JPS58107965A - System constituting system - Google Patents

System constituting system

Info

Publication number
JPS58107965A
JPS58107965A JP56207855A JP20785581A JPS58107965A JP S58107965 A JPS58107965 A JP S58107965A JP 56207855 A JP56207855 A JP 56207855A JP 20785581 A JP20785581 A JP 20785581A JP S58107965 A JPS58107965 A JP S58107965A
Authority
JP
Japan
Prior art keywords
level
permissible
failure
switching
changeover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56207855A
Other languages
Japanese (ja)
Inventor
Taro Yokoyama
太郎 横山
Tatsuo Sunochi
須之内 辰雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP56207855A priority Critical patent/JPS58107965A/en
Publication of JPS58107965A publication Critical patent/JPS58107965A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/16Error detection or correction of the data by redundancy in hardware
    • G06F11/20Error detection or correction of the data by redundancy in hardware using active fault-masking, e.g. by switching out faulty elements or by switching in spare elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Hardware Redundancy (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Monitoring And Testing Of Exchanges (AREA)

Abstract

PURPOSE:To attain switching control stepwise and easily without notifying the state of an alternative device, by classfying devices by level and determining the permissible number of times for system changeover corresponding to each level, in the system constitution to be switched to a spare system when a failure is generated. CONSTITUTION:Plural devices in a system are classified by level in the order of high commonness, the number of times of permission of system changeover is determined corresponding to each level and the system changeover is done within the range of the number of permissible time. That is, a data indexed corresponding to each level to be inputted is stored in a storage device MEM, the level L1 indicates that it is permissible with the content of a counter CNT for once, i.e., 0 time, the level L2 indicates the permission that it is permissible with the number of times less than twice, i.e., once, and the level L3 is permissible for the number less than 3 times, i.e., twice and below. In permitting the system switching, the counter CNT is advanced by +1 step and a switch changeover order is outputted to a switch control circuit SWCTL.

Description

【発明の詳細な説明】 (1)発明の技術分野 本発明は二重化システム構成における障害発生時の系切
換に係り、特にシステムの各構成要素となる装置の障害
度あるいは各装置の全体システムにおける構成レベルに
応じてシステムの系構成を行なう方式に関するものであ
る。
Detailed Description of the Invention (1) Technical Field of the Invention The present invention relates to system switching in the event of a failure in a redundant system configuration, and in particular to system switching in the event of a failure in a redundant system configuration, and in particular to system switching in the event of a failure in a redundant system configuration, and in particular to system switching in the event of a failure in a redundant system configuration. This relates to a method for configuring a system according to its level.

(2)技術の背景 一般に交換機や醒算機等の情報交換、情報処理システム
は障害発生に対処すべく二重化(あるい成する複数の装
置にさまざまの障害(故障)が生じた場合、従来技術と
して、障害(故障)装置を使用し続けた場合に起こるシ
ステム全体の機能低下の度合と、代替装置に置換えた場
合に起こるシステム全体の機能低下(代替装置が障害装
置の能力と同等で、障害がない場合は機能低下はない。
(2) Background of the technology In general, information exchange and information processing systems such as switchboards and teller machines are duplexed in order to cope with failures (or when various failures (failures) occur in multiple devices, conventional technology The degree of functional decline in the entire system that would occur if the faulty (faulty) device was continued to be used, and the decline in the overall system functionality that would occur if the faulty device was replaced (if the substitute device has the same capabilities as the faulty device, If there is no, there is no functional decline.

)の度合とを比較し、その度合の低い装置を選択する方
式があるが、代替装置(一台とは限らない)の状態を意
識することは複雑であり、その装置選択、切替え制御等
も複雑なものとなっている。
), and select the device with the lowest degree. However, it is complicated to be aware of the status of the alternative device (not necessarily one device), and the device selection, switching control, etc. It's complicated.

(4)発明の目的 本発明の目的はか\る問題点を解決するために、代替装
置の状態を意識することなく、システムの各構成要素の
障害に対し段階的に且つ容易に切替制御可能なシステム
構成の再構成方式を提供することにある。
(4) Purpose of the Invention The purpose of the present invention is to solve the above problems by easily controlling switching in stages in response to failures in each component of the system without being aware of the status of the substitute device. The purpose of this invention is to provide a system configuration reconfiguration method.

