JPS58108171A - Driving mode for spring charge type wire printing head - Google Patents

Driving mode for spring charge type wire printing head

Info

Publication number
JPS58108171A
JPS58108171A JP20719381A JP20719381A JPS58108171A JP S58108171 A JPS58108171 A JP S58108171A JP 20719381 A JP20719381 A JP 20719381A JP 20719381 A JP20719381 A JP 20719381A JP S58108171 A JPS58108171 A JP S58108171A
Authority
JP
Japan
Prior art keywords
armature
magnetic flux
printing
current
electromagnetic coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20719381A
Other languages
Japanese (ja)
Other versions
JPH0313070B2 (en
Inventor
Koichi Ando
安藤 紘一
Yasuo Omori
大森 靖雄
Takao Mizutani
孝夫 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP20719381A priority Critical patent/JPS58108171A/en
Publication of JPS58108171A publication Critical patent/JPS58108171A/en
Publication of JPH0313070B2 publication Critical patent/JPH0313070B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/22Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of impact or pressure on a printing material or impression-transfer material
    • B41J2/23Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of impact or pressure on a printing material or impression-transfer material using print wires
    • B41J2/27Actuators for print wires
    • B41J2/28Actuators for print wires of spring charge type, i.e. with mechanical power under electro-magnetic control

Landscapes

  • Impact Printers (AREA)

Abstract

PURPOSE:To permit the highspeed drive of a printing wire as well as to reduce the consumption of electric power by a method in which when an armature is restored after the printing, attracting current is flowed to an electromagnetic coil, attracting magnetic flux is increased temporarily, and the restoring time is shortened. CONSTITUTION:An armature 4 attracted by a core 5 by the attracting magnetic flux of a permanent magnet 1 is released by flowing a current to erase the magnetic flux to the electromagnetic coil 7. By this, a printing wire 9 is driven for printing. At about a time when the armature 4 begins to come back toward its home position after printing, an attracting current in the direction of generating magnetic fluc in the same direction as the attracting magnetic flux is flowed in the electromagnetic coil 7 until the restoration of the wire 9 is properly accelerated, and thereby the wire 9 and the armature 4 are restored with high speeds. Also, immediately before the collision of the armature 4 restored with high speeds against the core 5, an attracting current is flowed for a preset time period once more to control the rebound of the armature 4 restored with high speeds.

Description

【発明の詳細な説明】 本発明は永久磁石によシア蟻マチュアを吸引して板バネ
を偏倚しておき、電磁コイルに永久磁石の吸引磁束を打
ち消す方向に電流を流し、アーマチュアを解放して、印
字ワイヤを駆動する、いわゆるバネチャージ形ワイヤ印
字へ、ドの駆動方法に関する。
[Detailed Description of the Invention] The present invention involves attracting a shear ant mature by a permanent magnet, biasing a leaf spring, and then passing a current through an electromagnetic coil in a direction that cancels out the magnetic flux attracted by the permanent magnet, thereby releasing the armature. The present invention relates to a method of driving a so-called spring-charged wire printing device that drives a printing wire.

バネチャージ形ワイヤ印字へ、ドは第1図に示すように
構成され、永久磁石1の磁束が側部ヨーク2.上部ヨー
ク3.ア営マチュア4.コア5゜下部ヨーク6を通るル
τノを形成し、アマチュア4に吸引力が発生し、板バネ
8を偏倚しながら、板バネ8に歪みエネルギー蓄え、ア
マチュア4はコア5に吸着される。この時アマチュア4
の先端に位置する印字ワイヤ9の変位を零として、x=
0の位置をアマチュア4.印字ワイヤ9のホームポジシ
ョンとして、第1図に示す印字方向の印字ワイヤ9の変
位をXとする。す運と変位Xと永久磁石1よシアマチュ
ア4に流れる吸引磁束φ、(X)、これによる吸引力F
p (x)及び板バネ8のパ、ネカFa (x)、さら
に板バネ8のバネ力に打ち勝ってアマチュア4をコア5
に吸着する力、つまシグレロードPL (X)” FP
 (x) −Fs (x)の変位Xに対する依存性は第
2図に示すように与えられる。
For spring-charged wire printing, the magnetic flux of the permanent magnet 1 is connected to the side yoke 2. Upper yoke 3. Marketing Mature 4. A loop τ passing through the core 5° and the lower yoke 6 is formed, and an attractive force is generated in the armature 4, biasing the leaf spring 8, storing strain energy in the leaf spring 8, and the armature 4 is attracted to the core 5. At this time amateur 4
Assuming that the displacement of the printing wire 9 located at the tip of is zero, x=
Amateur 4.0 position. As the home position of the printing wire 9, the displacement of the printing wire 9 in the printing direction shown in FIG. 1 is assumed to be X. The force of attraction, displacement
p (x) and the force of leaf spring 8, Neka Fa (x), and the spring force of leaf spring 8 are overcome to move amateur 4 to core 5.
The force of adsorption to, Tsuma Shigure Road PL (X)” FP
The dependence of (x) -Fs (x) on the displacement X is given as shown in FIG.

