JPS58108396A - Protector for heat exchanger - Google Patents

Protector for heat exchanger

Info

Publication number
JPS58108396A
JPS58108396A JP20888181A JP20888181A JPS58108396A JP S58108396 A JPS58108396 A JP S58108396A JP 20888181 A JP20888181 A JP 20888181A JP 20888181 A JP20888181 A JP 20888181A JP S58108396 A JPS58108396 A JP S58108396A
Authority
JP
Japan
Prior art keywords
heat exchanger
valve
temperature fluid
temperature
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20888181A
Other languages
Japanese (ja)
Other versions
JPS6017997B2 (en
Inventor
Toshio Ogauchi
小河内 俊雄
Yuji Kunihiro
国広 祐司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP20888181A priority Critical patent/JPS6017997B2/en
Publication of JPS58108396A publication Critical patent/JPS58108396A/en
Publication of JPS6017997B2 publication Critical patent/JPS6017997B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus

Abstract

PURPOSE:To enable a heat exchanger to be protected by an arrangement wherein even when the heat exchanger is not in use, a predetermined amount of fluid at a high temperature is allowed to flow through a high temperature fluid piping system to effect preheating and the fluid flow is interrupted every predetermined time so that the temperature drop between two points in the system may be detected. CONSTITUTION:When the heat exchanger is operated at a high load, a control circuit 100 transmits a command signal so that a condensate recovery regulating valve 12 leading to a deaerator 13 and a dump valve 15 leading to a condenser 10 are fully shut off, both valves 12 and 15 being connected through a heat exchanger 5 to a water separator 65, and the feed water supplied by a pump 1 flows through a feed water heater 3 and a boiler 6 so that it may be converted completely into steam and supplied into a turbine 9. Under this condition, in order to warm up a starting bypass system, values 14 and 16 are opened to warm up the upstream sides of the valves 12 and 15. If leakage happens in the heat exchanger 5, then the feed water under a high pressure flows backward to cool the water separator 65. To prevent this, the control circuit 100 serves to close the valve 14 for a predetermined time at regular intervals and measure the temperature drop according to the signals from temperature detectors 20, 21 of an inlet bypass pipe 11A of the heat exchanger 5 thereby checking of any leakage occurs or not.

Description

【発明の詳細な説明】 本発明は熱交換器の保−装置に係り、特に高圧流体及び
低圧流体間で熱の交換を行なわせしめる熱交換器な熱交
換不要時にも暖機すると共に、高圧流体が低圧流体11
に漏洩するのを検知できるよ5Kした熱交換−の保■装
置に輿する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat exchanger maintenance device, in particular a heat exchanger that exchanges heat between a high pressure fluid and a low pressure fluid. is low pressure fluid 11
A heat exchanger with a temperature of 5K can be detected to detect any leakage.

一般に、熱交換器は、高温の流体と低温の流体との間で
鵬の移動をさせる機器であり、lイツプラントや原子力
発電所等において熱交換の必要な部分に配設されている
。また、上記熱交換器のうちで高圧系統で使用書れる−
のにあっては、その高圧に耐え得るように厚崗に構成さ
れている。
Generally, a heat exchanger is a device that transfers heat between a high temperature fluid and a low temperature fluid, and is installed in a portion of an industrial plant, nuclear power plant, etc. where heat exchange is required. Also, among the above heat exchangers, it can be used in high pressure systems.
It is constructed of thick granite so that it can withstand the high pressure.

ところで、貫Rプイツな備えたダイ2グフント等に#け
る高圧系統Kgl用される熱交換器にあっては、プラン
ト趨動停止あるいは低負荷時にのみ使用し、過常這転時
には使用しないものがある。
By the way, among the heat exchangers used in the high-pressure system Kgl of a die 2 engine equipped with a transverse R unit, there are those that are used only when the plant is stopped or under low load, and are not used during excessive rolling. be.

しかしながら、この遥當這転時においても、前記熱交換
器は、高圧Klらされているため、その高圧の低温流体
(例えば、給水)が漏洩した場合には貫流ボイラの気水
分離タンクなどを急冷してしまい、大事故につながる恐
れがあり、さらに主蒸気温度の急下降はプラント等に#
けるタービンの事故にも発展する可能性がある。
However, even during this long rolling, the heat exchanger is under high pressure Kl, so if the high-pressure low-temperature fluid (for example, feed water) leaks, the steam-water separation tank of the once-through boiler, etc. There is a risk of rapid cooling, which could lead to a major accident.In addition, a sudden drop in main steam temperature may cause damage to the plant, etc.
There is a possibility that this could lead to an accident involving the turbine.

