JPS581094A - Method for forming colored protective film on surface of magnesium material - Google Patents

Method for forming colored protective film on surface of magnesium material

Info

Publication number
JPS581094A
JPS581094A JP9656481A JP9656481A JPS581094A JP S581094 A JPS581094 A JP S581094A JP 9656481 A JP9656481 A JP 9656481A JP 9656481 A JP9656481 A JP 9656481A JP S581094 A JPS581094 A JP S581094A
Authority
JP
Japan
Prior art keywords
film
voltage
silicate
spark discharge
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9656481A
Other languages
Japanese (ja)
Other versions
JPS5928638B2 (en
Inventor
Atsushi Fukuda
淳志 福田
Kenji Shimoda
下田 謙二
Mitsuru Ikenoue
池之上 満
Toshio Igarashi
敏夫 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DEITSUPUSOOLE KK
Dipsol Chemicals Co Ltd
Original Assignee
DEITSUPUSOOLE KK
Dipsol Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DEITSUPUSOOLE KK, Dipsol Chemicals Co Ltd filed Critical DEITSUPUSOOLE KK
Priority to JP9656481A priority Critical patent/JPS5928638B2/en
Publication of JPS581094A publication Critical patent/JPS581094A/en
Publication of JPS5928638B2 publication Critical patent/JPS5928638B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Electrochemical Coating By Surface Reaction (AREA)

Abstract

PURPOSE:To obtain an excellent colored protective film having various color tones, by constituting an electrolytic bath so that soluble salt such as copper, iron, etc. is contained in a solution of silicate, etc. in an Mg material surface protective film forming method by spark discharge. CONSTITUTION:A solution which contains more than 1 kind among soluble salt such as copper, iron, Ni, Co, silver, Cr, Mn, Al and Ca, in a solution containing silicate, or silicate and alkali metal hydroxide is used as an electrolytic bath. In this bath, Mg as the anode, and iron, Ni, etc. as the cathode are soaked respectively, DC voltage of an optional waveform is applied, and it is boosted until spark discharge is generated. This voltage is further boosted in order to obtain desired thickness and color tone of a film. In this way, a colored film having various color tones can be formed by metal kind to be added.

Description

【発明の詳細な説明】 (以下マグネシウム材と称する)表面に着色保護皮膜を
形成する方法に係り、殊に電解浴中でマグネシウム材を
陽極として通電し,火花放電により耐食性,耐薬品性及
び耐1久性に優れた無機質の着色保護皮膜をマグネシウ
ム材表面に形成する方法に係る。
Detailed Description of the Invention: It relates to a method of forming a colored protective film on the surface of a magnesium material (hereinafter referred to as a magnesium material), in particular, applying electricity to a magnesium material as an anode in an electrolytic bath, and achieving corrosion resistance, chemical resistance, and resistance through spark discharge. The present invention relates to a method of forming a long lasting inorganic colored protective film on the surface of a magnesium material.

マグネシウム材は化学的にみて極めて腐食され易い金属
である。しかしながらマグネシウム材は軽量性を含めて
種々の有利な特性を有し従ってこの化学的欠点を排除し
、工業材料として利用範囲を更に拡大するためには高度
な防食技術が要求され従来より種々の防食法の研究がな
されている。
From a chemical standpoint, magnesium material is a metal that is extremely susceptible to corrosion. However, magnesium materials have various advantageous properties including lightness. Therefore, in order to eliminate these chemical disadvantages and further expand the range of use as industrial materials, advanced anti-corrosion technology is required. Research on the law is being conducted.

このようなマグネシウム材の防食処理法として大別すれ
ば,塗装法,化学皮膜形成法及び電解化成皮膜形成法と
か存する。
Broadly speaking, anticorrosion treatment methods for magnesium materials include painting methods, chemical film formation methods, and electrolytic conversion film formation methods.

塗装法による防食はペイントやエナメルのような有機皮
膜を被覆することによって行なわれるが、ビンホールの
形成を避けられないため薄膜(20μm以下)では耐食
性が低下し重ね塗りによる厚膜化が必要である。またか
かる皮膜は化学的浸食に対して抵抗力を示すが,特に高
温条件下では劣化を来・たし、マグネシウム材との密着
性が悪くなる。
Corrosion prevention using painting methods is achieved by coating with an organic film such as paint or enamel, but as the formation of bottle holes is unavoidable, corrosion resistance decreases with thin films (less than 20 μm), and it is necessary to thicken the film by recoating. . Although such a film exhibits resistance to chemical attack, it deteriorates especially under high temperature conditions and its adhesion to the magnesium material becomes poor.

化学皮膜形成法には、クロム酸法、亜セレン酸法、すず
酸塩法、リン酸塩法、フッ化物法など数多くの方法があ
るが、一般的な方法としては、重クロム酸塩を主成分と
する溶液中に浸漬し化学反応を利用して防食皮膜を形成
するクロメート処理が用いられている。この方法は経済
性、作業性で優れているが耐食性に劣り、高湿度の雰囲
気中では脱色変化し腐食が著しく進む。従って耐食性を
望む場合、更に化学皮膜上に塗装を行ない云わば塗装の
下地処理として用いられているのか現状であり、この場
合マグネシウム材との密着性が最も重要である。
There are many methods for forming chemical films, including the chromic acid method, selenite method, stannate method, phosphate method, and fluoride method. Chromate treatment is used to form an anti-corrosion film by immersing the material in a solution containing the components and utilizing a chemical reaction. Although this method is excellent in terms of economy and workability, it is inferior in corrosion resistance, and in a high humidity atmosphere, decolorization occurs and corrosion progresses significantly. Therefore, if corrosion resistance is desired, the chemical coating is further coated and used as a base treatment for coating, and in this case, adhesion to the magnesium material is most important.