このようにホームデシジョンに吸着されたアマチュア4
.印字、ワイヤ9を駆動する従来の駆動法を具体例で説
明する。駆動回路の一例を第3図に示し、この時の駆動
電流波形及び動作波形の概念図を第4図に示す。ここで
横軸は時間、縦軸は駆動電流Js前記印字ワイヤ9の変
位x1永久磁石1の吸引磁束φP(、)、吸引磁束φP
(x)を打ち消すコイル磁束φ6、逆起電力によシコア
5に生じる渦電流磁束φ。を示している。第1図のバネ
チャージ形ワイヤや線字ヘッドを第3図の駆動回路によ
多動作゛するには第3図の2つのトランジスタTrl 
e Tr2を同時にONすればよく、このようにすると
第1図の電磁コイル2によって生じるコイル磁束φ、が
時間と共に増加してx = 0のところのプレロードp
L(o)を打ち消す値になった時、第1図のアマチュア
4と共に印字ワイヤ9が第4図に示すように動き出し、
コイル磁束φ、は吸引磁束φP←)を打ち消しながら増
えて行く、そしてほぼコイル磁束φ。が第2図に示す吸
引磁束φF (0)と等しくなったところ(すなわち第
4図の時間TI )で第3図のトランジスタTr1をO
FFにし、この時電磁コイル7から発生する逆起電圧を
用いて、さらに電磁コイル7からダイオードD2 、ト
ランジスタTr2へと、吸引磁束φP(X)を打ち消す
方向へ電流を還流させ、印字ワイヤ9を加速し、印字ワ
イヤ9の速度が必要な印字力を得る値になったところ(
すなわち第4図の時間Tz )で第3図のトランジスタ
Tr2をOFFにする。この時電磁コイル7に発生する
逆起電圧は電磁コイル7からダイオードD2を通って、
電源、ダイオードD!へと還流して電源へエネルギーを
返す。印字ワイヤ9.及びアマチュア4は印字を終シ、
反撥されてホームポンジョンへ向って復帰を開始する。
Amateur 4 attracted to home decision in this way
.. A conventional driving method for printing and driving the wire 9 will be explained using a specific example. An example of the drive circuit is shown in FIG. 3, and a conceptual diagram of the drive current waveform and operation waveform at this time is shown in FIG. Here, the horizontal axis is time, and the vertical axis is drive current Js, displacement x1 of the printing wire 9, magnetic flux φP (, ), magnetic flux attracted by the permanent magnet 1, magnetic flux φP
Coil magnetic flux φ6 that cancels out (x), eddy current magnetic flux φ generated in core 5 due to back electromotive force. It shows. In order to operate the spring-charged wire or wire head shown in Fig. 1 in multiple ways using the drive circuit shown in Fig. 3, two transistors Trl shown in Fig. 3 are required.
e It is sufficient to turn on Tr2 at the same time, and in this way, the coil magnetic flux φ generated by the electromagnetic coil 2 in Fig. 1 increases with time, and the preload p at x = 0
When the value that cancels L(o) is reached, the printing wire 9 together with the armature 4 shown in FIG. 1 starts to move as shown in FIG.
The coil magnetic flux φ increases while canceling the attraction magnetic flux φP←), and is almost equal to the coil magnetic flux φ. When becomes equal to the attractive magnetic flux φF (0) shown in FIG. 2 (that is, at time TI in FIG. 4), the transistor Tr1 in FIG. 3 is turned off.
FF, and at this time, using the back electromotive force generated from the electromagnetic coil 7, a current is circulated from the electromagnetic coil 7 to the diode D2 and the transistor Tr2 in a direction that cancels the attractive magnetic flux φP(X), and the printing wire 9 is When the speed of the printing wire 9 reaches a value that obtains the necessary printing force (
That is, at time Tz) in FIG. 4, the transistor Tr2 in FIG. 3 is turned off. At this time, the back electromotive force generated in the electromagnetic coil 7 passes from the electromagnetic coil 7 through the diode D2,
Power supply, diode D! The energy is returned to the power source. Printing wire9. and Amateur 4 finished printing,
He was repulsed and began his return to his home base.