また、火力発電プラントの負荷変化率は、周知のように
年々高速となってきている。このため、熱交換器は、負
荷の変化に応じて使用状1m(熱交換状It)から急速
に不使用状態(熱交換不要状態)とされたり、逆に不使
用状態から使用状態とされることになる。このように加
熱・冷却が繰り返される状態で使用される結果、肉厚容
器としての熱交換器には高い熱応力が加わることKなり
、熱交換4!!にクツツタが発生する恐れがある。
Furthermore, as is well known, the rate of load change in thermal power plants is becoming faster year by year. Therefore, depending on the change in load, the heat exchanger can be rapidly changed from a used state of 1 m (heat exchange state It) to an unused state (heat exchange not required state), or conversely be changed from an unused state to a used state. It turns out. As a result of being used in a state where heating and cooling are repeated in this way, high thermal stress is applied to the heat exchanger as a thick-walled container, resulting in heat exchange 4! ! There is a risk that ivy may occur.

本発明の目的は、上記従来技術の不都合な点を解消し、
熱応力の発生を抑制すると共に、高圧流体の漏洩を検出
することにより保護を図る熱交換器の保護装置を提供す
るKある。
The purpose of the present invention is to eliminate the disadvantages of the above-mentioned prior art,
The present invention provides a heat exchanger protection device that protects a heat exchanger by suppressing the occurrence of thermal stress and detecting leakage of high-pressure fluid.

本発明は、上記目的を達成するために、熱交換器の不使
用時でも所定量の高温流体な熱交換器を含む高温流体配
管系に流して予熱をしておくと共に、前記高温流体の流
れを一定時間毎に停止し、かつこの時における熱交換器
付近の高温流体配管系の少なくとも二つの異なる点にお
ける高温流体の温度降下を検出するようにしたものであ
る。
In order to achieve the above object, the present invention preheats a predetermined amount of high-temperature fluid by flowing it into a high-temperature fluid piping system including a heat exchanger even when the heat exchanger is not in use, and the flow of the high-temperature fluid is stopped at regular intervals, and the temperature drop of the high-temperature fluid at at least two different points in the high-temperature fluid piping system near the heat exchanger at this time is detected.

以下、本発明の一実施例を図面に基づいて説明する。Hereinafter, one embodiment of the present invention will be described based on the drawings.

菖18は、本:i&WAK係る熱交換器の保臘装置のj
lIIIAf!4を示す系統間!ある。第1図に示すよ
うに本発明の第1実施例は、次のように構成されている
。符号1はポンプであり、このポンプlは、その吐出側
を配管2を介して高圧給水加熱器3の流入部に接続し、
該ポンプIKより低温流体としての給水を昇圧して高圧
給水加熱器3に供給するようになっている。この高圧給
水加熱ls3は、その流入部から供給された高圧の給水
を一定の温度にして流出部より#l崗する機器であり、
その流出部を高圧の低温流体配管としての給水配管4A
Kiil続し、高圧の給水を給水配管4AK流入させる
ようになっている。前記給水配管4At−低温側流入部
Kil続した熱交換@5は、その低温側流出部を給水配
管4Bを介し【ボイI)6に接続してあり、熱交換時K
)を高圧の給水が熱交換lIsの内ilを流れるように
なっている。該熱交換@lIは、前述9低温側流入部及
び*1uiii尚部以外にも高温側流入部及び高温側流
出llを有し、高m流体及び低温流体の混合がされるこ
となく熱の移動交換のみを行なわせる機器である。この
熱交換器5Kmaした給水配管4A及び給水配管48に
は、パイメスよ5になっている。
Iris 18 is a heat exchanger maintenance device related to the book: i&WAK.
lIIIAf! Between strains showing 4! be. As shown in FIG. 1, the first embodiment of the present invention is constructed as follows. Reference numeral 1 denotes a pump, and this pump l has its discharge side connected to the inflow part of the high-pressure feed water heater 3 via piping 2,
The pump IK increases the pressure of feed water as a low-temperature fluid and supplies it to the high-pressure feed water heater 3. This high-pressure water supply heating ls3 is a device that heats the high-pressure water supplied from the inflow part to a constant temperature and supplies it from the outflow part,
Water supply pipe 4A whose outflow part is a high-pressure low-temperature fluid pipe
The high-pressure water supply is made to flow into the water supply pipe 4AK. The heat exchanger @5 connected to the water supply pipe 4At and the low-temperature side inflow part Kil has its low-temperature side outflow part connected to the [boi I) 6 via the water supply pipe 4B, and during heat exchange, K
), high-pressure feed water flows through the heat exchanger lIs. The heat exchange @lI has a high-temperature side inflow and a high-temperature side outflow in addition to the above-mentioned 9 low-temperature side inflow and This is a device that can only be replaced. The water supply pipe 4A and the water supply pipe 48, which have a heat exchanger of 5 km in length, have a pipe diameter of 5.

前記ボイラ6は、給水配管4Bから供給される給水を節
炭器61、水壁管62、ケージ壁管6s。
The boiler 6 supplies water supplied from the water supply pipe 4B to an economizer 61, a water wall pipe 62, and a cage wall pipe 6s.