電解化成皮膜形成法には陽極酸化皮膜形成法と本発明が
関与する火花放電法によるものとが存する。陽極酸化皮
膜形成法の代表的なものに、アルカリ浴ではH,A、E
、法、DOW12法、酸性浴ではDOW17法。
There are two types of electrochemical conversion film forming methods: an anodic oxide film forming method and a spark discharge method to which the present invention relates. Typical methods for forming anodic oxide films include H, A, and E in alkaline baths.
, method, DOW12 method, DOW17 method for acid bath.

DOW9法、 Cr22処理などがあるが、かかる方法
での陽極酸化皮膜は着色された光沢のない不透明な皮膜
であり、その耐食性は上記のクロメート皮膜と同程度で
ある。
There are methods such as the DOW9 method and Cr22 treatment, but the anodic oxidation film produced by such a method is a colored, dull and opaque film, and its corrosion resistance is comparable to that of the above-mentioned chromate film.

これら諸方法に対し本発明が関与する火花放電による無
機質着色保護皮膜形成に関する従来技術方法としてはア
メリカ合衆国特許73832293号、四矛38349
99号及び同矛4184926号明細書に開示されてい
る方法がある。
In contrast to these methods, prior art methods relating to the formation of an inorganic colored protective film by spark discharge to which the present invention relates include U.S. Pat.
There is a method disclosed in No. 99 and No. 4184926.

上記アメリカ合衆国特許牙383’2293号明細書に
記載の方法はアルカリ金属ケイ酸塩とアルカリ金属水酸
化物と触媒としてテルル若しくはセレンの酸素酸あるい
はこれらの混合物とを含有する強アルカリ電解浴中に金
属を浸漬し、陽極及び陰極間に少なくとも220Vの電
圧を印加して火花放電を生せしへ1次いで表面に皮膜が
電着するまで350乃至1500V迄昇圧することから
成る電解方法である−が、着色皮膜の形成は電解浴中に
バナジウム、ヒ素、ホウ素、クロム、チタン、すす、ア
ンチモン。
The method described in U.S. Pat. This is an electrolytic method that consists of immersing a metal in a metal, applying a voltage of at least 220V between the anode and cathode to produce a spark discharge, and then increasing the voltage to 350 to 1500V until a film is electrodeposited on the surface. The colored film is formed using vanadium, arsenic, boron, chromium, titanium, soot, and antimony in the electrolytic bath.

タングステン、モリブデンのアルカリ金属塩を多量に添
加することによる。しかしながら、この文献に開示の着
色皮膜例としては、バナジン酸ナトリウム添加浴でのア
ルミニウム材上の黒色皮膜1例のみで、他の添加物によ
る皮膜の色調及びマグネシウム材上での色調は不明であ
る。
By adding large amounts of alkali metal salts of tungsten and molybdenum. However, as an example of a colored film disclosed in this document, there is only one example of a black film on aluminum material in a sodium vanadate additive bath, and the color tone of the film caused by other additives and the color tone on magnesium material are unknown. .

上記アメリカ合衆国特許、4y3g34999号明細書
に記載の方法はアルカリ金属水酸化物及びS i 03
−2と少なくとも1つの陰イオン、例えばBO,−、B
O3−3、B、Q、2. Ash、−3,C’03−2
. CrO2−2、Cr2O,−21Mo04−2. 
PC%−3,’rho、−2゜WO4−2,W70□ご
とを含有する強アルカリ電解浴を用いる方法であ、るが
、この文献には着色皮膜例は開示されていない。更に上
記アメリが合衆1特許中に記載された種々の方法では一
所望する耐食性皮膜を形成させるためには比較的長時間
(30〜60分)を要する。
The method described in the above US Pat. No. 4Y3G34999 uses an alkali metal hydroxide and S i 03
-2 and at least one anion, e.g. BO, -, B
O3-3, B, Q, 2. Ash, -3, C'03-2
.. CrO2-2, Cr2O, -21Mo04-2.
This method uses a strong alkaline electrolytic bath containing PC% -3,'rho, -2°WO4-2, W70□, but this document does not disclose any examples of colored coatings. Furthermore, the various methods described in the US Patent No. 1 require a relatively long time (30 to 60 minutes) to form the desired corrosion-resistant coating.

上記アメリカ合衆国特許14184926号明細書に記
載の方法はマグネシウム材上に耐食性皮膜を形成するた
めに先ずマグネ/ラム材をフッ化水素酸水浴液で処理し
てフルオロマダイ・シウム層を形成した後アルカリ金属
ケイ酸塩及びアルカリ全域水酸化物水溶液より成る電解
浴中に浸漬し、マグネ/ラム材陽極と陰極との間に可視
的火花か生じるまで電圧を印加し、フルオロマグネシウ
ム層にケイ酸塩皮膜が形成するまでこの電圧を維持する
ことによる。かかる方法での着色皮膜形成には二次的処
理が必要であり、あらかじめ上記の方法により乳白色皮
膜を形成した後ケイ酸カリウム及びバナジン酸カリウム
を含有する電解浴を用いて同様に処理することによる。
The method described in the above-mentioned US Pat. No. 1,418,4926 is to form a corrosion-resistant film on the magnesium material by first treating the Mg/Rum material with a hydrofluoric acid water bath to form a fluoromadai-sium layer, and then applying the alkali metal. A silicate film is formed on the fluoromagnesium layer by immersing it in an electrolytic bath consisting of a silicate and alkali general hydroxide aqueous solution and applying a voltage between the Magne/Lum material anode and cathode until a visible spark is produced. By maintaining this voltage until formation. Formation of a colored film using this method requires a secondary treatment, which involves forming a milky white film in advance by the method described above, and then performing the same treatment using an electrolytic bath containing potassium silicate and potassium vanadate. .