この復帰の過程で第2図に示したプレロードPL (X
)によシ加速さhながらホームポジションへ珈帰してリ
バウンドする。
During this return process, the preload PL (X
) The ball accelerates as it returns to the home position and rebounds.

さて、前記従来のものを高速化しようとすると、インパ
クト時間Tiと復帰時間Trの総和、すなわち印字ワイ
ヤ往復時間Teを短縮しなければならない訳であるが、
プレロードP L (X)によシアマチュア4を復帰さ
せるという従来の方法は以下に詳述する如き根本的な欠
点があった。
Now, in order to speed up the conventional method, the sum of the impact time Ti and return time Tr, that is, the printing wire reciprocating time Te must be shortened.
The conventional method of returning the armature 4 by preload P L (X) has fundamental drawbacks as detailed below.

すなわち従来のものはプレロードPL(x)によシアマ
チュア4の復帰力を得ているため、復帰時間Trを短縮
するにはプレロードPL (X)を増大しなけれず、こ
のため駆動電流idを増大しなければならない。しかし
駆動電流idを増大すると印字ヘッドの温度が上昇し、
遂には焼損する。したがって駆動電流6dの大きさは印
字ヘッドの耐熱性によシ制限され、プレロードP L 
(X)の大きさはこの駆動電流4.1によシ制限される
ことになる。またプレローPPL←)を増大するとコイ
ル磁束φ。も増大しなければならないが、電磁コイル7
の時定数によシ遅れが出るのでコイル磁束φ。が所定の
磁束量に達するまでの時間が長くなシ、このためインパ
クト時間Tiが長くなる。したがってプレロードPL(
x)を可能な限り増大し、復帰時間Trを短縮したとし
ても、印字ワイヤ往復時間Tcは余シ短縮されず、高速
にすることができない欠点があった。また消費電力が大
きい欠点もあった。
In other words, in the conventional type, the return force of the armature 4 is obtained from the preload PL(x), so in order to shorten the return time Tr, the preload PL(X) must be increased, and therefore the drive current id must be increased. Must. However, when the drive current id is increased, the temperature of the print head increases,
Eventually it will burn out. Therefore, the magnitude of the drive current 6d is limited by the heat resistance of the print head, and the preload P L
The magnitude of (X) is limited by this drive current 4.1. Also, when the pre-low PPL←) is increased, the coil magnetic flux φ increases. must also be increased, but the electromagnetic coil 7
Since there is a delay due to the time constant of the coil magnetic flux φ. It takes a long time for the magnetic flux to reach a predetermined amount of magnetic flux, so the impact time Ti becomes long. Therefore, preload PL (
Even if x) is increased as much as possible and the return time Tr is shortened, the printing wire reciprocating time Tc is not shortened by the same amount and has the disadvantage that it cannot be made faster. It also had the disadvantage of high power consumption.

したがって本発明はプレロードを減少し、かつインパク
ト時間および復帰時間を短縮することを目的とし、この
ために電磁コイルに永久磁石の吸引磁束を打ち消す方向
の電流を流して印字ワイヤを駆動し、この後ホームポジ
ションへ向かって復帰を開始する時点の近傍で前記電磁
石コイルに駆動時とは逆方向の電流を流すようにしたも
ので、以下図面にしたがい詳細に説明する。
Therefore, the present invention aims to reduce the preload and shorten the impact time and return time, and for this purpose, a current is applied to the electromagnetic coil in a direction that cancels out the magnetic flux attracted by the permanent magnet to drive the printing wire. A current is caused to flow in the electromagnetic coil in the opposite direction to that during driving near the time when it starts returning toward the home position, and will be described in detail below with reference to the drawings.