及び天井壁管64を経て気水分離器65に供給し、この
気水分離器65で気水分離された蒸気を、さらに1次過
熱器66.2次過熱器67及び3次過熱器68で過熱し
て、蒸気配管8を介してタービン9に供給するようKな
っている。このタービン9は、その排気側を復水器lO
にII続しである。
The steam separated from steam and water by the steam separator 65 is further supplied to a primary superheater 66, a secondary superheater 67, and a tertiary superheater 68. The steam is superheated and supplied to the turbine 9 via the steam pipe 8. This turbine 9 has a condenser lO on its exhaust side.
This is a continuation of Part II.

前記ボイラ6の気水分IIII器65において分離され
た復水は、低圧の高温流体配管系としての起動バイパス
配管11Aを介して熱交換器5の高温側流入部から熱交
換器5に供給され、この熱交換IIIにおいて熱交換さ
れた後の温水は、高温儒滝出部からバイパス配管11B
及び復水回収1ljlI弁12を介して脱気器13に循
環されるようになっている、つまり、復水11*関節弁
12は、腋熱交換器5の高温側流出部KIII絖した低
圧の高温流体配管系としてのバイパス配管11Bの終端
部と脱気器13との間に配散り、熱交換をさせないとき
に前記弁12を閉鎖するととによって熱交換器5に高温
流体とし【の復水′に流さないようになっている。
The condensate separated in the steam/moisture III device 65 of the boiler 6 is supplied to the heat exchanger 5 from the high-temperature side inlet of the heat exchanger 5 via the startup bypass piping 11A as a low-pressure high-temperature fluid piping system, The hot water after being heat exchanged in this heat exchange III is transferred from the high temperature takide part to the bypass pipe 11B.
In other words, the condensate 11 is circulated to the deaerator 13 via the condensate recovery valve 12. In other words, the condensate 11*joint valve 12 is connected to the high temperature side outflow part KIII of the axillary heat exchanger 5. Condensation water is distributed between the terminal end of the bypass pipe 11B as a high-temperature fluid piping system and the deaerator 13, and when the valve 12 is closed when no heat exchange is performed, the high-temperature fluid is condensed into the heat exchanger 5. ’.

との復水wJ収調節弁12の前後付近の配管には、第1
の開閉5P14を接続し、熱交換をさせないときに開放
させて所定量の高温流体を前記バイパス配管11A、熱
交換器5、腋バイパス配管11B及び皺IIIfIs弁
12を食む高温流体配管系に流し、これらを1114す
るようになっている。また、−バイパス配管11Aは、
その端部なダンプ弁1sK接続し、とのダンプ弁Isは
復水器10に接続しである。賦バイパス配管11Aは、
腋ダンプ弁15と咳バイパス配管11Aとの畿絖部の付
近に第2の制御弁16を接続し、この第2の制御弁16
は脱気1B131にmmbである。なお、脱気器13は
、ポンプ1の黴入儒Km絖し、給水を供給するようにな
っている。
The piping near the front and back of the condensate wJ collection control valve 12 has a first
Connect opening/closing 5P14 and open when no heat exchange is performed to allow a predetermined amount of high-temperature fluid to flow into the high-temperature fluid piping system that covers the bypass piping 11A, the heat exchanger 5, the armpit bypass piping 11B and the wrinkle IIIfIs valve 12, These are set to 1114. Moreover, the -bypass piping 11A is
The dump valve IsK is connected to its end, and the dump valve Is is connected to the condenser 10. The bypass piping 11A is
A second control valve 16 is connected near the furrow between the armpit dump valve 15 and the cough bypass pipe 11A, and the second control valve 16
is mmb for degassing 1B131. Incidentally, the deaerator 13 is designed to absorb water from the pump 1 and supply water.

さらに、制御回路100は、タービン9の一転速度、発
電機の状MK関する信号、その他の信号を取り込んで負
荷状態を監視し、起動時にはバイパス弁7を閉止し、ボ
イラ最少給水量以下の低負荷時には前記調節弁12及び
ダンプ弁ISを開閉制御すると共に第1及び第2の開閉
弁14及び16を閉止制御し、高負荷時には前記調節弁
12及びダンプ弁15を閉止すると共にパイ/<ス弁7
を−放し、かつ第1及び第2の開閉弁14及び16を開
放制御するように構成しである。上記のように構成され
た第1実施例の動作を以下に説明する。
Furthermore, the control circuit 100 monitors the load state by taking in signals related to the rotational speed of the turbine 9, the condition MK of the generator, and other signals, closes the bypass valve 7 at startup, and closes the bypass valve 7 when the load is below the boiler minimum water supply amount. At times, the control valve 12 and the dump valve IS are controlled to open and close, and the first and second on-off valves 14 and 16 are controlled to close, and when the load is high, the control valve 12 and the dump valve 15 are closed, and the pipe/spring valve IS is controlled to close. 7
is released, and the first and second on-off valves 14 and 16 are controlled to open. The operation of the first embodiment configured as described above will be explained below.