かがる方法では白色から黒色まで色の濃淡が得られるが
、着色皮膜形成には二次的処理を必要とし、また予備表
面調整として有毒なフン化水素酸を使用するなどの問題
がある。
Although the darkening method allows color shading from white to black to be obtained, it requires a secondary treatment to form a colored film, and it also has problems such as the use of toxic hydrofluoric acid as a preliminary surface preparation.

火花放電法により形成される保護皮膜はガラス質様であ
って他の方法により形成される皮膜と比較する場合に厚
く、耐食性、耐薬品性、耐久性等に優れている。
The protective film formed by the spark discharge method is glass-like and thicker than films formed by other methods, and has excellent corrosion resistance, chemical resistance, durability, etc.

斯くて本発明の目的は、従来技術の欠点をなくし、従来
の火花放電法により得られなかった様々な色調の厚い、
耐食性、耐薬品性及び耐久性に潰れた無機質着色保護皮
膜を得ようとするものである。更に本発明の目的は従来
の着色皮膜形成法に比して何ら予備表面調整を行なうこ
となく、−次処理のみにて短時間に上記の目的とする着
色保護皮膜を形成しようとするものである。
It is therefore an object of the present invention to eliminate the drawbacks of the prior art and to provide thick, thick, and
The objective is to obtain an inorganic colored protective film with excellent corrosion resistance, chemical resistance, and durability. Furthermore, an object of the present invention is to form the above-mentioned colored protective film in a short period of time through subsequent treatment without any preliminary surface conditioning compared to conventional colored film forming methods. .

上記目的を達成−せんがために発明者らは種々の被覆法
を検討した結果、ケイ酸塩を含有するか若しくはケイ酸
塩とアルカリ金属水酸化物とを含有する水溶液中に銅、
鉄、ニッケル、コバルト、銀、クロム、マンガン、アル
ミニウム及びカルシウムの可溶性塩の少な(とも1種を
含有させたものを電解浴として用い、マグネシウム材を
陽極として通電し、陽極表面上で火花放電を生じさせる
ことにより、マグネシウム材表面に様々な色調の着色保
護皮膜が得られることを見出した。
In order to achieve the above objective, the inventors investigated various coating methods and found that copper,
An electrolytic bath containing a small amount of soluble salts of iron, nickel, cobalt, silver, chromium, manganese, aluminum, and calcium is used as an electrolytic bath, and a magnesium material is used as an anode and current is applied to produce a spark discharge on the anode surface. It has been found that colored protective films of various tones can be obtained on the surface of magnesium materials by this process.

本発明方法を更に詳述するに、ケイ酸塩を含有するか又
はケイ酸塩とアルカリ金属水酸化物とを含有する水溶液
中に銅、鉄、ニッケル、コバルト、銀、クロム、マンガ
ン、゛アルミニウム及びカルシウムの可溶性塩の1種又
は2種若しくはそれ以上を含有させた水溶液を電解浴と
し、該電解浴にマグネシウム材を陽極とし且つ鉄、ステ
ンレス又はニッケルを陰極として浸漬し、直流電圧を印
加して火花放電を生じるまで昇圧する。電圧は望む皮膜
の厚さ、色調を得るために更に昇圧する。かくして目的
とする色調の着色保護皮膜が陽極マグネシウム材表面に
形成される。
In more detail, the method of the present invention includes copper, iron, nickel, cobalt, silver, chromium, manganese, aluminum, etc. in an aqueous solution containing a silicate or a silicate and an alkali metal hydroxide. An aqueous solution containing one or two or more of soluble salts of calcium and calcium is used as an electrolytic bath, and a magnesium material is used as an anode and iron, stainless steel or nickel is used as a cathode and immersed in the electrolytic bath, and a DC voltage is applied. The voltage is increased until a spark discharge occurs. The voltage is further increased to obtain the desired film thickness and color tone. In this way, a colored protective film of the desired color tone is formed on the surface of the anode magnesium material.

本発明方法の実施に際しては、7)化水素酸水溶液で処
理し、フルオロマグネシウム層を形成するという予備表
面調整を必要としない。即ちマグネシウム材は便箋前処
理を施こすことなくそのまま用いることかできる。勿論
常法による脱脂、洗浄、硝酸第二鉄などによる酸洗、又
は既述の如き化学皮膜形成を前処理として行なうことも
できる。
When carrying out the method of the present invention, there is no need for preliminary surface preparation such as 7) treatment with an aqueous hydrohydric acid solution to form a fluoromagnesium layer. That is, the magnesium material can be used as it is without any pre-treatment for stationery. Of course, conventional degreasing, washing, pickling with ferric nitrate or the like, or the formation of a chemical film as described above can also be carried out as a pretreatment.

かかる予備表面調整は1着色保護皮膜の有する本質的な
耐食性に殆んど影響を与えない。
Such preliminary surface conditioning has little effect on the inherent corrosion resistance of the colored protective coating.

