JPS58108438A - Optical probing method for material and soil in bottom of sea - Google Patents

Optical probing method for material and soil in bottom of sea

Info

Publication number
JPS58108438A
JPS58108438A JP56206033A JP20603381A JPS58108438A JP S58108438 A JPS58108438 A JP S58108438A JP 56206033 A JP56206033 A JP 56206033A JP 20603381 A JP20603381 A JP 20603381A JP S58108438 A JPS58108438 A JP S58108438A
Authority
JP
Japan
Prior art keywords
sea
seabed
light
curve
ship
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56206033A
Other languages
Japanese (ja)
Inventor
Setsuji Oota
太田 「あ」司
Makoto Shima
島 誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHISHITSU KOGAKU KK
Original Assignee
CHISHITSU KOGAKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHISHITSU KOGAKU KK filed Critical CHISHITSU KOGAKU KK
Priority to JP56206033A priority Critical patent/JPS58108438A/en
Publication of JPS58108438A publication Critical patent/JPS58108438A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

PURPOSE:To decide a material and a soil in the bottom of the sea, by a method wherein the bottom of the sea is irradiated with light with a wavelength of 2,000Angstrom -8,000Angstrom , and spectral distribution analyzer performs a spectrometry on light reflected by the material in the bottom of the sea, and its albedo curve is compared with that of a known material in the bottom of the sea. CONSTITUTION:A probing chip 1 is positioned on a sea surface above the bottom of the sea to be probed, and through operation of a winch connected to a probing device A, the device is suspended by means of a wire 2 in a suspension condition until the device A is lowered in close to the bottom of the sea. A condition of the device being suspended and moved in close to the bottom of the sea 7 can be observed in a ship by means of a submarine television camera 5. When it reaches a given probing position, and if the bottom of the sea 7 is irradiated through operation of a luminous device 3 from the inside of the ship, a collector 4 paired with the device 3 collects light reflected by a material in the bottom of the sea, it performs a spectrometry of a reflection absorption spectral distribution, it converts it into an electric signal to transmit it to a recorder 6 on the ship through a cable 2 by means of a telemeter, and this allows the formation of an albedo curve diagram. The curve is compared with a known albedo characteristics curve to decide a material in the bottom of the sea in a probing position.

Description

【発明の詳細な説明】 本発明は海底物質および海底地質の探査方法に関するも
ので、その目的とするところは上記探査を特に光学的方
法によって船上または船中から短時間のうちにかつ比較
的簡単で容易な操作によって連続的でありしかも能率的
に無駄な労力を必要とすることな〈実施できる探査方法
を提供することにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for exploring seabed materials and seabed geology, and an object of the present invention is to carry out the above-mentioned exploration in a short time and relatively easily from on or inside a ship, particularly by optical methods. The object of the present invention is to provide an exploration method that can be carried out continuously and efficiently by easy operation without requiring unnecessary labor.

ところで、海底を構成している物質、海底下の鉱床など
の海底物質、あるいは海底地質の探査は陸上における探
査あるいは調査と異なって一般に海底に存在する物質の
採取が面倒であって特に深海における海底物質の採取は
非常に困難でありかつ多大の費用と時間、労力を必要と
する。そして近年地球物理的方法および海底用テレビジ
ョンの開発に伴って浅い水深の海底に対する探査は比較
的容易になって来たが、それでも海底物質の組成などの
物性の分析を海底の現場で行なうことは現在できず、仮
りに試料を潜水船を使って採取した場合でも試料を陸上
に持ち帰るか、採集器を船上に引き上げた後試料を直接
分析し検討する方法以外の探査手段は実施されていなか
った。しかしながらこのような手段や方法では試料の採
取地点全多くすることは実施上時間的にも労力的にも試
料採取の度毎に船上まで試料を取込んだりまた採集器を
海底にまで戻すなどの繰返し作業を反復することから多
大の困難を伴ない、従来はもとより現在も海底物質およ
び海底地質の探査あるいは調査は非常に困難を極めてい
るのが実状である。
By the way, exploration of the materials that make up the seabed, seabed materials such as ore deposits under the seafloor, or seabed geology differs from land-based exploration or surveys in that it is generally troublesome to collect the materials that exist on the seabed, especially in the deep sea. Collecting materials is extremely difficult and requires a great deal of cost, time, and effort. In recent years, with the development of geophysical methods and submarine television, it has become relatively easy to explore the seabed at shallow depths, but it is still difficult to analyze physical properties such as the composition of seafloor materials on the seabed. Currently, this is not possible, and even if samples were collected using a submersible, there is no other means of exploration other than bringing the samples back to land or directly analyzing and examining the samples after bringing the sample aboard the ship. Ta. However, with these means and methods, it is difficult to increase the number of sample collection points in terms of implementation time and labor, and it is difficult to carry the sample up to the ship each time to collect the sample, or to return the sampler to the seabed. The reality is that exploration and investigation of seabed materials and seabed geology has been extremely difficult not only in the past, but also today, as it involves a great deal of difficulty due to the repetitive work involved.