第5図、第6図、第7図に本発明の駆動方法を実現する
駆動回路例を示す。まず、第5図の駆動回路を用いて駆
動する場合について詳説する。この時の動作波形の概念
図を第8図に示す。印字ワイヤ9を駆動する場合従来と
同様に、第5図のトランジスタTrl e ’rr2を
同時にONして・永久磁石1の吸引磁束φ、ωを打ち消
す方向に電磁コイル7に通電しコイル磁束φ。を生じせ
しめ吸引磁束φP←)を打ち消して行く。コイル磁束φ
。がx = 0(印字ワイヤ9及びアマチュア4のホー
ムポジション)のところのプレロードpL(o)を打ち
消す値になりた時点で第1図の印字ワイヤ9.アマチュ
ア4は動き出し、さらに電流が増加しコイル磁束φ。が
X=Oのところの吸引磁束φF(0)を打ち消す程度に
なったところ(すなわち第8図の時間T1 )で、第5
図のトランジスタTr2をOFF l、て、この時電磁
コイルに発生する逆起電圧を電磁コイル7からダイオー
ドD3を通ってトランジスタTrlへと還流させ、さら
に前記、印字ワイヤ9及びアマチュア4を加速駆動し、
印字ワイヤ9の速度が所要の印字力を得られる値になっ
たところ(すなわち第8図の時間T2  )で、トラン
ジスタTr1をOFFする。この時前記電磁コイルに発
生する逆起電圧は前記電磁コイルからダイオードD3、
電源を通ってダイオードD2へと還流させ、電源へエネ
ルギーを返す。ここまでは従来と全く同様である。次に
前記印字ワイヤ9がホホ印字し始める時点(すなわち第
8図の時刻Ts )でトランジスタTrl m−Tr4
を同時にONして、前記吸引磁束φP←)と同方向の磁
束を発生させる方向(すなわち駆動時とは逆方向)の吸
引電流j11を電磁コイル7に通電する。これによシア
マチュア4をコア5に吸引する総磁束量が増大し、印字
ワイヤ9の復帰が加速される。このようにして適当な加
速が得られる時点(すなわち第8図の時刻T4 )でト
ランジスタTr4をOFF して、この時前記電磁コイ
ル7に発生する逆起電圧を第5図の電磁コイル7からダ
イオードD! 、トランジスタTr3へと還流させるこ
とにより、アマチュア4の復帰をさらに加速する。次に
前記アマチュア4がコア5に衝突する前の適当な時点(
すなわち第8図の時刻Ts )でトランジスタTr3を
オフする。この時電磁コイル7に発生する逆起電圧は電
磁コイ〃7からダイオードDl  、電源、ダイオード
D2へと還流させ、逆起エネルギーを電源へ返す。さら
に前記印字ワイヤ9及びアマチュア4がホームポジショ
ンへ復帰する近傍の時点(すなわち第8図の時間Ta 
)で再びトランジスタTr3 a Tr4を同時にON
して再び駆動時とは逆方向の電流、すなわち吸引電流i
t2を電磁コイルに通電し、前記アマチュア4を吸引し
て、リバウンドを小さく押え込む。
FIGS. 5, 6, and 7 show examples of drive circuits that implement the drive method of the present invention. First, the case of driving using the driving circuit shown in FIG. 5 will be explained in detail. A conceptual diagram of the operating waveforms at this time is shown in FIG. When driving the printing wire 9, as in the conventional case, the transistor Trl e 'rr2 shown in FIG. , and cancel out the attractive magnetic flux φP←). Coil magnetic flux φ
. When the value of the preload pL(o) at x = 0 (the home position of the print wire 9 and the amateur 4) is reached, the print wire 9. of FIG. Amateur 4 starts moving, the current increases further, and the coil magnetic flux φ. When the magnetic flux φF(0) at X=O is canceled out (that is, time T1 in FIG. 8), the fifth
The transistor Tr2 shown in the figure is turned off, and the back electromotive force generated in the electromagnetic coil is circulated from the electromagnetic coil 7 through the diode D3 to the transistor Trl, and the printing wire 9 and armature 4 are accelerated and driven. ,
When the speed of the printing wire 9 reaches a value at which the required printing force can be obtained (that is, at time T2 in FIG. 8), the transistor Tr1 is turned off. At this time, the back electromotive force generated in the electromagnetic coil is transferred from the electromagnetic coil to the diode D3,
It circulates through the power supply to diode D2, returning energy to the power supply. Everything up to this point is exactly the same as before. Next, at the time when the printing wire 9 starts to print (that is, time Ts in FIG. 8), the transistor Trl m-Tr4
is simultaneously turned on, and an attraction current j11 is applied to the electromagnetic coil 7 in a direction that generates a magnetic flux in the same direction as the attraction magnetic flux φP← (that is, in a direction opposite to that during driving). As a result, the total amount of magnetic flux that attracts the armature 4 to the core 5 increases, and the return of the printing wire 9 is accelerated. In this way, at the time when an appropriate acceleration is obtained (that is, time T4 in FIG. 8), the transistor Tr4 is turned off, and the back electromotive force generated in the electromagnetic coil 7 at this time is transferred from the electromagnetic coil 7 to the diode in FIG. D! , to the transistor Tr3, further accelerating the return of the amateur 4. Next, at an appropriate time before the armature 4 collides with the core 5 (
That is, at time Ts in FIG. 8, the transistor Tr3 is turned off. At this time, the back electromotive force generated in the electromagnetic coil 7 is circulated from the electromagnetic coil 7 to the diode Dl, the power source, and the diode D2, and the back electromotive energy is returned to the power source. Further, at a point in time near when the printing wire 9 and the armature 4 return to their home positions (i.e., time Ta in FIG.
) to turn on transistors Tr3 and Tr4 simultaneously again.
Then, the current in the opposite direction to that during driving, that is, the attraction current i
t2 is applied to the electromagnetic coil to attract the armature 4 and suppress the rebound.