まず、給水ポンプIKより昇圧された給水は、高圧給水
加熱養3を経てボイラ6に供給されるが、この間に起動
バイパス配置111Aを流れる高温流体の熱回収を行う
ため熱交換器5を通すようにし、!電通して節嶽器61
に供給する。前記給水は、壁管62、ケージ壁管63、
天井壁管64を経て気水分m器65に供給される。この
気水分離!65で気水分離された復水は、起動バイパス
配管lIAを介して熱交換器IK供給される。この熱交
換後の温水は、バイパス配管11B及び調節弁12を介
して脱気器ISK循環される。
First, the feed water pressurized by the feed water pump IK is supplied to the boiler 6 through the high-pressure feed water heating tank 3, but during this time it is passed through the heat exchanger 5 in order to recover the heat of the high temperature fluid flowing through the startup bypass arrangement 111A. west,! Dentsu and setback device 61
supply to. The water supply is provided through a wall pipe 62, a cage wall pipe 63,
It is supplied to a steam/moisture meter 65 via a ceiling wall pipe 64. This air and water separation! The condensate separated into steam and water at 65 is supplied to the heat exchanger IK via the startup bypass piping IIA. The hot water after this heat exchange is circulated through the deaerator ISK via the bypass pipe 11B and the control valve 12.

一方、気水分離器65において分離された蒸気は、1次
過熱@@@、2次過熱器6γ及び3次過熱器68で過熱
されて、配管8を介してタービン9に供給される。
On the other hand, the steam separated in the steam separator 65 is superheated in the primary superheater @@@, the secondary superheater 6γ, and the tertiary superheater 68, and is supplied to the turbine 9 via the pipe 8.

また、ボイラ最少給水量以下の低負荷時と制御回路10
0で判定されると、前記調節弁12及びダンプ弁15は
制御回路100により負荷状態に応じて制御される。
In addition, when the load is lower than the boiler minimum water supply amount and the control circuit 10
If it is determined to be 0, the control valve 12 and dump valve 15 are controlled by the control circuit 100 according to the load state.

高負荷時であると制御回路100Kより判定されると、
脱気器13への復水回収調整弁12及びダンプ弁1sは
制御回路10Gの指令によって全閉されて、ボイラ6へ
の給水はすべて蒸気となりタービン9へ供給される。従
ってこの状態型は、気水分離器・器、m−バイパス配管
11A、#11及び第2の開閉弁14及び16のSt*
が必要であり、起動バイパス系統を暖機するために開閉
弁14及び16を開いて起動バイパス系統全体の暖機を
行う。すなわち、気水分離器65、起動バイパス配管1
1A、熱交換器5、及び制御弁12、ダンプ弁15の前
流側は流体が流れ暖機され、その暖機後の流体は脱気器
13に回収される。この老うな本実施例によれば、熱損
失が少く放熱分だけの熱量供麺が可能となる。
When the control circuit 100K determines that the load is high,
The condensate recovery adjustment valve 12 and the dump valve 1s to the deaerator 13 are completely closed by a command from the control circuit 10G, and all the water supplied to the boiler 6 becomes steam and is supplied to the turbine 9. Therefore, this state type is St
In order to warm up the startup bypass system, the on-off valves 14 and 16 are opened to warm up the entire startup bypass system. That is, the steam separator 65, the startup bypass piping 1
1A, the heat exchanger 5, the control valve 12, and the upstream side of the dump valve 15 are warmed up by flowing fluid, and the fluid after warming up is collected in the deaerator 13. According to this embodiment, heat loss is small and noodles can be prepared with as much heat as the amount of heat dissipated.