不発明方、法に於いて用いられるケイ酸塩は一般式M、
、0−n5iO,,(Mはアルカリ金属を示し、nは0
5乃   ゛至20の正数を示す)で表わされる種々の
水浴性の又は水分散性のものであって1例えばケイ酸ナ
トリウム、メタケイ酸ナトリウム、ケイ酸カリウム、ケ
イ酸リチウム、コロイダルシリカ等を挙げることができ
る。これらケイ酸塩は単独で若しくは2種又はそれ以上
の混合物として用いることができる。ケイ酸塩濃度は目
的とする皮膜の色調によつ−(も異なるが5 V13以
上飽和濃度まで用いることができる。好ましい範囲は、
  10〜300 f/J3である。
The silicates used in the uninvented method have the general formula M,
,0-n5iO,,(M represents an alkali metal, n is 0
Various water-bathable or water-dispersible materials represented by positive numbers from 5 to 20, such as sodium silicate, sodium metasilicate, potassium silicate, lithium silicate, colloidal silica, etc. can be mentioned. These silicates can be used alone or as a mixture of two or more. The silicate concentration varies depending on the color tone of the desired film, but it can be used up to a saturation concentration of 5V13 or higher.The preferred range is:
It is 10-300 f/J3.

電解浴としてアルカリ金属水酸化物を含有しない水浴液
、即ちケイ酸塩及び上述金属の可溶性塩のみを含有する
水溶液を用いる場合には、使用するケイ酸塩はモル比(
5i02/M20)2.5以下のものが好ましく更にこ
の場合のケイ酸塩濃度としては比較的高濃度(50故以
上)で使用することが好ましい。
If an aqueous bath solution containing no alkali metal hydroxides is used as the electrolytic bath, i.e. an aqueous solution containing only silicates and soluble salts of the above-mentioned metals, the silicates used are mixed in a molar ratio (
5i02/M20) is preferably 2.5 or less, and in this case, the silicate concentration is preferably relatively high (50 or more).

ケイ酸塩のモル比が25以上のものを用いての電解処理
では、アルカリ金属水酸化物を含有しない場合、陽極マ
グネシウム材表面に火花放電を生じさせる印加電圧を得
るには初期電流密度を非常に高くする必要があり、後述
の不発明方法による0、1〜10A/dff+2の電流
密度範囲では実質上火花放電が生起せず、密着性の悪い
コロイド状物質が析出するか或いはマグネシウム材表面
に陽極酸化皮膜が形成されるのみである・。かかる皮膜
は本発明の目的とする耐食性を有していない。
In electrolytic treatment using a silicate with a molar ratio of 25 or more, if no alkali metal hydroxide is contained, the initial current density must be extremely high in order to obtain an applied voltage that produces a spark discharge on the surface of the anode magnesium material. Therefore, in the current density range of 0, 1 to 10 A/dff+2 using the uninvented method described below, spark discharge does not substantially occur, and colloidal substances with poor adhesion may precipitate or may form on the surface of the magnesium material. Only an anodic oxide film is formed. Such a film does not have the corrosion resistance targeted by the present invention.

本発明方法に於いて用いられる電解浴は少な(のとなり
、その値は個々の水酸化物濃度或いは水酸化物の組合せ
によって決定される。アルカリ金属水酸化物を含有さす
ることにより種々のモル比のケイ酸塩を使用することが
可能となり、またケイ酸塩との相対量にもよるか使用ケ
イ酸塩濃度を低減させることができる。本発明方法に於
いて用いられる好ましいアルカリ金属はナトリウム、カ
リウム及びリチウムであり少な(とも5z々以上のアル
カリ金属水酸化物を含有することが好ましい。
The electrolytic bath used in the method of the invention has a small concentration, the value of which is determined by the individual hydroxide concentration or the combination of hydroxides. The preferred alkali metal used in the process of the invention is sodium. , potassium and lithium, and preferably contain a small amount (5z or more) of alkali metal hydroxide.

水酸化物は飽和濃度まで用いることができるが、本発明
方法による着色保護皮膜での好ましい範囲は、上記のケ
イ酸塩濃度との相対量にもよるがlO〜1o o f/
J3である。
The hydroxide can be used up to a saturation concentration, but the preferred range for the colored protective coating according to the method of the present invention is 10 to 10 f/, depending on the relative amount to the silicate concentration above.
It is J3.

また1着色皮膜を得るために上記ケイ酸塩水浴液若しく
はケイ酸塩とアルカリ金属水酸化物とを含有する水溶液
に添加する金属塩としては、銅。
The metal salt added to the silicate bath solution or the aqueous solution containing a silicate and an alkali metal hydroxide in order to obtain a colored film is copper.

鉄、ニッケル、コバルト、銀、クロム、マンガン。Iron, nickel, cobalt, silver, chromium, manganese.

アルミニウム及びカルシウムの塩であって、1種若しく
は2種又はそれ以上を組合わせて使用することができる
。かがる金属塩としては硫酸塩、硝酸塩、炭酸塩、リン
酸塩、水酸化物、塩化物のようなハロゲン化物、酢酸塩
のような有機酸塩、シアン化物などいがなる形の塩とし
ても用いることができる。但し上記金属塩種は上述のケ
イ酸塩を含有するアルカリ性電解浴中に添加する場合、
可溶性塩として用いなくてはならない。即ち上記金属塩
種の中でアルカリケイ酸塩溶液に不溶性のものは、あら
がじめEDTA錯体、アンミン錯体、シアン錯体などの
ような錯体を作り可溶性塩とした後添加すべきである。
Salts of aluminum and calcium, which can be used alone or in combination of two or more. Metal salts include sulfates, nitrates, carbonates, phosphates, hydroxides, halides such as chlorides, organic acid salts such as acetates, cyanides, etc. can also be used. However, when the above metal salt types are added to an alkaline electrolytic bath containing the above-mentioned silicate,
Must be used as a soluble salt. That is, among the metal salts mentioned above, those insoluble in the alkali silicate solution should be added after first forming a complex such as an EDTA complex, an ammine complex, or a cyanide complex to form a soluble salt.