なおこの時、第1図のアマチュア4とコア5の間隙が非
常に小さいため吸引電流it2は僅かの電流で済む。リ
バンドを押え込むのに要する時間経過後(すなわち第8
図の時刻Tr )に第5図のトランジスタTr3 aT
raを同時にOFF して、この時電磁コイル7に一発
生する逆起電圧を電磁コイル7から、ダイオードDI 
 、!E源、ダイオ−)7D2へと還流させ、逆起エネ
ルギーを電源へ返す。
At this time, since the gap between the armature 4 and the core 5 in FIG. 1 is very small, only a small amount of attraction current it2 is required. After the time required to press the reband (i.e. the 8th
At time Tr in the figure, the transistor Tr3 aT in FIG.
ra is turned off at the same time, and the back electromotive force generated in the electromagnetic coil 7 is transferred from the electromagnetic coil 7 to the diode DI.
,! E source, diode) 7D2, and the back electromotive energy is returned to the power source.

なお前記吸引電流it1は大きくする程復帰時間を短縮
できるが、リバウンド力も大きくなる。したがって渦電
流磁束φ8を打ち消す程度の電流量に設定するとよい。
Note that as the attraction current it1 increases, the return time can be shortened, but the rebound force also increases. Therefore, it is preferable to set the amount of current to an extent that cancels out the eddy current magnetic flux φ8.

以上のように本実施例によれば、復帰時に吸引電流id
を流して吸引磁束を一時的に増加し、復帰時間を短縮す
るようにしたので、グレロードPL伝)はアマチュア4
をコア5に吸着させ得る程度の小さなものでよく、この
ため駆動電流を従来のA程度にすることができるし、ま
たインパクト時間Tiも短縮される。また吸引電流8t
1は駆動電流idに比べても少ないため、全体の抵抗損
、鉄損ともに従来のl/3@度となシ、消費電力が小な
くなる。
As described above, according to this embodiment, the suction current id at the time of return
Since it was made to temporarily increase the attractive magnetic flux and shorten the return time, Greroad PL Den) is Amateur 4
It only needs to be small enough to be able to attract the core 5 to the core 5. Therefore, the drive current can be reduced to the conventional A level, and the impact time Ti can also be shortened. Also, the suction current is 8t.
Since 1 is smaller than the drive current id, both the overall resistance loss and iron loss are 1/3 degrees compared to the conventional case, and the power consumption is reduced.

