JPS58110496A - Silicon crystal - Google Patents

Silicon crystal

Info

Publication number
JPS58110496A
JPS58110496A JP21226581A JP21226581A JPS58110496A JP S58110496 A JPS58110496 A JP S58110496A JP 21226581 A JP21226581 A JP 21226581A JP 21226581 A JP21226581 A JP 21226581A JP S58110496 A JPS58110496 A JP S58110496A
Authority
JP
Japan
Prior art keywords
crystal
silicon
silicon crystal
oxygen
semiconductor devices
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21226581A
Other languages
Japanese (ja)
Inventor
Kazunori Imaoka
今岡 和典
Kunihiko Wada
邦彦 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP21226581A priority Critical patent/JPS58110496A/en
Publication of JPS58110496A publication Critical patent/JPS58110496A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/167Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table further characterised by the doping material

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To provide a silicon crystal which provides semiconductor devices having excellent electrical characteristics by specifying the concn. of oxygen to be contained therein. CONSTITUTION:The concn. of oxygen contained in a silicon crystal is set at (1.6+ or -0.1)X10<3>cm<-3>. The semiconductor device using the substrate produced by slicing this silicon crystal into a wafer has less crystal defects in element forming areas and improves the electrical characteristics of semiconductor devices, for example, a longer time for holding storage of storage devices.

Description

【発明の詳細な説明】 (1)  発明の技術分舒 本発明は半導体素子を形成するシリコン結晶に関し、特
にすぐれた電気的特性をもった半導体装置が得られるシ
リコン結晶の材質に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical division of the invention The present invention relates to silicon crystals forming semiconductor elements, and particularly to silicon crystal materials from which semiconductor devices with excellent electrical characteristics can be obtained.

(乃 技術の背景 近年、半導体装置が小履化され、^集積化されて、IC
,LSl、 VLSIと進歩するにしたがうて、半導体
結晶の品質が益々大鎗な間層となっている。
(No Technology Background In recent years, semiconductor devices have become smaller and more integrated, and IC
, LSI, and VLSI, the quality of semiconductor crystals has become increasingly important.

特にシリコン(St) @晶の作成の主流をなしている
チ画りラルス中−(CZ)法は、石英るつぼから111
11(0公を多電に混入することになや、他の不純9注
11sれている不純物である。又、kl嵩(C)や鉄(
F・)などの重金属の混入も避けることは困離である。
In particular, the CZ (CZ) method, which is the mainstream method for producing silicon (St) crystals, is a
11(0) is an impurity that is mixed with other impurities (C) and iron (
It is also difficult to avoid contamination with heavy metals such as F.).

しかも、重金属の場合には、シリコン結晶作成中に混入
する上にシリコンウェハーとしてウェハー処理工程中に
も混入することが多くχ、これら不純物が含有されると
結晶欠il!(積層欠陥や転位など)を誘発し、半導体
装置の電気的特性の低下例えばジャンクシ、ン漏洩電流
の増加や記憶保持時間の減少をきたす。
Moreover, in the case of heavy metals, they often get mixed in during the silicon crystal creation process and also during the wafer processing process for silicon wafers.If these impurities are included, crystal defects! This induces stacking faults, dislocations, etc., resulting in a decrease in the electrical characteristics of the semiconductor device, such as an increase in junction leakage current and a decrease in memory retention time.