例えば銅塩として硫酸銅を使用する場合、あらかじめ硫
酸銅: EDTA・2Na = I°I〜1:2(モル
比)l〃 の割合で溶解し、苛性アルカリを用いてhを10〜11
に調整した後上述アルカリケイ酸塩溶液中に添加して電
解浴となせばよい。金属塩の添加濃度は金属塩の種類及
び所望する色調によって異なるが。
For example, when using copper sulfate as a copper salt, first dissolve it in the ratio of copper sulfate: EDTA・2Na = I°I ~ 1:2 (molar ratio) l, and use caustic alkali to reduce h to 10~11.
After adjusting it to the above-mentioned alkali silicate solution, it may be added to the above-mentioned alkali silicate solution to form an electrolytic bath. The concentration of the metal salt added varies depending on the type of metal salt and the desired color tone.

金属として0o11々以上飽和濃度まで使用できる。It can be used as a metal up to a saturation concentration of 0 to 11 or higher.

添加金属種によって略々以下に記載の色調の着色皮膜が
形成されるが、色調及び濃淡は、電解条件、電解浴濃度
などによって異なるのでこれに限定されるものではない
。なおりロムとしては、クロム酸、クロム酸塩1重クロ
ム酸塩、硝酸クロム。
A colored film having a color tone approximately as described below is formed depending on the type of added metal, but the color tone and shade are not limited to these, as they vary depending on the electrolytic conditions, electrolytic bath concentration, etc. Naori ROMs include chromic acid, chromate monodichromate, and chromium nitrate.

硫酸クロム等の3価クロム塩の何れも使用することがで
きる。
Any trivalent chromium salt such as chromium sulfate can be used.

銅 ・・・・・・・・・・・・・ 灰色〜黒灰色、灰緑
色、赤褐色鉄 ・・・・・・・・・・・・・ 青緑色〜
黒色、黄土色ニッケル ・・・・・・・ 薄茶色〜濃茶
色、黄土色コバルト ・・・・・・・ みず色〜青色、
黄色〜黄緑色銀 ・・・・・・・・・・・・・ 黄色り
 ロ ム ・・・・・・・ 黄色〜黄緑色〜緑色マンガ
ン ・・・・・・・ 薄茶色〜茶色〜赤茶色、黄土色ア
ルミニウム ・・・・・・ 灰白色〜灰色カルシウム 
・・・・・・ 灰白色〜灰色着色皮膜の色調及びその濃
淡は既述の如(、アルカリ金属水酸化物、ケイ酸塩、添
加金属塩の相対量並びに処理電圧、処理時間、処理電流
密度などによって決定されるが、更に様々な色調、濃淡
を得るために、上記電解浴中にアルカリ金属炭酸塩、ア
ルカリ金属リン酸塩、アルカリ金属ホウ酸fl/ 塩などを加えることができる。電解浴のp、+l+は8
5以上となすのが好ましく、85以下ではゲル化等の望
ましからぬ現象が生ずる可能性がある。このためにげ調
整剤、安定剤を加えてゲル化及び沈殿を防止することが
できる。
Copper ・・・・・・・・・・・・ Gray to black-gray, gray-green, reddish-brown iron ・・・・・・・・・・・・ Blue-green to
Black, ocher nickel ・・・・・・ Light brown to dark brown, ocher cobalt ・・・・・・ Green to blue,
Yellow to yellow-green silver ・・・・・・・・・・・・ Yellowish ROM ・・・・・・ Yellow to yellow-green to green Manganese ・・・・・・・・・ Light brown to brown to reddish-brown , ocher aluminum ・・・・・・ Grayish white to gray calcium
...... The color tone and density of the grayish-white to gray colored film are as described above (the relative amounts of alkali metal hydroxide, silicate, added metal salt, processing voltage, processing time, processing current density, etc.) However, in order to further obtain various color tones and shades, alkali metal carbonates, alkali metal phosphates, alkali metal boric acid fl/salts, etc. can be added to the electrolytic bath. p, +l+ is 8
A value of 5 or more is preferable, and a value of 85 or less may cause undesirable phenomena such as gelation. For this purpose, gelation and precipitation can be prevented by adding bald conditioners and stabilizers.

着色保護皮膜形成に際しては、矩形波波形、ノコギリ波
波形、単相全波波形、単相半彼波形など様々な波形の直
流電圧を印加することができる。
When forming a colored protective film, a DC voltage with various waveforms such as a rectangular waveform, a sawtooth waveform, a single-phase full-wave waveform, and a single-phase half-waveform can be applied.

このとき種々の色の濃淡の着色皮膜が形成されやすいこ
と、火花放電電圧を著しく低減できることなどから矩形
波波形、ノコギリ波波形のようなパルス波波形の直流電
圧を印加することが有利である。
At this time, it is advantageous to apply a DC voltage with a pulse waveform such as a rectangular waveform or a sawtooth waveform because colored films of various shades of color are likely to be formed and the spark discharge voltage can be significantly reduced.