上記実状に対して本発明は試料採取による探査方法とは
全く異なる探査方法として海底に近接して一対の光学的
発光装置および受光装置を移動してスキャンニングする
ことにより海底物質に発光装置から照射した波長λoo
o A〜1000 Aの入射光線に対する海底物質から
の反射光線を受光装置に内蔵したスペクトル分布分析装
置(例えば日本光学工業(株)製ニコンモノクロメータ
ー250シリーズ)によって分光測定し、その反射吸収
スペクトル分布の電気信号を船上のレコーダーに送り、
レコーダーによりアルベート曲線(反射吸収スペクトル
分布曲線)を作成することによって試料採取のような直
接的方法によらない海底と無接触による間接的でかつ連
続的海底物質の探査方法に着目し、そのスペクトル分析
値と対比すべき資料としての各種海底物質の反射スペク
トルから得られるアルベートの特性曲線を測定しておい
て、この測定値と水中においてスキャンニングする光学
的探査装置から送られる電気信号にもとすくアルベート
のスペクトル形状との比較から船上または船中において
極めて容易に海底物質および海底地質を測定し決定でき
ることを発見しその実施に成功した。
In response to the above-mentioned situation, the present invention provides an exploration method that is completely different from the exploration method based on sample collection, in which a pair of optical light-emitting devices and light-receiving devices are moved close to the seabed and scanned, thereby irradiating seabed materials from the light-emitting device. wavelength λoo
o Spectroscopically measure the reflected light from the seabed material for the incident light of A to 1000 A using a spectral distribution analyzer (for example, Nikon Monochromator 250 series manufactured by Nippon Kogaku Kogyo Co., Ltd.) built into the light receiving device, and calculate the reflection absorption spectrum distribution. sends an electrical signal to the ship's recorder,
By creating an Albate curve (reflection absorption spectral distribution curve) using a recorder, we focused on an indirect and continuous exploration method for seafloor materials without direct contact with the seabed, without direct methods such as sampling, and analyzed its spectra. The characteristic curve of albate obtained from the reflection spectra of various seabed materials is measured as data to be compared with the value, and it is easy to combine this measured value with the electrical signal sent from the optical exploration device that scans underwater. We discovered that seafloor materials and seabed geology can be measured and determined extremely easily on or in a ship by comparing it with the spectral shape of Albate, and we succeeded in implementing it.

以下本発明の構成および作用効果全添附の図表および図
面を参照して説明するが、明細の特許請求の範囲に本発
明の必須の構成として記載した構成要件を有する方法の
ものはその実施態様において差違があっても本発明の技
術的範囲に属する方法であることはいうまでもない。第
1図は本発明により世界で最初に作成した西太平洋の水
深3000−≠000米の海底の主要な堆積物を光電管
R213ヲ使用して得たアルベート曲線をまとめた図表
で横軸は投、射光線の波長で200OAから100OA
を表示し、縦軸は海底物質から反射した光線のスペクト
ル分布分析にもとすくアルベート値(単位%)である。
The structure and effects of the present invention will be explained below with reference to the accompanying diagrams and drawings, but the method having the constituent features described in the claims of the specification as essential features of the present invention will be described in its embodiment. Needless to say, even if there are differences, these methods fall within the technical scope of the present invention. Figure 1 is a chart summarizing the Albate curves obtained by using a phototube R213 for major sediments on the seabed of the Western Pacific at a depth of 3000-≠000 meters, which was created for the first time in the world by the present invention. 200OA to 100OA depending on the wavelength of the incident light beam
is displayed, and the vertical axis is the albate value (unit: %), which is useful for analyzing the spectral distribution of light rays reflected from seafloor materials.

