JPS58110037A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS58110037A
JPS58110037A JP56208077A JP20807781A JPS58110037A JP S58110037 A JPS58110037 A JP S58110037A JP 56208077 A JP56208077 A JP 56208077A JP 20807781 A JP20807781 A JP 20807781A JP S58110037 A JPS58110037 A JP S58110037A
Authority
JP
Japan
Prior art keywords
layer
contact
substrate
type
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56208077A
Other languages
Japanese (ja)
Inventor
Mototsugu Ogura
基次 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP56208077A priority Critical patent/JPS58110037A/en
Publication of JPS58110037A publication Critical patent/JPS58110037A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To remarkably reduce the fraction defective of a fine dimension connection by a method wherein a resist mask is applied to excessively etch an opening section and impurity ion of the same conductivity type as that of a diffusion layer is implanted into a three-dimensionally expanded contact area by self-alignment. CONSTITUTION:A resist mask 6 is applied to a P type Si substrate 1 formed with an N layer 3, a field oxide film 2, SiO3 4, and a poly Si layer 5 and is nearly vertically opened 8 from a window section 7 by directional plasma etching (used C4F8 gas), and contact area is three-dimensionally expanded. Then, ion implantation 9 is applied by N type phosphate, and an electrode 10 is provided by removing the mask 6 to complete a self-alignment connection. No short- circuit between the substrate 1 and the N layer 3 occurs by interposing an N layer 9, and fraction defective remarkably decreases.

Description

【発明の詳細な説明】 本発明は、LSI等の微細構造素子におけるコンタクト
不良率が低い半導体装置の製造方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a semiconductor device with a low contact failure rate in a microstructure element such as an LSI.

最小寸法が2〜:3#I程度のLSI素子の製造におい
ては、素子寸法に余裕度がなく、この程度の小さな寸法
にもなると、例えばMOS −FETではシミ領域でも
ある。そして、この程度の寸法の素子で′はそのコンタ
クト穴も2〜3μmで、しかもマスク合せの余裕度等の
制約からコンタクト穴の半分程度はLOCO8の厚い酸
化峡で覆われてしまっており、実質的なコンタクト穴の
サイズはlμrrL2程度となる。したがって、この実
質的なコンタクト穴のサイズを工、チング量の大きさで
制御するご七が困難となり、半導体素子のコンタクト不
良率が大きくなるという問題があった。
In the manufacture of LSI elements with a minimum dimension of about 2 to 3 #I, there is no margin for element dimensions, and such a small dimension is also a stain area in, for example, a MOS-FET. In an element of this size, the contact hole is also 2 to 3 μm, and due to constraints such as mask alignment margin, about half of the contact hole is covered with a thick oxidation layer of LOCO8. The typical size of the contact hole is approximately lμrrL2. Therefore, it becomes difficult to control the actual size of the contact hole by the amount of machining and chipping, and there is a problem in that the contact failure rate of semiconductor devices increases.

本発明の目的は、このような問題を解決するため、LS
I等の微細構造素子における微細寸法コ/タクトのコン
タクト面積を三次元的に拡大するこ、!−に!5、:7
ンタクト不良率が低いセルファラインコンタクト穴形成
ノロセスを含む半導体装置の製造方法を提供することで
ある。
The purpose of the present invention is to solve such problems by
To three-dimensionally expand the contact area of fine dimensions and tact in fine structure elements such as I! -to! 5, :7
It is an object of the present invention to provide a method for manufacturing a semiconductor device including a self-line contact hole formation process with a low contact defect rate.

次に、本発明に係る半導体装置の製造方法を実施例に基
づいて説明する。第1図は、開穴部形成用レジスト・ぐ
ターンの断面図であって、P型(もしくはN型)のシリ
コン基板1上にLOCO8酸化膜2とN型(もしく・は
P型)拡散層3を形成し、さらにこの上部にS iO3
絶縁酸化膜4が形成されている。なお、5はポリシリコ
ン層で、例えばダート電極に相当するものである。この
ような構造を有する基板の上部にホトレノストを塗布し
てホトレジストノ母ター76を設け、ホトエツチングに
よシセルファラインコンタクト穴用開穴部7をノぐター
ン形成する。
Next, a method for manufacturing a semiconductor device according to the present invention will be described based on examples. FIG. 1 is a cross-sectional view of a resist pattern for forming an opening, in which a LOCO8 oxide film 2 and an N-type (or P-type) are diffused on a P-type (or N-type) silicon substrate 1. Layer 3 is formed, and SiO3 is further formed on top of this layer 3.
An insulating oxide film 4 is formed. Note that 5 is a polysilicon layer, which corresponds to, for example, a dirt electrode. A photoresist matrix 76 is provided by applying photorenost to the upper part of the substrate having such a structure, and a hole 7 for a self-aligned contact hole is formed by photoetching.

