粉末を用いステアリン酸カルシウムを添加しプレス
成形後(炭素量分析値は(Ll 2wt%)真空度20
Torr−10’Torr 、温度900’C1時間6
0分のステアリン酸カルシウム除去処理を行い、本焼結
1300℃で行った。その後の試料を熱処理し残留炭素
量と磁気特性を調べた。表7にそれらの結果を示す。
Example 3 When manufacturing an alnico magnet by sintering, use powder of alnico alloy components, add calcium stearate, press mold (carbon content analysis value: Ll 2wt%), vacuum degree 20
Torr-10'Torr, temperature 900'C 1 hour 6
Calcium stearate removal treatment was performed for 0 minutes, and main sintering was performed at 1300°C. The samples were then heat treated and the amount of residual carbon and magnetic properties were investigated. Table 7 shows the results.

表   7 表7から明らかな如く脱処理無しの場合は、炭素蓋が多
く含有し、磁気特性が減少している。一方温度900℃
、時間IHrの脱処理をすると炭素蓋が0.04”t%
と減少し、磁気時性Hcが550と高い値を示している
ものである。
Table 7 As is clear from Table 7, in the case without detreatment, a large amount of carbon cap was contained and the magnetic properties were decreased. On the other hand, the temperature is 900℃
, after IHr detreatment, the carbon cap was reduced to 0.04”t%.
and the magnetic temporal Hc shows a high value of 550.

以上説明した如く本弗明による真空で有機物を除去する
方法を示したものであり、温度400℃〜焼結温度、真
空度20’l’orr〜10Torrで一定時間保持し
、処理することにより、水素中処理及び従来の真空処理
方法よりは有効に有機物の除去をすることが出来たもの
であり、工業的に多大な効果を得られる。
As explained above, this method shows the method of removing organic substances by vacuum according to Honfumei, and by holding and processing at a temperature of 400°C to sintering temperature and a vacuum degree of 20'l'orr to 10 Torr for a certain period of time, This method was able to remove organic substances more effectively than hydrogen treatment and conventional vacuum treatment methods, and a great industrial effect can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

Claims (1)

【特許請求の範囲】 粉末を成形し焼結して製造される磁性合金の製造におい
て、温度400℃からその合金の焼結温度シ 迄鬼真空度20Torr〜I Xl ff’ Torr
に保ちながら一定時間保持し処理することを%徴とする
焼結磁性合金中の有機物除去方法。
[Claims] In the production of a magnetic alloy produced by molding and sintering powder, the temperature is from 400°C to the sintering temperature of the alloy, and the vacuum level is 20 Torr to IXl ff' Torr.
A method for removing organic matter from a sintered magnetic alloy, which involves holding and treating it for a certain period of time while maintaining the temperature.
JP21223981A 1981-12-24 1981-12-24 Removing method for organic material in sintered magnetic alloy Pending JPS58110602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21223981A JPS58110602A (en) 1981-12-24 1981-12-24 Removing method for organic material in sintered magnetic alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21223981A JPS58110602A (en) 1981-12-24 1981-12-24 Removing method for organic material in sintered magnetic alloy

Publications (1)

Publication Number Publication Date
JPS58110602A true JPS58110602A (en) 1983-07-01

Family

ID=16619268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21223981A Pending JPS58110602A (en) 1981-12-24 1981-12-24 Removing method for organic material in sintered magnetic alloy

Country Status (1)

Country Link
JP (1) JPS58110602A (en)

Similar Documents

Publication Publication Date Title
US4996022A (en) Process for producing a sintered body
JP6733533B2 (en) Method for manufacturing RTB-based sintered magnet
JPH04228464A (en) Production of sintered material of calcium carbonate and sintered material of calcium carbonate
JPS58110602A (en) Removing method for organic material in sintered magnetic alloy
JPH02164008A (en) Manufacture of soft magnetic sintered body of fe-si alloy
US4318876A (en) Method of manufacturing a dense silicon carbide ceramic
JPH0521220A (en) Method for producing injection-molded pure iron-sintered soft magnetic material with high residual magnetic flux density
JPH07116487B2 (en) Method for degreasing metal powder injection molded body
US3066022A (en) Process for the manufacture of pulverized iron
JPS6389636A (en) Manufacture of ti-alloy product
JPS6046908A (en) Production of sic powder
JPS59162202A (en) Manufacture of sintered soft magnetic material
JPH04224608A (en) Manufacture of alloy powder containing rare earth metal using reduction diffusing method
JP2666955B2 (en) Method for producing SiC component and container for sintering SiC component
JPH07113102A (en) Production of sintered compact
JPS62122108A (en) Manufacture of sintered rare earth magnet
JPH0345567A (en) Production of sintered granular material
JP2004115883A (en) Granulated powder, production method therefor, and sintered compact using the same
JPS6179702A (en) Production of sintered soft magnetic iron-silicon parts
JPH05125406A (en) Method for removing binder from injection-molded body using calcium carbonate
JPS6310118B2 (en)
JPS60230957A (en) Manufacture of permanent magnet
JPH06275452A (en) Manufacture of dust core
JPH02115304A (en) Material for metallic mold
JPH04337040A (en) Production of tungsten heavy alloy product