図表中の深海底に分布する物質である赤粘土、放散虫軟
泥、珪藻軟泥、グロビゲリナ軟派、具足類軟泥などへの
照射光線の波長と、それらの物質からの反射光線のスペ
クトルから得られるアルベートとの関係を示す特性曲線
を見るといろいろの海底物質がそれぞれ極めて特徴のあ
る特性曲線を有することを発見した。また、第2図は光
電管R666S i使用して得た日本近海水深約300
 mの浅海での粘土鉱物、イライト、モンモリナイト、
カオリナイト、緑泥岩・玄武岩・安山岩などの岩石類、
火山噴出物などのアルベート曲線でおるが、図表中粘土
鉱物類、岩石類などがそれぞれに特徴ある曲線を示すこ
とを発見した。
The albate obtained from the wavelength of the irradiated light beam to the materials distributed on the deep seabed in the diagram, such as red clay, radiolarian ooze, diatom ooze, globigerina ooze, and arthropod ooze, and the spectrum of the reflected rays from those materials. When looking at the characteristic curves showing the relationship between In addition, Figure 2 shows the water depth around Japan, which was obtained using the R666S i phototube.
Clay minerals, illite, montmorinite, in the shallow sea of m.
Rocks such as kaolinite, chlorite, basalt, andesite,
Volcanic ejecta and other materials have Albate curves, but we discovered that clay minerals, rocks, etc. in the diagram show unique curves.

そして上記各種の物質のアルベート曲線の特定にもとす
いて本発明は第3図に示す実施例の探査装置Aによって
直接的な海底からの試料採集によることなく海底物質の
成分を海底物質と無接触に光学的に探査できる方法を初
めて開発することに成功した。
In order to identify the albate curves of the various substances mentioned above, the present invention uses the exploration device A of the embodiment shown in FIG. For the first time, we succeeded in developing a method for optically detecting contact.

すなわち図中/は海上にある船、2は船トのウィンチな
どから探査装置At−垂下するワイヤーおよび電力、操
作信号などを供給し、また、入力信号を船に伝送するケ
ーブルなどである。3は耐圧性で気密の探査装置A内に
設置した発光装置でその内部にはタングステンまたはキ
セノンランプを内蔵し、xooo X〜rooo Xの
波長の光線を深海中で海底に照射できる。μは発光装置
3と対をなして探査装置Aに設けた受光装置であってス
ペクトル分布分析装置を内蔵し発光装置から海底に照射
し、海底物質から反射した反射光線を受光し、その受光
反射光線全内蔵したスペクトル分布分析装置により分光
測定し電気信号に変換する。jは探査のため海底を観察
する海中用テレビカメラであって船上のテレビ映像装置
7に、連結している。以上を含む耐圧性で気密の探査装
置AI船上からの操作信号によって遠隔制御出来るよう
に構成し海底に対する装置の姿勢などを制御可能とする
ことは公知の制御手段を使用すれば探査装置全体あるい
は海中用テレビカメラなどを含む個々の装置について可
能であるが、固定的装置であっても一般の探査には支障
がない。乙は船中に設置したレコーダー、gは探査の対
象となる3海底である。
That is, in the figure, / is a ship on the sea, and 2 is a wire hanging from the winch of the ship to the exploration device At, and a cable that supplies power, operation signals, etc., and also transmits input signals to the ship. 3 is a light emitting device installed in the pressure-resistant and airtight exploration device A, which has a built-in tungsten or xenon lamp, and can irradiate light beams with wavelengths of xooo X to rooo X to the seabed in the deep sea. μ is a light receiving device installed in the exploration device A in pair with the light emitting device 3, which has a built-in spectral distribution analyzer, irradiates the seabed from the light emitting device, receives reflected light reflected from seabed materials, and receives and reflects the light. A spectral distribution analyzer with a built-in light beam performs spectroscopic measurements and converts them into electrical signals. j is an underwater television camera for observing the seabed for exploration purposes, and is connected to a television imaging device 7 on board the ship. The pressure-resistant and airtight exploration device AI, which includes the above, is configured to be remotely controlled by operation signals from the ship, and the attitude of the device with respect to the seabed can be controlled by using known control means. This is possible for individual devices, including television cameras, etc., but even fixed devices do not pose a problem for general exploration. O is the recorder installed on the ship, and g is the three seabeds to be explored.

