JPS58107535A - Formation of negative type resist film - Google Patents

Formation of negative type resist film

Info

Publication number
JPS58107535A
JPS58107535A JP20784881A JP20784881A JPS58107535A JP S58107535 A JPS58107535 A JP S58107535A JP 20784881 A JP20784881 A JP 20784881A JP 20784881 A JP20784881 A JP 20784881A JP S58107535 A JPS58107535 A JP S58107535A
Authority
JP
Japan
Prior art keywords
film
resist film
electrode
base plate
resist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20784881A
Other languages
Japanese (ja)
Inventor
Tateo Kitamura
健郎 北村
Yasuhiro Yoneda
泰博 米田
Masashi Miyagawa
昌士 宮川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP20784881A priority Critical patent/JPS58107535A/en
Publication of JPS58107535A publication Critical patent/JPS58107535A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • G03F7/167Coating processes; Apparatus therefor from the gas phase, by plasma deposition

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To obtain a negative type resist having high reliability efficiently, by placing a base plate on the grounded electrode of parallel flat plate type electrodes facing each other in a reaction chamber, and forming a polymerization film on said base plate by a small amt. of high frequency wave power, in forming a resist film by a plasma polymn. method. CONSTITUTION:A silicon base plate 2 is placed on a stand in a reaction chamber 1, the stand is also used as a grounded electrode, cooled by passing cooling water, and a flat plate electrode 3 is connected through a regulation circuit 4 with a high-frequency wave power supply 5. The inside of the chamber is evacuated to 2X10<-5>Torr, and a gaseous monomer is introduced from a monomer source 8 through a valve 9 and a tube 6 together with a carrier gas supplied through a valve 10. <=1W/cm<2> high frequency wave power is applied to the electrode 3 and the electrode used also as the stand to produce a plasma polymn. film on the base plate 2, thus permitting negative type resist film soluble in a developing soln. to be efficiently formed in a short time, and this resist film to be suitable for the lithographic technique usable for fabrication of semiconductor integrated circuits.

Description

【発明の詳細な説明】 (1)  発明の技術分野 氷見911は電子線、X*、イオンビーム、紫外嗣。[Detailed description of the invention] (1) Technical field of the invention Himi 911 is an electron beam, X*, ion beam, and ultraviolet.

遠紫外−等の放射線を用いるリングラフィ技術において
使用され為レジスト膜の形成方法に関すゐ。
This article relates to a method for forming a resist film used in phosphorography technology that uses radiation such as deep ultraviolet radiation.