このようにして形成されたホトレジストノやター76を
エツチングマスクとしてS iOs絶縁酸化膜4をエツ
チングする。このときのエツチング量はS iOs絶縁
酸化JI4の膜厚だけではなく、コンタクト面積を三次
元的に拡大するために更にエツチングし、オーバエツチ
ングとするのが望ましい。しかし、ホトレジストノJ?
ターン6の横方向へのエツチング入p込み量は最小限に
抑える必要があるため、エツチングに指向性を持つプラ
ズマエツチング法を用いることが望ましい。例えばSi
O絶縁酸化膜4の膜厚が2000^である場合には、作
用ガスとして04F、 f!ス(100%)を用い、そ
の全EE O,07Torrとし、高周波電力200W
の状態で約3分間エツチングし、さらに2分間程度のオ
ーバエツチングを行なうと、5in3絶縁酸化膜4下の
拡散層3の表面が100X程度工、チングされる。
The SiOs insulating oxide film 4 is etched using the photoresist layer 76 thus formed as an etching mask. The amount of etching at this time is not limited to the thickness of the SiOs insulating oxide JI4, but is preferably further etched and over-etched in order to three-dimensionally expand the contact area. However, Photoresist No.J?
Since it is necessary to minimize the amount of etching intrusion into the turns 6 in the lateral direction, it is desirable to use a plasma etching method with directional etching. For example, Si
When the thickness of the O insulating oxide film 4 is 2000^, the working gas is 04F, f! (100%), its total EE O, 07 Torr, high frequency power 200W
When etching is carried out for about 3 minutes in this state and over-etching is further carried out for about 2 minutes, the surface of the diffusion layer 3 under the 5in3 insulating oxide film 4 is etched by about 100X.

こ−一のようなエツチング工程によシ、第2図に示され
声開穴部8が形成される。
Through this etching process, the opening 8 shown in FIG. 2 is formed.

次に、例えばこの開穴部8を形成する際に用いたホトレ
ジストノやターン6をマスクとしてN型拡散層(もしく
はP型)3と同一の伝導型の不純物、例えばリンをイオ
ン注入法等で打ち込み、第3図に示されたイオン注入領
域9を形成する。なお、イオン注入領域9はガス拡散法
やドーグオキサイド法によって形成してもよい。
Next, an impurity of the same conductivity type as the N-type diffusion layer (or P-type) 3, such as phosphorus, is added by ion implantation using the photoresist layer or turn 6 used to form the hole 8 as a mask. Implantation forms the ion implantation region 9 shown in FIG. Note that the ion implantation region 9 may be formed by a gas diffusion method or a dogu oxide method.

このようにして形成された開穴部8にし・シスト・ぐタ
ーン除去した後、第4図に示されたように電極10を形
成することにより、セルファラインコンタクトが形成さ
れる。このとき、上述のイオン注入によシ、St基板l
に拡散層3と同伝導型の不純物のイオン注入領域9が形
成されているので、三次元的なコンタクト形成を持つ電
極10を設けてもSt基板lとN型拡散層3とが短絡状
態となることはない。
After removing cysts and gas from the hole 8 thus formed, an electrode 10 is formed as shown in FIG. 4, thereby forming a self-line contact. At this time, due to the above-mentioned ion implantation, the St substrate l
Since an ion-implanted region 9 of an impurity of the same conductivity type as the diffusion layer 3 is formed in the ion implantation region 9, the St substrate 1 and the N-type diffusion layer 3 will not be short-circuited even if the electrode 10 with three-dimensional contact formation is provided. It won't happen.

以上説明したように本発明においては、拡散層と同一伝
導型の不純物をコンタクト形成用の開穴部を介して基板
に注入するので、コンタクト形成用の開穴部をオーバエ
ツチングしてコンタクト面積を三次元的に拡大できるた
め、コンタクト不良率を極めて低く抑えることが可能と
なる。
As explained above, in the present invention, an impurity of the same conductivity type as that of the diffusion layer is injected into the substrate through the contact forming hole, so the contact area is increased by over-etching the contact forming hole. Since it can be expanded three-dimensionally, it is possible to keep the contact failure rate extremely low.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は開穴部形成用レノスト・フタ−/を示す断面図
、第2図は開穴部形成後のパターンの断面図、第3図は
不純物注入後の断面図、第4図は開穴部に電極を設けた
場合の断面図である。 1・・・Si基板、2・・・LOCO8酸化膜、3・・
・拡散層゛、4・・・Si絶縁酸化膜、6・・・コンタ
クト穴形成用レノストノJ?ターン、9・・・イオン注
入領域。 第1図 6 第3図 6 ′ 第4図
Figure 1 is a cross-sectional view showing the Lennost lid for forming the opening, Figure 2 is a cross-sectional view of the pattern after the opening is formed, Figure 3 is a cross-sectional view after impurity implantation, and Figure 4 is the opening. FIG. 3 is a cross-sectional view of a case where an electrode is provided in a hole. 1...Si substrate, 2...LOCO8 oxide film, 3...
・Diffusion layer, 4...Si insulating oxide film, 6...Renostono J for contact hole formation? Turn, 9...Ion implantation region. Fig. 1 6 Fig. 3 6 ' Fig. 4