電解処理は既述のように被処理マグネシウム材を陽極と
し且つ鉄、ステンレス又はニッケルを陰極として上記電
解浴に浸漬し、直流電圧を火花放電が生ずるまで徐々に
印加し、次いで火花放電を維持しつつ所定電圧まで昇圧
し、所望する厚さ及び色調の着色保護皮膜が形成される
まで該電圧な維持すれば良い。例えば定電流電解法では
一定の陽極電流密度を維持するように印加電圧を連続的
に変化させて、陽極表面に激しい火花放電を生せしめ、
その後皮膜が所望の厚さ1色調となるまで該電圧を維持
しつつ通電を継続する。定電流電解法を行なえない場合
には、先ずある陽極電流密度となるように電圧を印加す
れば皮膜の生成に伴ない急激な電流値の低下が認められ
るのでこの際に初期の電流密度になるように更に電圧を
印加する。
In the electrolytic treatment, as described above, the magnesium material to be treated is used as an anode and iron, stainless steel or nickel is used as a cathode, and is immersed in the above electrolytic bath, a DC voltage is gradually applied until a spark discharge occurs, and then the spark discharge is maintained. The voltage may be increased to a predetermined voltage while maintaining the voltage until a colored protective film of desired thickness and color tone is formed. For example, in constant current electrolysis, the applied voltage is continuously changed to maintain a constant anode current density, producing intense spark discharge on the anode surface.
Thereafter, electricity is continued while maintaining the voltage until the film has a desired thickness of one color tone. If constant current electrolysis cannot be performed, first apply a voltage to achieve a certain anode current density, and as a film forms, a rapid decrease in current value will be observed, so at this time the initial current density will be reached. Apply more voltage.

この操作を繰返し行ない陽極表面に激しい火花放電を生
せしめ皮膜を所望の厚さ、色調になせばよい。電流密度
は01〜10λ/drrFの範囲で任意に選択すること
ができ、この電流密度は火花放電電圧には殆んど関係し
ないが、低電流密度の場合は所定電圧まで印加するのに
長時間を要し且つ高電流密度の場合には着色保護皮膜の
平滑性、電解浴温度の上昇などの問題が生ずるため05
〜2A/drn2となすのが好ましい。
By repeating this operation, intense spark discharge is generated on the anode surface, and the film has a desired thickness and color tone. The current density can be arbitrarily selected in the range of 01 to 10λ/drrF, and this current density has almost no relation to the spark discharge voltage, but if the current density is low, it may take a long time to apply up to a predetermined voltage. In the case of high current density, problems such as the smoothness of the colored protective film and an increase in the electrolytic bath temperature occur.
It is preferable to set it to 2A/drn2.

形成される皮膜の厚さは電解浴濃度、電解浴温度、処理
電圧、処理時間、処理電流密度等によつて決定され、こ
の内電解浴温度は目的とする皮膜に応じて決定されるが
通例5〜80℃である。
The thickness of the film formed is determined by the electrolytic bath concentration, electrolytic bath temperature, processing voltage, processing time, processing current density, etc. Among these, the electrolytic bath temperature is determined depending on the desired film, but it is usually The temperature is 5 to 80°C.

次に、実施例に関連して本発明を更に詳細に説明する。The invention will now be explained in more detail with reference to examples.

実施例1 ケイ竺カリウム40 t/43、水酸化ナトリウム40
1々及び過マンガン酸カリウム3 VI3より成る水溶
液中に表面積50crl、厚さ3朋のマグネシウム合金
板AZ31Cを陽極とし且つ鉄板を陰極として浸漬し。
Example 1 Silica potassium 40 t/43, sodium hydroxide 40
A magnesium alloy plate AZ31C having a surface area of 50 crl and a thickness of 3 mm was used as an anode and an iron plate was used as a cathode.

ノコギリ波波形直流電圧を陽極電流密度08A/drI
?′に保持しながら連続的に印加すれば約15Vで火花
放電が生起する。電圧を30Vまで昇圧し5分間維持し
た。この通電は激しい火花放電を伴なう。陽極板上には
黄土色の平滑なガラス状を呈する皮膜が形成され、該皮
膜の厚さは約15μmであった。
Sawtooth waveform DC voltage with anode current density 08A/drI
? If the voltage is applied continuously while maintaining the voltage at 15V, a spark discharge will occur at approximately 15V. The voltage was increased to 30V and maintained for 5 minutes. This energization is accompanied by intense spark discharge. A smooth, ocher-colored, glass-like film was formed on the anode plate, and the thickness of the film was about 15 μm.

実施例2 ケイ酸ナトリウムI OOf/J)、水酸化ナトリウム
5゜1々及び硝酸クロム1時々より成る水溶液中に表面
積50 crtt 、厚さ311ffのマグネシウム合
金板AZ31Cを陽極とし且つ鉄板を陰極として浸漬し
、ノコギリ波波形直流電圧を陽極電流密度05A/dr
I]2に保持しながら連続的に印加すれば約15Vで火
花放電が生起する。電圧を30Vまで昇圧し10分間維
持した。
Example 2 A magnesium alloy plate AZ31C with a surface area of 50 crtt and a thickness of 311 ff was immersed as an anode and an iron plate as a cathode in an aqueous solution consisting of sodium silicate I OOf/J), 5 degrees of sodium hydroxide, and 1 portion of chromium nitrate. Then, the sawtooth waveform DC voltage is set to an anode current density of 05A/dr.
If the voltage is applied continuously while maintaining the voltage at I]2, a spark discharge will occur at about 15V. The voltage was increased to 30V and maintained for 10 minutes.

この通電は激しい火花放電を伴なう。陽極板上には緑色
の平滑なガラス状を呈する皮膜が形成された。該皮膜の
厚さは約30μmであった。
This energization is accompanied by intense spark discharge. A green, smooth, glass-like film was formed on the anode plate. The thickness of the film was approximately 30 μm.

実施例3 ケイ酸カリウム140 f−/に3、水酸化カリウム5
0 VI3 。
Example 3 Potassium silicate 140 f/3, potassium hydroxide 5
0 VI3.