次に1本発明の第2実施例を説明する。第2実施例は、
前記第1実施例と同一の構成を有し、かつ同一の作用を
すると共に、次の構成が付加されている。すなわち、前
記熱交換器5の入口側高温流体配管系としてのバイパス
配管11Aの異なる2点に少μくとも二つの高温流体温
度検出器20及び21を配設し、前記検出器20及び2
1により温度検出すると共に、前記検出信号を制御回路
100に取り込むようKなっている。制御回路H)0は
、一定時間毎に前記第1N4閉弁14を全閉させると共
に、前記温度検出器20及び21からの温度検出信号に
より規定時間に対する温j[降下適度を検出して比較し
、かつこの差が所定値を超えているIIIK書報信号あ
るいは装置を停止させる信号を形成するように構成され
ている。前記制御囲路10Gは、第i1趨例の構成を有
し、さらに、上記のように付加された**を有すること
は前述した。1Ili2Kit、この付加lj分の構成
を示すプはツタ図である。このIIにおいて、符号10
1はグログツムタイマであり、このプ胃グッムメイマ1
01は一定周期Tl1K規定の時鳥型だけ嬉lの開閉弁
14を閉止する信号を霧閉弁゛14のソレノイド部14
AK出力するようになっ【いる、このグはグフムタイマ
101かもの閉止信号によりソレノイド14Aが動作し
て弁体14Bが閉じると、このMwA弁14ffC$9
付けであるす々ットスイッチの接点14Cは閉成され、
逆に弁14Bが開(と接点14Cは闘放するようになっ
ている。この接点14Cは、一方の電mを直流電源の2
極(+)K接続し、他方の電極に補助リレー102を介
して直流電gの負11(−)KIIaL、績414Cの
z成で補助リレー102に通電するようになっている。
Next, a second embodiment of the present invention will be described. The second example is
This embodiment has the same structure and functions as the first embodiment, and has the following additional features. That is, at least two high-temperature fluid temperature detectors 20 and 21 are disposed at two different points on the bypass pipe 11A as the high-temperature fluid piping system on the inlet side of the heat exchanger 5.
1 to detect the temperature, and to input the detection signal to the control circuit 100. The control circuit H)0 fully closes the first N4 closing valve 14 at regular intervals, and detects and compares the degree of temperature drop for a specified time based on the temperature detection signals from the temperature detectors 20 and 21. , and the difference exceeds a predetermined value, a IIIK report signal or a signal for stopping the device is generated. As described above, the control enclosure 10G has the configuration of the i1th example, and further has the ** added as described above. 1Ili2Kit, and the diagram showing the configuration for this additional lj is a vine diagram. In this II, the code 10
1 is the grogtsumu timer, and this pugasugugumumeima 1
01 sends a signal to the solenoid part 14 of the mist closing valve 14 to close the on-off valve 14 of the bird type only when the constant period Tl1K is specified.
When the solenoid 14A is activated and the valve body 14B is closed by the close signal of the timer 101, this MwA valve 14ffC$9 outputs AK.
The contact 14C of the attached switch is closed,
Conversely, the valve 14B is opened (and the contact 14C is released. This contact 14C connects one electric current m to the DC power supply 2).
The auxiliary relay 102 is energized by the negative 11(-) KIIaL of the DC current g and the z configuration of the negative 414C through the auxiliary relay 102 connected to the other electrode.

この補助リレー102は、接点102A、102B及び
102Cを有し、補助リレー102のコイルに通電され
ると図示矢符方向に移動するようKなっている。
This auxiliary relay 102 has contacts 102A, 102B, and 102C, and is configured to move in the direction of the arrow in the figure when the coil of the auxiliary relay 102 is energized.

符−j)103及び104は増幅回路であり、これら増
41回路103及び104は温度検出m2o及び21か
らの検出信号を取り込み、/Tr定の電圧信号に増幅す
るようになっている。増411回路10mは、その出力
端をリレー接点102Aの常閉側接点に接続し、この接
点を介してアナログメモV園路105に信号を供給する
ようになっている。このアナ胃グメモリ囲絡105は、
その出方端を偏MIL演算屈路106に接続すると共に
、接点102人の?IN接点に接続しである。この偏差
演算膳路1()ltは、増幅回#&104の出方信号を
敗り込み、7すpグメモリ回路105からの信号との偏
差な出力するようKなっており、その出力端を比s回路
107に接続しである。この比例回ji1107は。
-j) 103 and 104 are amplifier circuits, and these amplifier circuits 103 and 104 take in the detection signals from the temperature detection m2o and 21, and amplify them to a constant /Tr voltage signal. The output end of the extension 411 circuit 10m is connected to the normally closed contact of the relay contact 102A, and a signal is supplied to the analog memo V garden path 105 via this contact. This Anatomy Memory Encirclement 105 is
The output end is connected to the partial MIL calculation circuit 106, and the contact point 102 is connected to the terminal 106. Connect to the IN contact. This deviation calculation circuit 1()lt is configured to input the output signal of the amplification circuit #&104 and output it with a deviation from the signal from the 7pg memory circuit 105, and its output terminal is compared. It is connected to the s circuit 107. This proportional rotation ji1107 is.

偏着信号を所定の値にするものであり、その出力端をリ
レー接点102Bの常#I接点Km絖し、常開接点が閉
成時にアナログデジタル変換間jli3(AD変変換絡
路108にその出力信号を供給するようKなっている。
The output terminal is connected to the normally #I contact Km of the relay contact 102B, and when the normally open contact is closed, it is connected to the analog-to-digital conversion circuit 108 K is configured to provide an output signal.