Claims (3)

【特許請求の範囲】[Claims] (1)半導体活性領域と素子分離絶縁層領域とを有する
半導体基板表面上に、コンタクト用レジスト・ぞターン
を形成した後、該素子分離絶縁層領域をオーバーエツチ
ングしてコンタクト用開穴部を形成する工程、該コンタ
クト用しジストA?ターンをマスクとして半導体活性領
域の拡散層と同一伝導型の不純物を半導体基板に注入す
る工程、および該レジストパターン除去後にコンタクト
用開穴部に電極を設ける工程とを有することを特徴とす
る半導体装置の製造方法。
(1) After forming a contact resist pattern on the surface of a semiconductor substrate having a semiconductor active region and an element isolation insulating layer region, the element isolation insulating layer region is overetched to form a contact hole. In the process of forming a resist for the contact A? A semiconductor device comprising the steps of: implanting an impurity of the same conductivity type as a diffusion layer in a semiconductor active region into a semiconductor substrate using a turn as a mask; and providing an electrode in a contact opening after removing the resist pattern. manufacturing method.
(2)  コンタクト用開穴がセルファラインコンタク
ト穴であることを特徴とする特許請求の範囲第(1) 
頂に記載の半導体装置の製造方法。
(2) Claim No. (1) characterized in that the contact hole is a self-line contact hole.
The method for manufacturing the semiconductor device described at the top.
(3)不純物の導入をイオン注入で行なうことを特徴と
する特許請求の範囲第(1)項に記載の半導体装置の製
造方法。
(3) The method for manufacturing a semiconductor device according to claim (1), wherein the impurity is introduced by ion implantation.
JP56208077A 1981-12-24 1981-12-24 Manufacture of semiconductor device Pending JPS58110037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56208077A JPS58110037A (en) 1981-12-24 1981-12-24 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56208077A JPS58110037A (en) 1981-12-24 1981-12-24 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS58110037A true JPS58110037A (en) 1983-06-30

Family

ID=16550256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56208077A Pending JPS58110037A (en) 1981-12-24 1981-12-24 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS58110037A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07263556A (en) * 1995-03-24 1995-10-13 Hitachi Ltd Semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5585041A (en) * 1978-12-22 1980-06-26 Hitachi Ltd Semiconductor device and its preparation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5585041A (en) * 1978-12-22 1980-06-26 Hitachi Ltd Semiconductor device and its preparation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07263556A (en) * 1995-03-24 1995-10-13 Hitachi Ltd Semiconductor device

Similar Documents

Publication Publication Date Title
JP2000082682A (en) Fabrication of semiconductor-insulation layer and element having it
US5115296A (en) Preferential oxidization self-aligned contact technology
EP0087472B1 (en) Process for making electrical contact to semiconductor substrate regions
JPH09139495A (en) Semiconductor device and its manufacture
JPH06333944A (en) Semiconductor device
JPH08250484A (en) Preparation of stable arsenic dope semiconductor element
JPS58110037A (en) Manufacture of semiconductor device
US5763316A (en) Substrate isolation process to minimize junction leakage
US5104817A (en) Method of forming bipolar transistor with integral base emitter load resistor
KR0179794B1 (en) Well-forming method of semiconductor device
JPS6138858B2 (en)
US4409727A (en) Methods of making narrow channel field effect transistors
JPH0227737A (en) Manufacture of semiconductor device
JPS61256650A (en) Manufacture of semiconductor device
JP2550302B2 (en) Method for manufacturing semiconductor device
KR0134859B1 (en) Fabrication method of contact hole in semiconductor device
JPH06244415A (en) Semiconductor device and manufacture thereof
KR0140726B1 (en) Method of manufacture semiconductor device
JPH05267205A (en) Manufacture of semiconductor device
JPH0349236A (en) Manufacture of mos transistor
KR101057698B1 (en) Method of forming silicide film of semiconductor device
JPH04102356A (en) Semiconductor integrated circuit and manufacture thereof
JPH0529624A (en) Thin film transistor and manufacture thereof
JPH03276725A (en) Manufacture of semiconductor device
JPS6092665A (en) Manufacture of semiconductor device