(5)発明の構成 上記目的を達成するために、本発明は使用(現用)系及
び予備系のシステムから成り、使用(現用)系システム
内の装置に障害が発生すると予備系システムに切換えら
れるシステム構成において、システム内の複数の装置を
共通性が高くなる順にレベル分けし、各レベル対応に系
切換えの許容回数を定め、該許容回数の範囲内で系切換
えを行なうことを特徴とする。
(5) Structure of the Invention In order to achieve the above object, the present invention consists of a working (current) system and a backup system, and when a failure occurs in a device in the working (current) system, the system is switched to the backup system. In the system configuration, a plurality of devices in the system are divided into levels in order of increasing commonality, a permissible number of system switching is determined for each level, and system switching is performed within the range of the permissible number of times.

(6)発明の実施例 以下本発明を実施例によって詳細に説明する。(6) Examples of the invention The present invention will be explained in detail below using examples.

第1図は本発明のシステム構成法に関する一実施例とし
てのシステム構成図である。図において、EXo、EX
、は二重化された交換機、CPUは交換機Ex0. E
Xlを制御する中央処理装置、MEMは交換動作に必要
な呼制御情報、システム運用のデータ等を格納する記憶
装置、8WCTLは交換機に接続される同線を二重化さ
れた交換機EX、 、 EX、を選択的に接続切替えす
る切替スイッチ制御部である。二重化された交換機gx
、。
FIG. 1 is a system configuration diagram as an embodiment of the system configuration method of the present invention. In the figure, EXo, EX
, is a duplex exchange, and the CPU is the exchange Ex0. E
8WCTL is a central processing unit that controls the Xl, MEM is a storage device that stores call control information necessary for switching operations, data for system operation, etc., and 8WCTL is an exchange that connects to the exchange and has duplicated lines. This is a changeover switch control unit that selectively switches connections. Duplex exchange gx
,.

EX、は各々同じ構成で、回線を集線接続するマが多段
に構成(本実施例では二段)されてネットワークNWo
に接続されている。該ネットワークNWoは通話路制御
回路5PCoを介して中央処理袋[CPUにより駆動制
御される。各マルチプレクサMPXo及びディマルチプ
レクサDMPXpネットワークNWに障害検出用の監視
回路ξ〜らが備えられ(ネットワークNWoに関しては
通話路制御回路を介して監視される)、中央処理装置C
PUはこの監視回路01〜C6等を介して障害処理を検
知しスイッチ制御回路5WCTLへ系切替え指令を出し
、スイッチ制御回路8WCTLの切替スイッチSWlを
駆動するように構成されてすMPX、DMPXは例えば
回線側の一段目で128回線を集線制御し、二段目で2
56回線を集線する如く構成するものである。
Each EX has the same configuration, and the MA that connects the lines is configured in multiple stages (two stages in this example) to form the network NWo.
It is connected to the. The network NWo is driven and controlled by a central processing unit (CPU) via a communication path control circuit 5PCo. Each multiplexer MPXo and demultiplexer DMPXp network NW is equipped with a monitoring circuit ξ for failure detection (the network NWo is monitored via a communication path control circuit), and a central processing unit C
The PU is configured to detect failure processing through the monitoring circuits 01 to C6, issue a system switching command to the switch control circuit 5WCTL, and drive the selector switch SWl of the switch control circuit 8WCTL. The first stage on the line side concentrates 128 lines, and the second stage controls 2 lines.
It is configured to condense 56 lines.

第2図は第1図のシステム構成における本発明のシステ
ム構成法について説明する説明図である。
FIG. 2 is an explanatory diagram illustrating the system configuration method of the present invention in the system configuration of FIG. 1.