なお前記実施例では、アマチュア4がコア5に衝突する
直前から一定時間、吸引電流it2を流すようにしてリ
バウンドを抑制しているので、連続で高速印字する際安
定に動作する効果もある。すなわち、前述のようにして
アマチュア4を高速復帰させると、このままではリパウ
ンドも大きくなシ、印字濃度のバラツキや脱ドツトを生
じる恐れがあるが、本実施例では吸引電流ff1tzを
流し吸引磁束を一時的に増加するのでアマチュア4のリ
パウンドが抑制される。
In the above-mentioned embodiment, rebound is suppressed by flowing the attraction current it2 for a certain period of time immediately before the armature 4 collides with the core 5, so that there is an effect of stable operation during continuous high-speed printing. In other words, if the armature 4 is returned to its original position at high speed as described above, there is a risk that the rebound will be large, and variations in print density and dot removal may occur.However, in this embodiment, the attraction current ff1tz is applied to temporarily reduce the attraction magnetic flux. The rebound of amateur 4 is suppressed.

第6図は第2実施例を示す回路図であシ、2電源とする
ことによシ、回路を簡単にしている。動作としては、ト
ランジスタTrlをONl トランジスタTr2をOF
F 、にすれば電磁コイル7に駆動電流i(1が流れ、
トランジスタTr!をOFF、)ランジスタTr2をO
Nにすれば電磁コイル7に吸引電流itが流れるように
なっている点が第1実施例と異なる。なおツェナーダイ
オードZD、およびZn2は駆動電流idおよび吸引電
流itの切れを良くするためのものであって、ツェナー
電圧を変えることにより印字ワイヤの動作特性を調整す
るものである。
FIG. 6 is a circuit diagram showing the second embodiment, and the circuit is simplified by using two power supplies. As for operation, transistor Trl is turned on, transistor Tr2 is turned off.
F, the drive current i (1 flows through the electromagnetic coil 7,
Transistor Tr! OFF, ) transistor Tr2 is turned OFF,
This embodiment differs from the first embodiment in that when set to N, an attraction current it flows through the electromagnetic coil 7. The Zener diodes ZD and Zn2 are used to improve the cutting of the drive current id and attraction current it, and are used to adjust the operating characteristics of the printing wire by changing the Zener voltage.

また第7図は第3実施例を示す回路図であシ、電磁コイ
ル7を2分割して、回路を簡単にしている。動作として
は第6図と同様であるが、分割された電磁コイル7のそ
れぞれの巻回数N1およびN2を変えることによシ、駆
動電流idと吸引電流itを個々に調整することができ
る。
FIG. 7 is a circuit diagram showing the third embodiment, in which the electromagnetic coil 7 is divided into two parts to simplify the circuit. The operation is similar to that shown in FIG. 6, but by changing the number of turns N1 and N2 of each of the divided electromagnetic coils 7, the driving current id and the attraction current it can be adjusted individually.

また第5図、第6図および第7図に示す回路を制御する
制御回路は、第9図に示すようにマイクロコンピータM
PUと前記制御シーケンスヲ達成するプログラムとデー
タが格納されたROM (!J =ド・オンリ・メモリ
)と、トランジスタTrl〜Tra 等とマイクロコン
ピュータMPUとを接続するためのインタフェース回路
L F (I10ポートを含む)とから構成できる。こ
の場合のフローチャートを第10図に示す。
Furthermore, the control circuit that controls the circuits shown in FIGS. 5, 6, and 7 is a microcomputer M as shown in FIG.
An interface circuit LF (I10 port) for connecting the PU, a ROM (!J = de-only memory) storing the program and data for achieving the control sequence, and the transistors Trl to Tra etc. and the microcomputer MPU. ). A flowchart in this case is shown in FIG.