本発明の探査方法の実施に当っては先づ探査すべき海底
上部海上に探査船を配置し、探査装置を接続したウィン
チ等を操作して海底に探査装置Aが近接する迄懸垂状態
で装置をワイヤー2で垂下する。垂下および海底への近
接の状況は海中テレビカメラjにより船中で観測できる
ことはいうまでもない。所定の探査位置に到達したなら
ば発光装置3を船中から作動させて海底を照射すれば、
これと対をなす受光装置グが海底物質からの反射光を受
光しその反射吸収スペクトル分布を分光測定し、これを
電気信号としてケーブルを通してテレメーターにより船
上のレコーダー乙に伝送することによりアルベート曲線
図を作成できる。その曲線を第1図あるいは第2図に示
す既知のアルベート特性曲線と対比することによって探
査位置の海底物質を決定することになる。探査に際して
探査装置を順次移動して各位置における反射光のスペク
トル分布値を記録して行けばその探査結果から広い海底
部分の海底物質の分布ひいては海底物質の探査が従来の
直接試料採集法では側底予測できない短期間で能率的に
しかも容易に実施できる。
In carrying out the exploration method of the present invention, first, a survey vessel is placed above the seabed to be surveyed, and a winch or the like connected to the survey device is operated to keep the survey device A in a suspended state until the survey device A approaches the seabed. hang from wire 2. Needless to say, the situation of drooping and proximity to the seabed can be observed onboard the ship using an underwater television camera. Once you have reached the predetermined exploration position, you can activate the light emitting device 3 from inside the ship to illuminate the ocean floor.
The paired light receiving device receives the reflected light from the seabed material, spectrally measures the reflection and absorption spectrum distribution, and transmits this as an electrical signal to the onboard recorder B via a cable via a telemeter, thereby creating an Arbate curve diagram. can be created. By comparing the curve with the known Albate characteristic curve shown in FIG. 1 or 2, the seabed material at the exploration location is determined. During exploration, if the exploration device is moved sequentially and the spectral distribution values of reflected light at each location are recorded, the exploration results will reveal the distribution of seafloor materials in a wide seabed area, and the exploration of seafloor materials will be difficult to achieve with conventional direct sampling methods. It can be carried out efficiently and easily in a short period of time when the bottom cannot be predicted.

なお、第1図および第2図の特性曲線はその分布が既に
知られている前記海底で実際に本発明の実施に使用する
探査装置によって実測した図表であり、従来の試料採取
方法によって海底から船1に引揚げだ試料では空気によ
る酸化など試料の性質に変化を来たすので正確な測定は
出来ない。なお、上記の探査製置へを海上の探査船でな
く海底まで潜水可能な潜水船の観察用の窓近くに設置し
探査要員が直接海底の状況を肉眼で観察しながら探査装
置を操作して探査してもよく、その際には海中用テレビ
カメラを必要としないこともある。
The characteristic curves in Figures 1 and 2 are charts that were actually measured using the exploration equipment used to carry out the present invention on the seabed where the distribution is already known. Accurate measurements cannot be made with the samples salvaged by ship 1 because their properties change due to oxidation caused by air. In addition, the above-mentioned exploration equipment is installed near the observation window of a submersible that can dive to the seabed, not an exploration vessel on the sea, so that exploration personnel can operate the exploration equipment while directly observing the situation on the ocean floor with the naked eye. It may also be explored, and underwater television cameras may not be required.