 3− 第2図の9)〜に)は一方の系のシステム内圧障害が発
生した時の段階的切替を示したものであり、図中のシス
テム0系、1系とも簡略化して示しである。例えば第1
図に示した構成装置中回線側の一段目の?A/チプレク
サMPXo、DMPX、がA1゜A、 、 B、 、 
B、に、二段目のマルチメゾマルチプレクサMl)X、
、DMPX、がCA、CBに、ネットワークNWoがD
に対応している。他の装置f等ここで例えばA1の装置
が障害となったことを一視圏路Ct  (第1図参照)
を介し中央処理装置が検知するとカウンタCNTを更新
するとともKO系から1糸へ切換えて(ロ)図の如く遷
移する。次に使用中ACTであるl系で装置C’Bが障
害となると監視1al路Co ’(第1図)を介して中
央処理装置CPUはこの障害を検知し、カウンタを更新
するとともに1糸からQ系へシステムを切換えて(ハ)
図の如<14!移する。さらに使用中ACTである0系
で装置1)が障害となると、該障害を通話路制御装 4
− (第1図)を介して中央処理装置CPUは検知し先の遷
移と同様にカウンタCNTを更新するとともにO系から
1系へとシステムを切換える。そこで本発明の系構成の
切換え制御は各装置の階層分けとカウンタCNTとの制
御方式にある。第2図において装置A、、A、、B1 
、B、はいずれも同じレベルにあり、各A、、A、、B
、、B、の障害時は各自装置の制御範囲内に留まってい
る。
3- 9) to 9) in Figure 2 show the stepwise switching when a system internal pressure failure occurs in one system, and both systems 0 and 1 in the figure are shown in a simplified manner. . For example, the first
The first stage of the line side of the configuration equipment shown in the figure? A/Ciplexer MPXo, DMPX, A1゜A, , B, ,
B, second stage multi-mezzo multiplexer Ml)X,
, DMPX, is CA, CB, and network NWo is D
It corresponds to Other devices f, etc. Here, for example, it can be seen that the device A1 has become an obstacle.Ct (see Figure 1)
When the central processing unit detects this, it updates the counter CNT and switches from the KO system to the 1st thread (b) as shown in the figure. Next, when a failure occurs in device C'B in the 1 system, which is the ACT in use, the central processing unit CPU detects this failure via the monitoring 1al path Co' (Fig. 1), updates the counter, and starts from the 1st thread. Switch the system to Q system (c)
As shown in the figure <14! move. Furthermore, if device 1) becomes a failure in the 0 system that is the ACT in use, the failure is handled by the communication path control device 4.
- (FIG. 1), the central processing unit CPU detects and updates the counter CNT in the same manner as the previous transition and switches the system from the O system to the 1 system. Therefore, the switching control of the system configuration according to the present invention is based on the hierarchical division of each device and the control method using the counter CNT. In FIG. 2, devices A, , A, , B1
,B, are all at the same level, and each A,,A,,B,
, , B remain within the control range of their respective devices.

同様に装置CA、CBは同レベルにあり、いず肚も下位
レベルを自装置の制御範囲においている。
Similarly, devices CA and CB are at the same level, and each device has the lower level within its own control range.

さらに装置りは各基の構成自体を左右するものであり、
本装置り障害で該当の系は使用不可を意味する。即ち本
発明はこのシステム構成の各構成要素である装置にレベ
ルを保たせA(B)→C−) Dの順で共通性が高くな
る(装置の重要度が増す)該レベルと障害発生におけ一
系切換回数(カウントCNTの値)とにより系の切換え
を行なわしめるものである。具体的制御構成は後で明か
になるが、第2図においてA、、A! 、B、、B、を
レベルL1とし、CA、CBをレベルL、としDをレベ
ルL3と階層分けするとまず、カラン、5CNTが11
0”のとき(状態(())はいずれの装置が故障しベル
L2 、レベルL、のもの即ちCA、Cn、Dのいずれ
かが障害のときA CT −) 8 B Yへ系切換え
が行なわれ、レベルL1のAI  、4  、J  、
への障害については無視される。さらにカウンタCNT
が2”のとき(状態(ハ)>hレベルL8のDが障害の
ときのみしか系構成は切換えられない。
Furthermore, the equipment affects the configuration itself of each group,
This means that the system in question is unusable due to a failure in this equipment. In other words, the present invention maintains a level in the devices that are each component of this system configuration, and the level where the commonality increases in the order of A (B) → C-) D (the importance of the device increases) and the occurrence of a failure. The system is switched depending on the number of times the system is switched (the value of the count CNT). The specific control configuration will be revealed later, but in Fig. 2, A,,A! , B, ,B, is at level L1, CA, CB are at level L, and D is at level L3. First, Karan, 5CNT is 11
0'' (state (()) indicates that any device at level L2 or level L, that is, any one of CA, Cn, or D, has a failure, the system is switched to A CT -) 8 B Y. , level L1 AI ,4 ,J ,
Any failure to do so will be ignored. Furthermore, counter CNT
The system configuration can only be switched when D is 2'' (state (c)>h level L8).

即ち本発明は系切換回数が増すにつれ下位レベルの障害
は無視することにより上位レベルの制御を維持するとい
った着想に基づくものである。尚第2図で示す装置中斜
線部分障害となったものであり、待機中8BYに障害復
旧措置が採られ正常になるとカウンタCNTは初期設定
されることを付言しておく。
That is, the present invention is based on the idea that as the number of system switching increases, upper level control is maintained by ignoring lower level failures. It should be noted that the shaded area in the device shown in FIG. 2 is a failure, and that the counter CNT is initialized when failure recovery measures are taken at 8BY during standby and the system returns to normal.