I!に詳しく述べれば、放射線を照射した部分のみが!
It、てパターンを形成すゐネガ型レジスト膜をグッズ
マ重合法により形成する方法の改良に関する・ (匂 技術の背景 電子部品の分野において、種々のパターン形成にはフォ
ト・リソグラフィが多用されており、半導体集積回路の
製造においては、現在ではもっばらフォト・リソグラフ
ィが用いられている・蛾近ではより高精度の電子ビーム
霧光も一部では採用され始めている0このためのレジス
ト材料、レジスト形成技術に関する研究が盛んKなされ
ている。電子部品の製造プロセスに関しても、高精度な
微細パターン形成や種々の簡便さの点からいわゆるドラ
イプロセスが多用され、レジスト形成もドライプロセス
で行なっていこうという提案もあゐ0 (3)従来技術と問題点 従来のレジスト膜の形成方法としては、レジストポリ!
−を有機溶媒等の塗布溶媒に溶解した溶液を用いるスピ
ンコード法がある0この方法の欠点は次の通りであるo
(1)上記レジスト・ポリマーの合成は、モノ!−の精
製0重合反応、ポリ!−の回収、精製、乾燥等の複雑で
又長時間を要すゐ操作が必簀で′hゐ・し)レジスト・
ポリマーの溶液は保存してvhb間に塵埃等が混入した
ル、溶解しているポリマーの一部が習性しゲル状唆質に
なあととがあ〕、塗布前に溶液にろ過、遠心分離等の処
理をしてこれらの不純物を除去する必要がめる0(3)
塗布溶媒の除去、塗布時に入った狭のひずみの除去勢の
ために放射線の照射前にプリベークと呼ばれる熱旭理を
する必要があるo(4)膜厚が薄くなるとピンホールと
呼ばれる欠陥が増加する0特に膜厚が数千λ以下になる
とピンホールの発生が著しくなる◎ 又一方、プラズマ重合法を応用したネガ型レジストの形
成も試みられているが(特開昭53−134366等)
、これらは反応容器の外部からコイル等によ〕、電力を
印加する方式でToり、そのため蓼の形成速度が著しく
遅いという問題があゐO又通常行なわれている反応容器
の内部に電極を設置したプラズマ重合法で1に8形成す
ると、重合膜が高度に架橋され溶媒に不溶となるため、
ネガ型レジスト膜を形成することは困−でありたO本発
明の目的は、このような従来技術の各穢欠点を除去し、
又能率的でかつ信頼性の高いネガ温レジスト膜の形成方
法を提供することにある。
I! In detail, only the areas that were irradiated with radiation!
It relates to an improvement in the method of forming a negative resist film by the Goodsma polymerization method to form a pattern. Currently, photolithography is widely used in the production of semiconductor integrated circuits.In some areas, even higher-precision electron beam mist light has begun to be adopted.Resist materials and resist forming techniques for this purpose In the manufacturing process of electronic components, the so-called dry process is often used due to its high-precision fine pattern formation and various ease of use, and there are also proposals to use the dry process to form resists. A0 (3) Conventional technology and problems The conventional method for forming a resist film is resist poly!
There is a spin coding method that uses a solution of - dissolved in a coating solvent such as an organic solvent.The disadvantages of this method are as follows.
(1) The synthesis of the above resist polymer is a mono! - Purification 0 polymerization reaction of poly! Resist
If the polymer solution is stored and dust etc. gets mixed in between VHB or some of the dissolved polymer becomes sticky and becomes a gel-like substance, the solution should be filtered, centrifuged, etc. before application. It is necessary to remove these impurities by treatment.0(3)
It is necessary to perform a heat treatment called pre-bake before irradiation with radiation to remove the coating solvent and remove the narrow distortion introduced during coating. (4) As the film thickness decreases, defects called pinholes increase. 0 Especially when the film thickness is less than several thousand λ, the occurrence of pinholes becomes noticeable.◎ On the other hand, attempts have been made to form negative resists by applying plasma polymerization methods (Japanese Patent Laid-Open No. 134366/1983, etc.)
These methods apply electric power from the outside of the reaction vessel using a coil or the like, which causes the problem that the rate of formation of the membrane is extremely slow. When 1 to 8 is formed using the installed plasma polymerization method, the polymer film is highly crosslinked and becomes insoluble in solvents.
It is difficult to form a negative resist film.The purpose of the present invention is to eliminate each of the disadvantages of the conventional technology,
Another object of the present invention is to provide a method for forming a negative temperature resist film that is efficient and highly reliable.

(5)  発明の構成 上記の目的は、本発明によればプラズマ重合法によシレ
ジスト膜を形成する方法において、反応容器内に相対す
る平行平板型電極の接地側電極上KI&板を設蓋し、平
行平板型電極に印加する画−波電力をおよそI W/C
11以下の所定小電力として現像液に可溶な重合膜を基
板上に形成することを特徴とするネガ型レジスト膜の形
成方法とすることによp達成される。
(5) Structure of the Invention The above object is to provide a method for forming a resist film by plasma polymerization according to the present invention, in which a KI&plate is installed on the ground side electrode of opposing parallel plate type electrodes in a reaction vessel. , the image-wave power applied to the parallel plate electrodes is approximately I W/C
This can be achieved by using a method for forming a negative resist film, which is characterized in that a polymer film soluble in a developer is formed on a substrate using a predetermined small electric power of 11 or less.

本発明者はプラズマ重合法につき鋭意検討を行なうた結
果、プラズマ重合法により形成したl[O溶解性が印加
する高周波の電力、モノ!−の圧力流量に大きく依存す
ることを見出し、その現象を利用した−のである6つま
り、反応容器内に相対向する平行平板型電極を備いた反
応装置を用いてプラズマ重合法により重合膜を形成する
際、接地側電極上に基板を設着し、形成される重合膜が
現像液に可溶と1にゐような、印加電力が約IW/m以
下と小さくかつモノ!−圧が数Torr以下で、又モノ
!−流量が比較的大きい重合条件でプラズマ重合を行な
わせるものである・ 4$K、印加電力に関しては特異な性質があり、印加電
力が低い場合であっても、高分子−の形成速度は、高電
力印加時に比して岡等もしくは倍以上となることがあシ
、シか一ネガ渥レジストとして現像液に可溶な性質の重
合膜が得られる。
As a result of intensive study on plasma polymerization method, the present inventor found that the high-frequency power applied to the l[O solubility formed by plasma polymerization method, mono! They discovered that the pressure and flow rate of - greatly depended on the flow rate, and took advantage of this phenomenon.6 In other words, a polymer film was formed by plasma polymerization using a reactor equipped with parallel plate type electrodes facing each other in a reaction vessel. When doing so, the substrate is installed on the ground side electrode, and the polymer film formed is soluble in the developer, and the applied power is small and monolithic, at about IW/m or less! -The pressure is less than a few Torr, and it's monotonous! - Plasma polymerization is carried out under polymerization conditions where the flow rate is relatively large. 4$K. There are unique characteristics regarding the applied power, and even when the applied power is low, the formation rate of the polymer - Compared to when high power is applied, the resistance may be equal to or more than twice as high, but a polymeric film soluble in a developing solution can be obtained as a negative resist.