以上本発明の探査方法によれば光の反射スペクトル分布
を利用することによって極めて容易がつ能率的に海底物
質を探知でき海底地質図の作成および海底における石油
、天然ガス、石炭などの鉱床、金属鉱床などの分布区域
を探査できる。特に海底においては火山岩から変成され
るモンモリナイトはマンガン団塊の分布や海底金属鉱床
の分布とも密接な関係が17、それらの鉱床の探査区域
を限定できる指示的な役割をしている。また、粘土鉱物
は地質構造線(例えば断層など)に沿って分布する特徴
があり、これらを追跡することで石油や天然ガス鉱床の
賦存状況も探査することが可能である。本発明の方法に
よれば上記のような広い地域の海底物質を直接試料採集
する従来の探査方法では側底予想もつかなかった高能率
、自動的な手段方法によって極めて短時間で容易に探査
でき、その資料(データ)にもとづいて精確な地質図、
鉱床図を作成できる効果は将に画期的な海底物質および
海底地質の探査方法を開発したものでありその産業およ
び科学技術に寄与するところは頗る大きいものといえる
As described above, according to the exploration method of the present invention, by utilizing the reflection spectrum distribution of light, it is possible to detect seabed materials extremely easily and efficiently. You can explore distribution areas such as mineral deposits. Particularly on the ocean floor, montmorinite, which is metamorphosed from volcanic rock, has a close relationship with the distribution of manganese nodules and submarine metal deposits17, and plays an instructive role in limiting the exploration area for these deposits. In addition, clay minerals have the characteristic of being distributed along geological tectonic lines (for example, faults), and by tracing these, it is possible to explore the presence of oil and natural gas deposits. According to the method of the present invention, it is possible to easily explore the ocean floor in an extremely short time using highly efficient and automatic means that could not be predicted using conventional exploration methods that directly collect samples of seafloor materials in a wide area. , accurate geological maps based on that material (data),
The ability to create ore deposit maps has led to the development of an innovative exploration method for seabed materials and seabed geology, and its contribution to industry and science and technology can be said to be significant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は海底を構成する海底堆積物への照射光線の波長
とそれらの物質からの反射光線のスペクトル分布分析か
ら得られたアルベートとの関係を示すアルベート特性曲
線を示す図表、第2図は海底を構成する粘土鉱物や岩石
類などへの照射光線の波長とそれらの物質の反射光線の
スペクトル分布分析から得られるアルベートとの関係を
示すアルベート特性曲線?示す図表、第3図は本発明の
光学的探査方法の一実施例を示す説明図。 図面の主要な部分を表わす符号の説明 /・・・海底物質などの探査船、コ・・・ワイヤーおよ
びケーブル類、A・・・探査装置、3・・・発光装置、
ダ・・・受光装置、j・・・海中用テレビカメラ、6・
・・レコーダー、7・・・海底。 特許出願人 地質工学株式会社 代理人 弁理士  樽  見  誠  夫第1図 波長  λ(X) 第2図 波長  λ(U
Figure 1 is a chart showing the albate characteristic curve, which shows the relationship between the wavelength of the light rays irradiated to the seafloor sediments that make up the seafloor and the albate obtained from the spectral distribution analysis of the light reflected from those materials. An albate characteristic curve that shows the relationship between the wavelength of light beams irradiated to clay minerals and rocks that make up the ocean floor, and the albate obtained from spectral distribution analysis of the beams reflected by those materials. FIG. 3 is an explanatory diagram showing an embodiment of the optical exploration method of the present invention. Explanation of the symbols representing the main parts of the drawing/... Exploration vessel for seabed materials, etc., Co... Wires and cables, A... Exploration device, 3... Light emitting device,
da...light receiving device, j...undersea television camera, 6.
...Recorder, 7...Undersea. Patent Applicant Geological Engineering Co., Ltd. Agent Patent Attorney Makoto Tarumi Figure 1 Wavelength λ(X) Figure 2 Wavelength λ(U

Claims (1)

【特許請求の範囲】[Claims] 海上または水中の船から垂下するか海底まで潜水可能な
潜水船に取付けるかして海底に近接して配備したタング
ステンまたはキセノンランプを内蔵する発光装置から発
する波長2ooo X−ざ000Xの光線によって纏底
を照射し、その際発生する海底物質への入射光線に対す
る上記海底物質からの反射光線を前記発光部と同様海底
に近接して発光装置に対向して設置した受光装置によっ
て受光し、その受光反射光線を受光装置に内蔵するスペ
クトル分布分析装置によって分光測定しその反射吸収ス
ペクトル分布全電気信号に変換し、この変換した電気信
号を船上のレコーダーに送り、レコーダーによシアルベ
ート曲線(反射吸収スペクトル分布曲線)を作成し、そ
のアルベート曲線を既知の海底、物質のアルベート曲線
と対比することによって海底物質および海底地質を決定
することを特徴とする海底物質および海底地質の光学的
探査方法。
A light emitting device containing a tungsten or xenon lamp placed close to the ocean floor, suspended from a ship at sea or underwater, or attached to a submersible capable of diving to the ocean floor, emits a light beam of wavelength 200X-000X. The reflected light from the seabed material in response to the incident light on the seabed material generated at that time is received by a light receiving device installed close to the seabed and facing the light emitting device, similar to the light emitting section, and the light is received and reflected. The light beam is spectrally measured by a spectral distribution analyzer built into the light receiving device, and its reflection/absorption spectral distribution is converted into a total electric signal.The converted electric signal is sent to the recorder on the ship, and the recorder records the sialbate curve (reflection/absorption spectral distribution curve). ) and determining the seabed material and seabed geology by comparing the albate curve with the albate curve of known seabed and materials.
JP56206033A 1981-12-22 1981-12-22 Optical probing method for material and soil in bottom of sea Pending JPS58108438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56206033A JPS58108438A (en) 1981-12-22 1981-12-22 Optical probing method for material and soil in bottom of sea