第3図は本発明の具体的系構成法の構成図である。第3
図は第1図の記憶装置MBMと中央処理装置、I C)
’ Uの本発明に関係した部分のみ示し、鳥力するレジ
スタ、R1はレベルに対応して読出された許容切換え(
ロ)数を格納するレジスタ、cNTはシステムの切換え
回数を保持するカウンタ、CMPは比較器である。記憶
装置MBMには入力される各レベルに対応して索引され
るデータで本実施例ではレベルL重はカウンタCNTの
内容が1回未満即ち0回で許容、レベルL!は2凹未満
即ち1回以下で許容、レベルLat′i3回未満即ち2
回以下で許容を示す例である。そして系切換を許容でき
る場合には、カウンタCNTを+1歩進するとともに、
スイッチ制御回路8WCTLへスイッチ切換オーダ(命
令)を出方するためにオーダ編集部J□に制御が渡され
る。また系切換え不許であるときは同一系構成で処理が
続行される。
FIG. 3 is a block diagram of a specific system configuration method of the present invention. Third
The figure shows the storage device MBM, central processing unit, and IC in Figure 1)
' Only the part of U related to the present invention is shown, and R1 is a register that controls the power (R1 is a permissible switch (
b) A register that stores a number, cNT is a counter that holds the number of system switching times, and CMP is a comparator. In the storage device MBM, data is indexed corresponding to each input level. In this embodiment, level L weight is acceptable if the content of the counter CNT is less than 1 time, that is, 0 times, and level L! Level Lat'i is acceptable if it is less than 2 concavities, that is, 1 time or less, and level Lat'i is less than 3 times, that is, 2
This is an example showing that it is acceptable to use less than 3 times. If system switching is acceptable, the counter CNT is incremented by +1, and
Control is passed to the order editing section J□ to issue a switch change order (command) to the switch control circuit 8WCTL. If system switching is not permitted, processing continues with the same system configuration.

第4図〜第6図には本発明のシステム適用例を示す。4 to 6 show examples of system application of the present invention.

第4図は第1図に示した実施例が完全二重化であるのに
対し、待機装置が使用中の装置より始めから機能が小さ
い例である。この場合、待機中の 7− 装置にない使用中の装置A、、Atが障害となった場合
には、装置の切替を行なわない。
FIG. 4 shows an example in which the standby device has smaller functions from the beginning than the device in use, whereas the embodiment shown in FIG. 1 is completely duplex. In this case, if the currently used devices A, At, which are not among the standby devices, become a failure, the devices will not be switched.

第5図は選択装置が1ケで、能動装置が複数個の例であ
る。この場合、切替の度数計を対になった能動装置の数
の整数倍だけ設けると効率がよいが、複数の対になった
能動装置毎に設けても良い。
FIG. 5 shows an example in which there is one selection device and a plurality of active devices. In this case, it is efficient to provide a number of switching frequency meters that are an integral multiple of the number of paired active devices, but they may be provided for each of a plurality of paired active devices.

第6図は、使用中の装置が1ケで、待機装置が複数個の
例であり、選択装置はもちろん、使用中装置の状態だけ
を監視すればよい。
FIG. 6 shows an example in which there is one device in use and a plurality of standby devices, and it is only necessary to monitor the status of the device in use as well as the selected device.

また第7図には情報処理系のシステム例を示す。Further, FIG. 7 shows an example of an information processing system.

先に示した例は交換システムにおける交換機EXOEX
、の二重化したものであるが、第7図の本例では、中央
処理装置CPUに入出力装置I10が入出力制御装置I
OCを介して接続され、その入出力制御装置IOCの各
チャネルCH,サブチャネルSCHが二重化されたもの
である。監視回路0丁〜C・により各装置の障害検出を
行ない中央処理装置CPUへ通知する。この場合サブチ
ャネル5CL(とチャネルCHの2段構成で第3図に示
したレベルL、〜L畠に代えて2レベル制御となる= 
8− だけで制御方式は以下同様に説明されるので詳細の説明
は省略する。
The example shown above is the exchange EXOEX in an exchange system.
, but in this example shown in FIG. 7, the input/output device I10 is connected to the input/output control device I
Each channel CH and subchannel SCH of the input/output control device IOC are duplicated. Monitoring circuits 0 to C detect failures in each device and notify the central processing unit CPU. In this case, with a two-stage configuration of subchannel 5CL (and channel CH), two-level control is performed instead of level L shown in FIG.
8-, the control system will be explained in the same way below, so detailed explanation will be omitted.