(3)  従来技術と問題点 したがって、従来から結晶欠陥を出来るかぎり減少させ
る検討がなされていて、例えばシリコンウェハーの裏面
に高濃度不純物(例えば燐)層を作ったり、又窒化シリ
コン躾な被着したり、又レーザ照射したりして、欠陥層
を裏面に作成し、故意に不純物を裏面に吸収するゲッタ
リング(g@t t・ring)  効果をもたせ、半
導体素子を形成するシリコンウェハー表面の結晶欠陥を
少(する方法が又、シリコンウェハーの表面に無欠陥層
(d@nudad son・;デヌーデッドゾーン)を
作成するためのウェハー状態での熱処理方法も提案され
てありこのようなデヌーデッドゾーンの形成も、むしろ
内面に酸虜の析出に基づく結晶欠陥を形成して、重金属
などをゲッターする(intrinsic g@tte
ring)効果を狙ったものである。これはシリコン結
晶中に含まれる酸素量が関与すると考えられている。
(3) Prior art and problems Therefore, studies have been made to reduce crystal defects as much as possible, such as by forming a layer of highly concentrated impurities (e.g., phosphorus) on the back side of a silicon wafer, or by applying a layer of silicon nitride to the surface. A defect layer is created on the back surface by laser irradiation, and gettering (g@t t ring), which intentionally absorbs impurities on the back surface, is used to create a gettering effect on the surface of the silicon wafer on which semiconductor devices are formed. A method for reducing crystal defects has also been proposed, as well as a heat treatment method in the wafer state for creating a defect-free layer (denuded zone) on the surface of a silicon wafer. The formation of a nude zone is rather the formation of crystal defects based on the precipitation of acid holes on the inner surface, which getter heavy metals (intrinsic g@tte).
ring) effect. This is thought to be related to the amount of oxygen contained in the silicon crystal.

(荀発明の目的 本発明は含有酸素量に着目し、半導体素子の電気的特性
を向上Sするため、シリコン結晶中の最適の酸素濃度量
の検討を行なった。
(Purpose of the Invention The present invention focuses on the amount of oxygen contained, and in order to improve the electrical characteristics of a semiconductor element, the optimum oxygen concentration in a silicon crystal has been investigated.

(5)発明の構成 その結果、酸素濃度を(1,6±0.1) X 10”
ff1−”の範囲とするシリコン結晶が、半導体デバイ
スに最も適していることが判明り、  したがりて、か
ような含有I11!素濃度をもりたシリコン結晶を半導
体素子の基板とすることを提案するものである。
(5) Structure of the invention As a result, the oxygen concentration is (1,6±0.1) x 10”
It has been found that a silicon crystal having a concentration of I11! is the most suitable for semiconductor devices. Therefore, it is proposed that a silicon crystal having such a concentration of I11! be used as a substrate for a semiconductor device. It is something.

(6)  発明の実施例 以下詳纏に説明すると、閣はシリコン!晶中に含有する
酸素濃度COi )を横軸とし、ライフタイム[ffJ
を縦軸としたデータ図表な示す。周知のようにライフタ
イム(Generation Lif@Time)は、
結晶中に発生した電子と正孔とが再結合して消滅するま
でのiIP命時開時間不純物菫や欠陥に関係し、長い時
間生存すれば、結晶純度がよいこと・こなる。
(6) Examples of the invention To explain in detail below, the cabinet is made of silicon! The horizontal axis is the oxygen concentration COi contained in the crystal, and the lifetime [ffJ
A data chart with the vertical axis shown. As is well known, Generation Life@Time is
The iIP life time until electrons and holes generated in the crystal recombine and disappear is related to impurities and defects, and the longer they survive, the better the crystal purity.

したがって、一般には不純物濃度が増加すればライフタ
イムは減少する筈であるが、検討した結果によれば図示
のように#巣濃度はl−6X 10%l−”で最高のラ
イフタイム値を得ることかで糠た。試料はすべて、半導
体素子の熱処理条件を勘案して不活性ガス中、1000
〜1100℃で数10分関7二−ルしており、これが大
きな影響を与えているものと考えられる。しかし半導体
素子は上記温度で表面陵化したり、又不純物の拡散や、
イオン注入時の熱処理が行なわれるため、#4様の条件
で熱逃塩した試料によったものである。
Therefore, in general, the lifetime should decrease as the impurity concentration increases, but according to the results of the study, the highest lifetime value is obtained when the nest concentration is l-6X 10%l-'' as shown in the figure. All samples were heated at 1,000 °C in an inert gas, taking into consideration the heat treatment conditions for semiconductor devices.
It was heated for several tens of minutes at ~1100°C, and this is considered to have a large influence. However, the surface of semiconductor devices may become ridged at the above temperatures, and impurity diffusion may occur.
Since heat treatment is performed at the time of ion implantation, the samples were heat-released and salted under conditions similar to #4.