このAD変換回路10Bは、その入力された信号をディ
ジタル化し、その入力信号が所疋の値以上となったとI
KII点1611を閉成するようkなっている。この接
点10Gは、接点102C及び補助リレー110のコイ
ルと直列接続して直流電11Kii続し、両接点10G
及び102Cか同時に閉成されると補助リレー11Gの
コイルを通電するようKなっている。補助リレー11G
が通電されると、警11II踏111が警報を発するよ
うKなっている。また、接点110Aは、装置を停止す
る信号発生用として用いてもよい、なお、符号112は
111勺1ilJLI!であり、その出力端をリレー接
点102Bの常閉IF!AKIi絖し、AD変換回路1
08の不使用時に誤動作をしないように常時O%傷信号
供給したものである。したがって、−動作の対策がなさ
れたものは信号発生@112は不要である。
This AD conversion circuit 10B digitizes the input signal, and when the input signal exceeds a predetermined value, an I.D.
k so as to close the KII point 1611. This contact 10G is connected in series with the contact 102C and the coil of the auxiliary relay 110 to connect DC current 11Kii, and both contacts 10G
and 102C are closed at the same time, the coil of auxiliary relay 11G is energized. Auxiliary relay 11G
When the power is turned on, the alarm 11II and the tread 111 are designed to issue an alarm. Further, the contact 110A may be used to generate a signal to stop the device. Note that the reference numeral 112 is 111 勺 1ilJLI! And its output end is the normally closed IF of relay contact 102B! AKIi installation, AD conversion circuit 1
08 is constantly supplied with an 0% flaw signal to prevent malfunction when not in use. Therefore, the signal generation @112 is not necessary if countermeasures are taken against the - operation.

上記のように構成された第2実施例の動作を以下Km明
する。
The operation of the second embodiment configured as described above will be explained below.

熱交換器5は、給水側の圧力が高いため万一漏洩がある
と高圧の低温流体としての給水が逆流して気水分@鰺S
Sを冷却してしまう。そこで、本実施例は、一定時間T
毎に規定時間tだけ、開閉弁14な全閉し、熱交換器5
の入口側バイパス配管11AK設けられた温度検出器2
0及び21かもの検出信号に基づいて、それら部分の温
lL障下を渕定し、熱交換器5Km洩のないことを確−
するものである。
In the heat exchanger 5, the pressure on the water supply side is high, so if there is a leak, the water supply as a high-pressure low-temperature fluid will flow backwards and become steam/moisture @Mackerel S
S will be cooled down. Therefore, in this embodiment, the fixed time T
The on-off valve 14 is fully closed for a specified time t every time, and the heat exchanger 5 is closed.
Temperature sensor 2 provided with bypass piping 11AK on the inlet side of
Based on the detection signals of 0 and 21, we determined the temperature failure in those parts and confirmed that there was no leakage in the heat exchanger for 5 km.
It is something to do.

すなわち、高負荷運転になり調節弁12及びダンプ弁1
5は制御回jl100の指令により閉じると共に、第1
及び第2の闘閉jf14及びl・は−かれる。次いで、
グログツムタイマ101からの信号により、開閉弁14
は一定時間T*に*定時間tだけ閉じられる。すると、
接点14Cが閉成され(補助リレー102を通電する。
In other words, high load operation occurs and the control valve 12 and dump valve 1
5 is closed by the command of the control circuit jl100, and the first
and the second battle closing jf14 and l. Then,
The on-off valve 14 is
is closed for a constant time t at a constant time T*. Then,
Contact 14C is closed (auxiliary relay 102 is energized).

補助すV−102が通電されると、4!r111点10
2A、10j!B及び102Cはそれぞれ図示矢符方向
に移動する′。
When the auxiliary V-102 is energized, 4! r111 points 10
2A, 10j! B and 102C each move in the direction of the arrow in the figure.

アナ關グメモリ(ロ)路105は、開閉弁14の閉止時
点の湿質検出器20の検出信号を記憶して偏差演算11
jlllG@に供給する。偏差演算回路lO6では、温
度検出器21からの信号と前記アナレグメモリ回路10
1かもの1号の減算をし、その演算結果を比例−路10
7を介してADfR換回路108に供給する。前記偏差
演算回路lO6からの偏差信号が大ぎいときは、熱交換
器5内KgII洩が発生しているものとして接点1(l
を閉成し、リレー接点102Cが閉成されていることを
条件に補助リレー1101−通電し、リレー接点110
Aを閉成して警S回路111を動作させ、警報を発報さ
せる。また、偏差演算回路106からの偏差信号が小さ
いとtKは、もちろん接点1011は開放されたままで
ある。つまり、この制御回路100では、開閉弁14の
閉止時におゆる温度検出量20からの温度検出信号を記
憶しておき、規定時間tだけ温度検出!)21かもの温
度検出信号を前記記憶された僅と比較し、通常の熱放散
の温lL陣下のときの偏差信号では接点109を閉成し
ないようにし、熱交換器11Kml洩がある場合には、
温度検出器20が通常の熱放散で降下するよりも速い降
下をし、次いで温度検出器21が急速に温度降下する。
The analog memory (b) path 105 stores the detection signal of the moisture detector 20 at the time when the on-off valve 14 is closed, and performs the deviation calculation 11.
Supply to jlllG@. The deviation calculation circuit lO6 uses the signal from the temperature detector 21 and the analog memory circuit 10.
Subtract 1 or 1 and convert the result of the calculation to the proportional - 10
7 to the ADfR conversion circuit 108. When the deviation signal from the deviation calculation circuit lO6 is large, it is assumed that KgII leakage has occurred in the heat exchanger 5, and the contact 1 (l
is closed, and on condition that relay contact 102C is closed, auxiliary relay 1101 is energized, and relay contact 110 is energized.
A is closed, the alarm S circuit 111 is activated, and an alarm is issued. Furthermore, if the deviation signal from the deviation calculation circuit 106 is small, the contact 1011 remains open at tK. In other words, in this control circuit 100, the temperature detection signal from the temperature detection amount 20 that occurs when the on-off valve 14 is closed is stored, and the temperature is detected for a specified time t! ) 21 temperature detection signals are compared with the above-mentioned stored values, and if the deviation signal is below the temperature of normal heat dissipation, the contact 109 is not closed, and if there is a leakage of 11 Kml from the heat exchanger, teeth,
Temperature sensor 20 drops faster than it would with normal heat dissipation, and then temperature sensor 21 drops in temperature quickly.