硫酸ニッケル8局及びエチレンジアミン四酢酸二ナトリ
ウム12z々より成る水溶液中に表面積50d。
A surface area of 50 d in an aqueous solution consisting of 8 parts of nickel sulfate and 12 parts of disodium ethylenediaminetetraacetate.

厚さ2IIIのマグネシウム合金鋳物板AZ91Cを陽
極とし且つ鉄板を陰極として浸漬し、陽樹電流密度lA
//ddに保持しつつ単相全波波形直流電圧を徐々に印
加すれば約tzovで火花放電が生起する。電圧を20
0■まで昇圧し、この電圧を維持しながら5分間処理し
た。この通電は激しい火花放電を伴なう。
A magnesium alloy casting plate AZ91C with a thickness of 2III is used as an anode and an iron plate is used as a cathode.
If a single-phase full-wave waveform DC voltage is gradually applied while maintaining the voltage at //dd, a spark discharge will occur at about tzov. voltage 20
The voltage was increased to 0.0 cm, and the treatment was carried out for 5 minutes while maintaining this voltage. This energization is accompanied by intense spark discharge.

陽極板上には茶色の平滑なガラス状を呈する皮膜が形成
され、該皮膜の厚さは約20μmであった。
A brown smooth glass-like film was formed on the anode plate, and the thickness of the film was about 20 μm.

実施例4 メタケイ酸ナトリウム・9水塩(モル比09〜11)2
00ff/J3及びシアン化銀2が!より成る水溶液中
にマグネシウム合金板AZ31Cを陽極とし且つ鉄板を
陰極として浸漬し、陽極電流密度をo、sA/drrF
−に保持しながら徐々にノコギリ波波形直流電圧な印加
すれば約15Vで火花放電が生起する。電圧を30Vに
昇圧し、この電圧を維持しながら3分間処理した。
Example 4 Sodium metasilicate nonahydrate (molar ratio 09-11) 2
00ff/J3 and silver cyanide 2! A magnesium alloy plate AZ31C as an anode and an iron plate as a cathode are immersed in an aqueous solution consisting of
If a sawtooth wave DC voltage is gradually applied while maintaining the voltage at -, a spark discharge will occur at about 15V. The voltage was increased to 30V, and the treatment was carried out for 3 minutes while maintaining this voltage.

この通電は激しい火花放電を伴なう。陽極板上には厚さ
約lOμmで平滑な芳ラス状を匙する黄色皮膜が形成さ
れた。Q 実施例5 ケイ酸カリウム80が1.水酸化ナトリウム30が!、
硫酸コバルト3?々及びエチレンジアミン四酢酸二ナト
リウム5 t/lより成る水溶液中に表面積50ffl
、厚さ3朋のあらかじめクロメート処理されたマグネシ
ウム合金板AZ31Cを陽極とし且つ鉄板を陰極として
浸漬し、陽極電流密度を0.8A/drn2に保持しな
がら徐々にノコギリ波波形直流電圧を印加すれば約20
Vで火花放電が生起する。電圧を30Vに昇圧し、この
電圧を維持しながら10分間通電した。陽極板上には青
色のガラス状を呈する平滑な皮膜が形成され、該皮膜の
厚さは約30μmであった。
This energization is accompanied by intense spark discharge. A smooth, aromatic, lath-like yellow film with a thickness of about 10 μm was formed on the anode plate. Q Example 5 Potassium silicate 80 is 1. Sodium hydroxide 30! ,
Cobalt sulfate 3? and 5 t/l of disodium ethylenediaminetetraacetate with a surface area of 50 ffl.
, by using a 3 mm thick magnesium alloy plate AZ31C that has been chromate treated as an anode and an iron plate as a cathode, and gradually applying a sawtooth wave DC voltage while maintaining the anode current density at 0.8 A/drn2. Approximately 20
A spark discharge occurs at V. The voltage was increased to 30V, and current was applied for 10 minutes while maintaining this voltage. A blue glass-like smooth film was formed on the anode plate, and the thickness of the film was about 30 μm.

尚、上記実施例1乃至〆に記載の方法で一形成された各
着色、保護皮膜は、従来の方法によp被覆されたマグネ
シウム材に比べ、強・酸及び強アルカリに対してはるか
に大きい抵抗性を有する耐久性ある皮膜であった。更に
各皮膜は塗料との密着性が良好であり、耐摩耗性にも優
れている。
The colored and protective films formed by the methods described in Examples 1 to 4 above are far more resistant to strong acids and strong alkalis than the magnesium material coated with p by the conventional method. It was a durable film with resistance. Furthermore, each film has good adhesion to paint and excellent abrasion resistance.

Claims (1)

【特許請求の範囲】[Claims] を形成する方法に於いて、電解浴が銅、鉄、ニッケル、
コバルト、銀、クロム、マンガン、アルミニウム及びカ
ルシウムの可溶性塩の少なくとも1種を含有するケイ酸
塩水溶液蓋しくは少なくとも1種の上記可溶性塩とケイ
酸塩とアルカリ金属水酸化物とを含有する水溶液であり
、且つ印加電圧が任意の波形の直流電圧であることを特
徴とする方法。
In the method of forming copper, iron, nickel,
An aqueous silicate solution containing at least one soluble salt of cobalt, silver, chromium, manganese, aluminum and calcium, or an aqueous solution containing at least one of the above soluble salts, a silicate, and an alkali metal hydroxide. A method characterized in that the applied voltage is a DC voltage with an arbitrary waveform.
JP9656481A 1981-06-24 1981-06-24 Method of forming a colored protective film on the surface of magnesium material Expired JPS5928638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9656481A JPS5928638B2 (en) 1981-06-24 1981-06-24 Method of forming a colored protective film on the surface of magnesium material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9656481A JPS5928638B2 (en) 1981-06-24 1981-06-24 Method of forming a colored protective film on the surface of magnesium material