図において、1.5 x lO”ai””以下のaI素
濃度領域なA * 1.5〜L7 X 10’(II噌
のta素濃度領域を8.1.7X 10’m”以上の酸
素濃度領域をCとすると、領域Aは酸素濃度が少ないた
め、酸素析出による結晶欠陥が少なく、それによる重金
属のゲッターが減少して、重金属の存在がライフタイム
を短くしているものと推察される。また、領域Cは酸素
含有量が多く表面近傍まで酸素析出に伴う結晶欠陥が発
生し、ライフタイムを短かくしてお9、領域Bでは適当
な酸素濃度によって適量の結晶欠陥があや、それが重金
属なゲッターすると共に、試料表面から酸素が上記の熱
搗環によって蒸発する作用も加わって、結晶欠陥が少な
く、ライフタイムを長くしていると思われる。
In the figure, the aI elementary concentration region of 1.5 x lO"ai"" or less A*1.5~L7 Assuming that the concentration region is C, the oxygen concentration in region A is low, so there are few crystal defects due to oxygen precipitation, which reduces the number of heavy metal getters, and it is inferred that the presence of heavy metals shortens the lifetime. In addition, in region C, the oxygen content is high and crystal defects occur near the surface due to oxygen precipitation, shortening the lifetime9, while in region B, an appropriate amount of crystal defects occur due to an appropriate oxygen concentration, which are caused by heavy metals. In addition to the gettering, oxygen is evaporated from the sample surface by the above-mentioned thermal ringing, which seems to result in fewer crystal defects and a longer lifetime.

したがって、シリコン結晶中に含まれる過飽和の酸素量
は、他の微量不義物と異なり熱処理による拡散、放出、
あるいは析出によって表面の素子形成領域は無欠陥層と
し内部無欠陥領域に重金属などの不純物をゲッターする
作用があるため、むしろある程度含まれる方が望ましい
結果をえたものである。
Therefore, unlike other trace impurities, the amount of supersaturated oxygen contained in silicon crystals is due to diffusion and release due to heat treatment.
Alternatively, since the element formation region on the surface becomes a defect-free layer by precipitation and has the effect of gettering impurities such as heavy metals in the internal defect-free region, it is preferable that the element be included to some extent.

このような限定薯れた酸素含有量の調節は、C2法でシ
リコン単結晶な作成する際に、結晶成長条件や石英るつ
ぼの形状、檜及びるつぼの回転速度などを変えて行なう
ことができる。
Such limited oxygen content adjustment can be carried out by changing the crystal growth conditions, the shape of the quartz crucible, the rotation speed of the cypress and crucible, etc. when producing a silicon single crystal using the C2 method.

又、酸素含有量の測定は赤外吸収分光法によって行なう
ことができ、上記測定値はそれ昏こ依ったものである。
Further, the oxygen content can be measured by infrared absorption spectroscopy, and the above measurement values are based thereon.

尚、度素含有蓋も同様の測定法でえられるが、炭素は出
来るだけ少い方が良く、上記の試料は同測定法で検出さ
れる値以下、即ちlX10ムー゛1以下のものを用いた
Incidentally, carbon-containing lids can be obtained by the same measuring method, but it is better to have as little carbon as possible, and the above sample should be less than the value detected by the same measuring method, that is, less than 1 × 10 mu 1. there was.