しかしながら、開閉弁14を閉じた直後の検出器20か
らの検出温度信号を記憶し、規定時間tの量温度検出器
21の比較をするので、その偏差を必ず検出することが
できる。
However, since the detected temperature signal from the detector 20 immediately after closing the on-off valve 14 is stored and compared with the quantity temperature sensor 21 for the specified time t, the deviation can always be detected.

第2実施例は、上述のように動作するものである。さら
に、上述のように構成したので、温度検出器20及び2
1の温1ILpI!#下を開始する時間差と、この間の
配管11Aの容積から概略の漏洩量を知ることができる
ので、その後のプ〉ントの6埋に極めて有利である。
The second embodiment operates as described above. Furthermore, since the configuration is as described above, the temperature detectors 20 and 2
1 warm 1ILpI! Since the approximate amount of leakage can be determined from the time difference between starting # and the volume of the piping 11A during this time, it is extremely advantageous for the subsequent #6 filling.

高負荷時には熱交換器5のバイパス弁7は全開となるが
、弁7の圧力損失分だけの少量の給水が熱交換器5を流
れるので給水側の厚肉部は暖機されている。
When the load is high, the bypass valve 7 of the heat exchanger 5 is fully open, but a small amount of water supplied by the valve 7 flows through the heat exchanger 5 to compensate for the pressure loss, so the thick walled portion on the water supply side is warmed up.

以上述べたように本発明によれば、暖機できるよ5に/
して熱応力の発生を抑制し、かつ高圧流体の漏洩を検出
できるようにしたので、熱交換器の保鰻が図れるという
優れた効果を有する。
As described above, according to the present invention, it is possible to warm up the
Since the generation of thermal stress can be suppressed and leakage of high-pressure fluid can be detected, the heat exchanger has an excellent effect of being able to be protected.

表 図面の簡単なit32811Table drawing simple it32811

Claims (2)