Publications (2)

Publication Number Publication Date
JPS581094A true JPS581094A (en) 1983-01-06
JPS5928638B2 JPS5928638B2 (en) 1984-07-14

Family

ID=14168523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9656481A Expired JPS5928638B2 (en) 1981-06-24 1981-06-24 Method of forming a colored protective film on the surface of magnesium material

Country Status (1)

Country Link
JP (1) JPS5928638B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2237030A (en) * 1989-09-04 1991-04-24 Dipsol Chem Forming ceramics films by anode-spark discharge in electrolytic bath
US5240589A (en) * 1991-02-26 1993-08-31 Technology Applications Group, Inc. Two-step chemical/electrochemical process for coating magnesium alloys
US5264113A (en) * 1991-07-15 1993-11-23 Technology Applications Group, Inc. Two-step electrochemical process for coating magnesium alloys
JP2003166098A (en) * 2001-11-30 2003-06-13 Kasatani:Kk Composition for anodizing magnesium alloy and anodizing method
CN100342063C (en) * 2002-04-27 2007-10-10 中国科学院上海微系统与信息技术研究所 Composite ceramic film on surface of magnesium alloy and its forming process
CN103726093A (en) * 2013-12-04 2014-04-16 武汉材料保护研究所 Method of adopting environment-friendly nickel-containing electrolyte to prepare microarc oxidation film layer on surface of magnesium alloy
WO2019098378A1 (en) * 2017-11-17 2019-05-23 株式会社東亜電化 Magnesium or aluminum metal member provided with black oxide coating, and method for manufacturing same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2237030A (en) * 1989-09-04 1991-04-24 Dipsol Chem Forming ceramics films by anode-spark discharge in electrolytic bath
GB2237030B (en) * 1989-09-04 1994-01-12 Dipsol Chem Method for forming ceramics films by anode-spark discharge
US5240589A (en) * 1991-02-26 1993-08-31 Technology Applications Group, Inc. Two-step chemical/electrochemical process for coating magnesium alloys
US5264113A (en) * 1991-07-15 1993-11-23 Technology Applications Group, Inc. Two-step electrochemical process for coating magnesium alloys
JP2003166098A (en) * 2001-11-30 2003-06-13 Kasatani:Kk Composition for anodizing magnesium alloy and anodizing method
CN100342063C (en) * 2002-04-27 2007-10-10 中国科学院上海微系统与信息技术研究所 Composite ceramic film on surface of magnesium alloy and its forming process
CN103726093A (en) * 2013-12-04 2014-04-16 武汉材料保护研究所 Method of adopting environment-friendly nickel-containing electrolyte to prepare microarc oxidation film layer on surface of magnesium alloy
CN103726093B (en) * 2013-12-04 2016-05-18 武汉材料保护研究所 A kind of environment-friendly type that adopts contains nickel electrolyte is prepared differential arc oxidation film layer method at Mg alloy surface
WO2019098378A1 (en) * 2017-11-17 2019-05-23 株式会社東亜電化 Magnesium or aluminum metal member provided with black oxide coating, and method for manufacturing same
CN111344439A (en) * 2017-11-17 2020-06-26 株式会社东亚电化 Magnesium or aluminum metal part with black oxide coating and preparation method thereof
JPWO2019098378A1 (en) * 2017-11-17 2020-10-01 株式会社東亜電化 Magnesium or aluminum metal member having a black oxide film and its manufacturing method

Also Published As

Publication number Publication date
JPS5928638B2 (en) 1984-07-14

Similar Documents

Publication Publication Date Title
JP3987633B2 (en) Metal protective film forming treatment agent and forming method
JPS581094A (en) Method for forming colored protective film on surface of magnesium material
JPS581093A (en) Method for forming protective film on surface of magnesium material
US4018628A (en) Process for coloring aluminium
GB1590597A (en) Treating a1 or a1 alloy surfaces
JPS63243299A (en) Composite plating steel sheet and its production
JPH06306632A (en) Bright bluing method for hot dip-aluminum alloy plated steel sheet
JPS60190588A (en) Method for blackening zinc or zinc alloy plated steel sheet
JPS5916994A (en) Formation of colored protective film on surface of aluminum material
JP3302582B2 (en) Electrolytic coloring of aluminum material and gray-colored aluminum material obtained thereby
JPS5916997A (en) Formation of colored protective film on surface of magnesium material
JPS60177176A (en) Manufacture of steel sheet diffusion-coated with chromium
JPS62180081A (en) Colored galvanized steel sheet
JP4980607B2 (en) Blackening treatment method for hot dip galvanized steel and blackened hot dip galvanized steel obtained thereby
JPS63195296A (en) Production of colored surface-treated steel sheet
JPH01225793A (en) Anodic oxide film composition on titanium and titanium alloy and production thereof
JPS6256598A (en) Surface treatment of zinc alloy plated steel sheet
US3681149A (en) Process for chemically forming oxide films on the surfaces of aluminum and aluminum alloys
JPS581090A (en) Method for forming a coloring protective film on surface of aluminum material
JPS5948879B2 (en) Aluminum electrolytic coloring method
JPS6350499A (en) Colored zinc composite plated steel sheet and its production
JPH04107293A (en) Method for coloring metallic material
JPH04107285A (en) Method for coloring metallic material
CA1193572A (en) Method of forming coloured anodized coating on die-cast auminum alloy articles
JPS62158898A (en) Manufacture of colored stainless steel stock