以上詳細に説明したように本発明によれば、まず永久磁
石による吸引磁束を打ち消す方向の駆動電流を電磁コイ
ルに通電して印字ワイヤを駆動し、この後印字時点のr
近傍において前記駆動電流とは逆方向になる吸引電流を
電磁コイルに通電して印字ワイヤの復帰を加速するので
、印字ワイヤを高速に駆動することができるし、また消
費電力が少なくなる効果がある。
As explained in detail above, according to the present invention, first, a driving current is applied to the electromagnetic coil in the direction of canceling the magnetic flux attracted by the permanent magnet to drive the printing wire, and then the r
Since a suction current in the opposite direction to the drive current is applied to the electromagnetic coil in the vicinity to accelerate the return of the printing wire, the printing wire can be driven at high speed and has the effect of reducing power consumption. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は/Jネチャージ形ワイヤ印字へ、ドを示す断面
図、第2図は第1図に・タネチャージ形ワイヤ印字ヘッ
ドの概念図と、変位Xに対する各種・ぐラメータの一般
的依存性を示す図、第3図は従来の駆動方法による駆動
回路例を示す回路図、第4図は第3図に示す駆動回路に
よシ駆動したときのバネチャージ形ワイヤ印字ヘッドの
動作波形図、第5図は本発明の第1実施例を示す回路図
、第6図は本発明の第2実施例を示す回路図、第7図は
本発明の第3実施例を示す回路図、第8図は第5図に示
す回路によシ駆動したときのバネチャージ形ワイヤ印字
ヘッドの動作波形図、第9図は第5図に示す回路を制御
する制御回路の構成を示すブロック図、第10図は第9
図に示す制御回路のフローチャートである。 、1・・・永久磁石、2・・・側部ヨーク、3・・・上
部ヨーク、4・・・アマチュア、5・・・コア、6・・
・下部ヨー久7・・・電磁コイル、8・・・板バネ、9
・・・印字ワイヤ、10・・・印字ワイヤガイド、Tr
la Trz 、 Tr3およびTr4・・・トランジ
スタ、DB  e D2  e DaおよびD4はダイ
オード、ZDIおよびZn2・・・ツェナー/(オード
、MPU・・・マイクロコンピュータ、ROM・・・リ
ードオンリメモリ、IP・・・インタフ王−ス回路。 第3図 第4図 (印穿ワ4ヤ往f1甲司) F 図 id:、J%!!動電流 iw:tli+/電流 第8図 L−J
Figure 1 is a cross-sectional view showing /J net charge type wire printing, and Figure 2 is a conceptual diagram of the net charge type wire print head and the general dependence of various parameters on displacement X. 3 is a circuit diagram showing an example of a drive circuit using a conventional drive method, and FIG. 4 is an operational waveform diagram of a spring-charged wire print head when driven by the drive circuit shown in FIG. 3. 5 is a circuit diagram showing a first embodiment of the present invention, FIG. 6 is a circuit diagram showing a second embodiment of the present invention, FIG. 7 is a circuit diagram showing a third embodiment of the present invention, and FIG. The figure is an operational waveform diagram of the spring charge type wire print head when driven by the circuit shown in Fig. 5, Fig. 9 is a block diagram showing the configuration of a control circuit that controls the circuit shown in Fig. 5, and Fig. 10 is a block diagram showing the configuration of a control circuit that controls the circuit shown in Fig. 5. The figure is number 9
3 is a flowchart of the control circuit shown in the figure. , 1... Permanent magnet, 2... Side yoke, 3... Upper yoke, 4... Amateur, 5... Core, 6...
・Lower yoke 7... Electromagnetic coil, 8... Leaf spring, 9
...Printing wire, 10...Printing wire guide, Tr
la Trz, Tr3 and Tr4...transistor, DB e D2 e Da and D4 are diodes, ZDI and Zn2...zener/(ode, MPU...microcomputer, ROM...read only memory, IP...・Interface circuit. Fig. 3 Fig. 4 (Ink punching wire 4 Y f1 Koji) F Fig. id:, J%!! Dynamic current iw: tli+/Current Fig. 8 L-J

Claims (1)

【特許請求の範囲】[Claims] 永久磁石によシア〜マチュアを吸引し、同時に板バネを
偏倚して、前記アをマチュアをホームポジションに設定
し、電磁コイルに永久磁石・による吸引磁束を打ち消す
方向に電流を流し、前記アマチュアを解放して、アマチ
ュアの先端に位置する印字ワイヤを駆動するバネチャー
ジ形ワイヤ印字へ、ドの駆動方法において、前記電磁コ
イルに永久磁石による吸引磁束を打ち消す方向の電流を
流して印字ワイヤを駆動し、この後前記ホームポジショ
ンへ向って復帰を開始する時点の近傍で前記電磁コイル
に駆動時と逆方向の電流を流すことを特徴とするバネチ
ャージ形ワイヤ印字ヘッドの駆動方法。
The permanent magnet attracts the shear to mature, and at the same time biases the leaf spring, sets the amateur to the home position, and applies current to the electromagnetic coil in a direction that cancels out the magnetic flux attracted by the permanent magnet. In the spring-charged wire printing method, which releases the armature and drives the printing wire located at the tip of the armature, the printing wire is driven by passing a current in the direction of canceling the magnetic flux attracted by the permanent magnet through the electromagnetic coil. . A method for driving a spring-charged wire print head, characterized in that a current in a direction opposite to that during driving is passed through the electromagnetic coil near the time when the print head starts returning toward the home position.
JP20719381A 1981-12-23 1981-12-23 Driving mode for spring charge type wire printing head Granted JPS58108171A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20719381A JPS58108171A (en) 1981-12-23 1981-12-23 Driving mode for spring charge type wire printing head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20719381A JPS58108171A (en) 1981-12-23 1981-12-23 Driving mode for spring charge type wire printing head