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56206033A JPS58108438A (en) 1981-12-22 1981-12-22 Optical probing method for material and soil in bottom of sea

Publications (1)

Publication Number Publication Date
JPS58108438A true JPS58108438A (en) 1983-06-28

Family

ID=16516777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56206033A Pending JPS58108438A (en) 1981-12-22 1981-12-22 Optical probing method for material and soil in bottom of sea

Country Status (1)

Country Link
JP (1) JPS58108438A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988007213A1 (en) * 1987-03-18 1988-09-22 The British Petroleum Company P.L.C. Method for detecting diamonds in remote locations

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4943994A (en) * 1972-07-21 1974-04-25
JPS5529796A (en) * 1978-07-21 1980-03-03 Impulsphysik Gmbh Fluorescence measuring instrument

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4943994A (en) * 1972-07-21 1974-04-25
JPS5529796A (en) * 1978-07-21 1980-03-03 Impulsphysik Gmbh Fluorescence measuring instrument

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988007213A1 (en) * 1987-03-18 1988-09-22 The British Petroleum Company P.L.C. Method for detecting diamonds in remote locations
GB2209213A (en) * 1987-03-18 1989-05-04 British Petroleum Co Plc Method for detecting diamonds in remote locations
US4919533A (en) * 1987-03-18 1990-04-24 The British Petroleum Company Plc Method for detecting diamonds in remote locations

Similar Documents

Publication Publication Date Title
Fosså et al. Mapping of Lophelia reefs in Norway: experiences and survey methods
Rothwell et al. New techniques in sediment core analysis: an introduction
Baker et al. Hydrothermal plumes over spreading-center axes: Global distributions and geological inferences
EP2776873B1 (en) Exploration method for detection of hydrocarbons
CA1165137A (en) Method and apparatus for underwater detection of hydrocarbons
US4996421A (en) Method an system of geophysical exploration
Pasteris et al. Raman spectroscopy in the deep ocean: successes and challenges
Ross et al. A multi-sensor logger for rock cores: Methodology and preliminary results from the Matagami mining camp, Canada
JPS6222035A (en) Color tone inspection device and its method
CN107589094B (en) Method for determining type of Anshan-type iron ore based on spectral characteristics
Wiebe et al. BIOMAPER-II: an integrated instrument platform for coupled biological and physical measurements in coastal and oceanic regimes
Klinkhammer Fiber optic spectrometers for in-situ measurements in the oceans: the ZAPS Probe
CN108267427B (en) Seabed sediment spectral measurement method and device and terminal
CN110531365A (en) A kind of comprehensive in-situ investigation sample platform in far-reaching sea
US3961187A (en) Remote sensing of marine hydrocarbon seeps
JP2004028824A (en) Device and system for monitoring diastrophism
Chou et al. Seafloor characterization in the southernmost Okinawa Trough from underwater optical imagery.
Ananiev et al. Acoustic monitoring of gas emission processes in the Arctic Shelf Seas
JPH01503004A (en) How to detect diamonds in remote areas
JPS58108438A (en) Optical probing method for material and soil in bottom of sea
US4093420A (en) Mineral prospecting by organic diagenesis
RU2525644C2 (en) Method of geochemical exploration
Cunha et al. Ultrahigh-resolution seismic enhancement. The use of colored inversion and seismic attributes on sub-bottom profiler data
GB2084323A (en) Underwater seismic testing
US3747405A (en) Mapping hydrocarbon seepages in water-covered regions