(7)発明の効果 以上の説明から明らかなよう舎こ、本発明は半導体素子
を形成するシリコン結晶の酸素濃度を一定範囲に規制す
る提案であり、このようなシリコン結晶をウェハー裁断
して使用すれば、それを基板とした半導体装置は、素子
形成領域の結晶欠陥が少なくて、例えば配憶素子の記憶
保持時間が長くなるなど半導体装置の電気的特性の向上
に極めて貢献するものである。
(7) Effects of the Invention As is clear from the above explanation, the present invention is a proposal for regulating the oxygen concentration of silicon crystals forming semiconductor elements within a certain range, and that such silicon crystals can be cut into wafers and used. Therefore, a semiconductor device using this as a substrate has fewer crystal defects in the element formation region, which greatly contributes to improving the electrical characteristics of the semiconductor device, for example, by increasing the memory retention time of the storage element.

【図面の簡単な説明】[Brief explanation of the drawing]

図は酸素濃度とライフタイムとの関連を示す図表である
。 図中、領域Bは(1,6±0.1) X 10”tm−
”  範囲を示す。 593−
The figure is a chart showing the relationship between oxygen concentration and lifetime. In the figure, area B is (1,6±0.1) x 10”tm-
” indicates the range. 593-

Claims (1)

【特許請求の範囲】[Claims] 含有酸素濃度を(1,6±Q、l ) X IQ”ar
”と、したことを特徴とするシリコン結晶。
The oxygen concentration is (1,6±Q,l) X IQ"ar
A silicon crystal that is characterized by the following.
JP21226581A 1981-12-24 1981-12-24 Silicon crystal Pending JPS58110496A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21226581A JPS58110496A (en) 1981-12-24 1981-12-24 Silicon crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21226581A JPS58110496A (en) 1981-12-24 1981-12-24 Silicon crystal

Publications (1)

Publication Number Publication Date
JPS58110496A true JPS58110496A (en) 1983-07-01

Family

ID=16619712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21226581A Pending JPS58110496A (en) 1981-12-24 1981-12-24 Silicon crystal

Country Status (1)

Country Link
JP (1) JPS58110496A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5329677A (en) * 1976-08-30 1978-03-20 Burroughs Corp Method of and apparatus for chemically treating specimen only on one side thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5329677A (en) * 1976-08-30 1978-03-20 Burroughs Corp Method of and apparatus for chemically treating specimen only on one side thereof

Similar Documents

Publication Publication Date Title
JP3381816B2 (en) Semiconductor substrate manufacturing method
JPH05291097A (en) Silicon substrate and manufacture thereof
JP2003068743A (en) Epitaxial wafer and its manufacturing method
JP4035886B2 (en) Silicon epitaxial wafer and manufacturing method thereof
JPS58110496A (en) Silicon crystal
JPH0514418B2 (en)
CN111279461B (en) Semiconductor wafer composed of monocrystalline silicon
JPH0574784A (en) Manufacture of silicon substrate
JPH023539B2 (en)
JPS594128A (en) Manufacture of semiconductor device
JPS6326541B2 (en)
JP2774855B2 (en) Gettering effect enhanced silicon substrate and method of manufacturing the same
JPH11297704A (en) Evaluation method for oxygen deposit density
JP3238957B2 (en) Silicon wafer
JPS58197716A (en) Silicon wafer
JPS6097619A (en) Manufacture of semiconductor
JP2002076005A (en) Single crystal silicon wafer
JPS5994809A (en) Production of semiconductor element
JP3220961B2 (en) Manufacturing method of epitaxial semiconductor wafer
JPS59119842A (en) Manufacture of semiconductor device
JP2643975B2 (en) Silicon single crystal
JPS58210627A (en) Preparation of semiconductor device
KR100708942B1 (en) Semiconductor wafer and manufacturing method thereof
JP2681112B2 (en) Method for manufacturing silicon substrate for semiconductor device
JPH06166595A (en) Silicon wafer