Publications (2)

Publication Number Publication Date
JPS58108171A true JPS58108171A (en) 1983-06-28
JPH0313070B2 JPH0313070B2 (en) 1991-02-21

Family

ID=16535782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20719381A Granted JPS58108171A (en) 1981-12-23 1981-12-23 Driving mode for spring charge type wire printing head

Country Status (1)

Country Link
JP (1) JPS58108171A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0240756A2 (en) * 1986-03-11 1987-10-14 Siemens Nixdorf Informationssysteme Aktiengesellschaft Needle print head
JP2019212700A (en) * 2018-06-01 2019-12-12 株式会社デンソー Electromagnetic actuator

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4889634A (en) * 1972-02-24 1973-11-22
JPS4996838U (en) * 1972-12-13 1974-08-21
JPS4998574U (en) * 1972-12-12 1974-08-24
JPS5489243U (en) * 1977-12-07 1979-06-23
JPS5678984A (en) * 1979-12-03 1981-06-29 Tokyo Electric Co Ltd Driving system of dot printer head
JPS56140438U (en) * 1980-03-25 1981-10-23
JPS58104765U (en) * 1982-01-12 1983-07-16 旭化成株式会社 Dolly with automatic connection and automatic release device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4889634A (en) * 1972-02-24 1973-11-22
JPS4998574U (en) * 1972-12-12 1974-08-24
JPS4996838U (en) * 1972-12-13 1974-08-21
JPS5489243U (en) * 1977-12-07 1979-06-23
JPS5678984A (en) * 1979-12-03 1981-06-29 Tokyo Electric Co Ltd Driving system of dot printer head
JPS56140438U (en) * 1980-03-25 1981-10-23
JPS58104765U (en) * 1982-01-12 1983-07-16 旭化成株式会社 Dolly with automatic connection and automatic release device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0240756A2 (en) * 1986-03-11 1987-10-14 Siemens Nixdorf Informationssysteme Aktiengesellschaft Needle print head
JP2019212700A (en) * 2018-06-01 2019-12-12 株式会社デンソー Electromagnetic actuator

Also Published As

Publication number Publication date
JPH0313070B2 (en) 1991-02-21

Similar Documents

Publication Publication Date Title
JPH0230566B2 (en)
JPS58168581A (en) Apparatus for driving printing wire of dot printer
JPS58108171A (en) Driving mode for spring charge type wire printing head
US4913569A (en) Wire-type printing head
US4224589A (en) Low energy magnetic actuator
JPS62113567A (en) Printing head driving method
JP2584442B2 (en) Recording device
JPS5918845B2 (en) How to drive an electromagnet
JPS58173677A (en) Method for driving spring charged type wire printing head
JPS62122760A (en) Spring charge type printing head drive system
JPS5829680A (en) Printing head
JPS6149850A (en) Printing head
JPS5919173A (en) Printing head for dot line printer
JPS5945209B2 (en) Magnet drive circuit
JP2007021860A (en) Dot impact head driving circuit
JPH0340608Y2 (en)
JPS61261063A (en) Recording head
JPH03216349A (en) Drive circuit in impact wire dot head
JP2680806B2 (en) Electromagnetic print head drive circuit
JPH0269250A (en) Printing head of wire dot printer
JPH04361061A (en) Impact dot head
JPH0734678Y2 (en) Wire dot print head
JPH0313353A (en) Impact dot head
JPH0211338A (en) Wire dot printer
JPH0592586A (en) Electromagnetic drive circuit