(7)発明の詳細 な説明したように、本発明によれば、使用中の装置に障
害が発生した場合その障害の許容度に応じてシステム構
成が選択でき、使用中、待機中の装置、あるいはシステ
ムの状態を意識せずに、システム全体の機能低下を最小
限とすることができる。
(7) As described in detail, according to the present invention, when a failure occurs in a device in use, the system configuration can be selected depending on the degree of tolerance of the failure, and the device in use, on standby, Alternatively, the functional deterioration of the entire system can be minimized without being aware of the state of the system.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のシステム構成法に関する一実施例とし
ての構成図、第2図は本発明のシステム構成例の各状態
(イ)〜←〕における説明図、第3図は本発明の具体的
構成図、第4図、第5図、第6図はシステム構成の適用
例、第7図は他の実施例のシステム構成図である。 CPU:中央処理装置 MEM:記憶装置 り、〜L、ニレベル
FIG. 1 is a configuration diagram as an example of the system configuration method of the present invention, FIG. 2 is an explanatory diagram of each state (a) to ← of the system configuration example of the present invention, and FIG. 3 is a specific diagram of the present invention. FIG. 4, FIG. 5, and FIG. 6 are application examples of the system configuration, and FIG. 7 is a system configuration diagram of another embodiment. CPU: Central processing unit MEM: Storage device ~L, Nilevel

Claims (1)

【特許請求の範囲】[Claims] 使用(現用)系及び予備系のシステムから成り使用(現
用)系システム内の装置に障害が発生すると予備系シス
テムに切換えら詐るシステム構成において、システム内
の複数の装置を共通性が高くなる順にレベル分けし、各
レベル対応に系切換えの許容回数を定め、該許容回数の
範囲内で系切換えを行なうことを特徴とするシステム構
成方式。
In a system configuration that consists of a working (active) system and a standby system, and when a failure occurs in a device in the working (active) system, the system is switched to the standby system, and the commonality of multiple devices in the system is high. A system configuration method characterized in that systems are divided into levels in order, a permissible number of system switching is determined for each level, and system switching is performed within the range of the permissible number of times.
JP56207855A 1981-12-22 1981-12-22 System constituting system Pending JPS58107965A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56207855A JPS58107965A (en) 1981-12-22 1981-12-22 System constituting system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56207855A JPS58107965A (en) 1981-12-22 1981-12-22 System constituting system

Publications (1)

Publication Number Publication Date
JPS58107965A true JPS58107965A (en) 1983-06-27

Family

ID=16546641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56207855A Pending JPS58107965A (en) 1981-12-22 1981-12-22 System constituting system

Country Status (1)

Country Link
JP (1) JPS58107965A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61192151A (en) * 1985-02-20 1986-08-26 Fujitsu Ltd Digital exchange

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61192151A (en) * 1985-02-20 1986-08-26 Fujitsu Ltd Digital exchange

Similar Documents

Publication Publication Date Title
JPH0778039A (en) Clock selection control system
JP2009217358A (en) Duplex programmable controller
JP2002034177A (en) Two-system input power supply unit
JPS58107965A (en) System constituting system
JP3169859B2 (en) Parallel operation power supply control method
JP3699049B2 (en) Duplex transmission equipment
JP3050008B2 (en) Switch control method
KR20010028123A (en) Apparatus and method for controlling dual surveillance in optical transmission system
JP2885224B2 (en) Switching system redundancy configuration control method
JPH05259940A (en) Control system for switching device
JP2518154B2 (en) Device configuration control method using backup fault management
JPH0728239B2 (en) Switching circuit
JPH02118738A (en) Switching system by abnormal level of duplexing control system
JPS61125672A (en) Automatic switching system for hierarchically multiplexed computer system
JPH06348620A (en) System switching method for multiplex system
JPS63286901A (en) Control system for switching living/space system
JPS60259026A (en) Automatic switching method in n:1 active spare equipment
KR20010028126A (en) Apparatus for cross duplication of each processor board in exchange
JPH04364539A (en) Terminal switching device
JPH04113726A (en) Line changeover controller
JPH05108103A (en) Multiplexing controller
JPS58127263A (en) Switching device
JPH07307770A (en) Protection control circuit
JP2003345401A (en) Highly reliable process control device
JPS62183237A (en) Digital transmission line network