【特許請求の範囲】[Claims] (1)  低温流体配管系及び高温流体配管系Km続し
、前記配管内を流れる流体間で熱交換をさせる熱交換器
と、前記低温流体配管系に接続し熱交換不要時には熱交
換器に#lす低温流体を迂回させるバイパス弁と、前記
熱交m−の出口側の高温流体配管系Kli絖して熱交換
不要時には前記熱交換器に高温流体を流さないようにす
る調節弁と、前記1131弁の前後Ell絖し熱交換不
要時にも所定量の高温流体を流す開閉弁と、熱負荷状態
を監視し、熱交換不要時には前記バイパス弁及び開閉弁
を開放すると共Kl!1節弁の開閉を制御する制御回路
とを含んで構成したことを特徴とする熱交換器の保護装
置。
(1) A heat exchanger that is connected to a low temperature fluid piping system and a high temperature fluid piping system and exchanges heat between the fluid flowing in the piping, and a heat exchanger that is connected to the low temperature fluid piping system and is connected to the heat exchanger when heat exchange is not required. a bypass valve for bypassing the low-temperature fluid; a control valve for controlling the high-temperature fluid piping system Kli on the outlet side of the heat exchanger so as not to flow the high-temperature fluid to the heat exchanger when heat exchange is not required; 1131 There is an on-off valve that allows a predetermined amount of high-temperature fluid to flow even when heat exchange is not required, and a shut-off valve that monitors the heat load condition and opens the bypass valve and on-off valve when heat exchange is not required. 1. A heat exchanger protection device comprising: a control circuit for controlling opening and closing of a one-section valve.
(2)  低温流体配管系員び^温流体配管Jl&に接
続し、前記配管内を流れる流体間で熱交換をさせる熱交
換器と、前記低温流体配管系に接続し熱交換不要時には
熱交換器に流す低温流体を迂回させるバイパス弁と、前
記熱交換器の出口側の高温流体配管系Ell続して熱交
換不要時には前記熱交換lsK高温流体を流さないよう
Kする調節弁と、前記調節弁の前後に接続し熱交換不要
時にも所定量の高温流体を流す開閉弁と、前記熱交換器
の入口側高置流体配管の異なる部分に配設した少なくと
も二つの温度検出器と、熱負荷状態を監視し、熱交換不
要時には前記バイパス弁及び開閉弁を開放すると  ゛
共Kw4節弁の開閉を制御し、かつ一定時間毎に規定時
間だけ前記開閉弁を全閉させ、このときの前記温度検出
器からの温度検出信号に基づいて警報あるいは装置停止
信号を形成する制御回路とを含んで構成したことを41
Hkとする熱交換器の保護装置。
(2) A heat exchanger connected to the low temperature fluid piping system and the hot fluid piping Jl& for exchanging heat between the fluids flowing in the piping, and a heat exchanger connected to the low temperature fluid piping system when heat exchange is not required. a bypass valve for bypassing the low-temperature fluid flowing into the high-temperature fluid piping system on the outlet side of the heat exchanger; a control valve for preventing the high-temperature fluid from flowing through the heat exchanger when heat exchange is not required; an on-off valve connected before and after the heat exchanger to allow a predetermined amount of high-temperature fluid to flow even when heat exchange is not required; at least two temperature detectors disposed at different parts of the elevated fluid piping on the inlet side of the heat exchanger; When heat exchange is not required, the bypass valve and the on-off valve are opened, and the on-off valve is fully closed for a specified time at regular intervals, and the temperature is detected at this time. 41. A control circuit that generates an alarm or a device stop signal based on the temperature detection signal from the device.
Hk heat exchanger protection device.
JP20888181A 1981-12-23 1981-12-23 Heat exchanger protection device Expired JPS6017997B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20888181A JPS6017997B2 (en) 1981-12-23 1981-12-23 Heat exchanger protection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20888181A JPS6017997B2 (en) 1981-12-23 1981-12-23 Heat exchanger protection device

Publications (2)

Publication Number Publication Date
JPS58108396A true JPS58108396A (en) 1983-06-28
JPS6017997B2 JPS6017997B2 (en) 1985-05-08

Family

ID=16563655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20888181A Expired JPS6017997B2 (en) 1981-12-23 1981-12-23 Heat exchanger protection device

Country Status (1)

Country Link
JP (1) JPS6017997B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019042020A1 (en) * 2017-08-31 2019-03-07 冯煜珵 Heat recovery device
WO2019042019A1 (en) * 2017-08-31 2019-03-07 冯煜珵 Combined regeneration device
WO2019042021A1 (en) * 2017-08-31 2019-03-07 冯煜珵 Adjustable combined regeneration device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0512000Y2 (en) * 1986-12-10 1993-03-25

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019042020A1 (en) * 2017-08-31 2019-03-07 冯煜珵 Heat recovery device
WO2019042019A1 (en) * 2017-08-31 2019-03-07 冯煜珵 Combined regeneration device
WO2019042021A1 (en) * 2017-08-31 2019-03-07 冯煜珵 Adjustable combined regeneration device
US11092040B2 (en) 2017-08-31 2021-08-17 Yucheng FENG Combined heat recovery device

Also Published As

Publication number Publication date
JPS6017997B2 (en) 1985-05-08

Similar Documents

Publication Publication Date Title
US4208882A (en) Start-up attemperator
US5794446A (en) Power plant performance management systems and methods
US5791147A (en) Power plant performance management systems and methods
CN107575854B (en) A kind of double reheat power generation sets monitoring system
JPS58108396A (en) Protector for heat exchanger
US4301650A (en) Pressure regulating apparatus for a closed water circuit
JPH0658161B2 (en) Waste heat recovery boiler
JPH09210301A (en) Emergency protective apparatus for fluidized bed boiler
JP2736192B2 (en) Steam supply equipment
JP3286023B2 (en) Waste heat recovery boiler condensate water supply protection system
JPS585412A (en) Controller for steam turbine plant with reheater
JPS62272003A (en) Feedwater-heater protective device
JP2520025B2 (en) Detection pipe for vacuum trip device
JPH01203804A (en) Feed water heater drain system
JPH0275806A (en) Boiler
JPH05125908A (en) Water induction protector for steam turbine
JPS6014890B2 (en) Turbine plant accident prevention device
JPS5977012A (en) Reheating type steam turbine plant
JP2014118887A (en) Piping leakage detection system
JP2752226B2 (en) Drain pump warming device
JPS6235592B2 (en)
KR850001371Y1 (en) System for controlling the fluid level in a drain tank
JPS6140763Y2 (en)
JPS6093205A (en) Method and device for controlling dry heater system of generating plant
JPS6256401B2 (en)