プラズマ重合によるレジスト膜は、ピンホール密度を著
しく小さくで訃i我々の比較実験では膜厚0.2μmに
おいては、プラズマ重合法で形成した膜のピンホール密
度は従来のスピンコード法で形成した蓼の7/10 G
であり、又膜厚1j+m%’Cおいてはプラズマ重合法
で形成した膜のピンホールのピンホール密度はスピンコ
ード法で形成した膜と比較すると、 41に:II厚が
薄いときにその有利性は顕著である◎尚、プラズマ重合
法で形成した膜には、七の形成機構からピンホールがな
−とtいわれてiるが、実際1社基板上に付着していた
馬埃等や、重合条件によりピンホールは発生する◎更に
、プラズマ重合によゐレジストにおいて特徴的な性質は
、基板の凹凸に対してほぼ同一1[厚で付着す6点であ
り、従来のスピン;−トによるし がシスト膜が、基板の凹凸にかかわらず常に表面がほと
んど平坦となることとは対称的である◎レジストの感f
Fiレジスト膜厚に関係し、レジスト膜厚が部分的に変
化して−るレジストに対してラインパターンの露光をな
す際、所望の通力のラインパターンと異なって、幅が部
分的に変化したパターイとなる欠点がある。
The resist film formed by plasma polymerization has a significantly lower pinhole density. In our comparative experiments, at a film thickness of 0.2 μm, the pinhole density of the resist film formed by plasma polymerization was lower than that of that formed by conventional spin cording. 7/10 G
And, at a film thickness of 1j+m%'C, the pinhole density of the film formed by the plasma polymerization method is 41 when compared to the film formed by the spin code method: II The advantage is when the thickness is thin. ◎Although it is said that there are no pinholes in the film formed by the plasma polymerization method due to the formation mechanism described in Section 7, in reality, there are no pinholes in the film formed by the plasma polymerization method. , pinholes are generated depending on the polymerization conditions ◎Furthermore, the characteristic property of the resist produced by plasma polymerization is that it adheres to the irregularities of the substrate with almost the same thickness, and the conventional spin; This is in contrast to the fact that the resist film has a nearly flat surface regardless of the unevenness of the substrate.
When performing line pattern exposure on a resist whose resist film thickness partially changes in relation to the Fi resist film thickness, a line pattern with a partially changed width differs from a line pattern with a desired conductivity. There is a drawback.

一方、レジストをマスクとする反応性イオン・エツチン
グ等のドライエツチングにおいてはレジスト膜は、基板
と直角な方向からエツチングされ膜厚が減少していくの
で、段差の急な基板に対してスピンコードによりレジス
トを形成するときは、骸段差部でレジストが極めて薄く
なり、エッチング過−で基板側がエツチングされる不鷹
の事故が発生し得るが、プラズマ重合にてレジストを形
成す為ときは、段差部分においても平坦部分上とほぼ同
じ膜厚でレジストが生威し、上記O下履の事故は発生し
ない・ (6)発明の実施例 実施例1 う 図IK示すよえな反応Ill内にシリコン基板2を投雪
し、反応容・1内を2X10−”Torrtで排気した
・なか、基[2を支持する基台は接地側電極を兼ねてお
)冷却水を通し冷却すゐalIQが60wm()JPI
Il電極3には整合回路4を介して、高周波電源Sを接
続してあt) 、I B、+S 6 MHzの高周波電
力を印加する様になつて込る0尚、電極の間隙は3s■
としである・反応容Bi内にはモノマーガスを噴出する
噴出口を備えた導入管6が配電してあ〕、七ツマ−7を
収容する七ツマ−・ンース8はパルプ9を介して接続さ
れていゐ0モノマーの種類によっては、パルプ10を介
して、キャリヤガスを導入して、峰ツマ−・ガスを供給
すゐO上記の様に、容器1内を排気した後は、中ヤリャ
ガスを導入しないでパルプ9を調整して、七ツマーガス
としてスチレンを所定圧力となるまで導入し、1346
MHxの高周波電力を印加し九〇このときのスチレンの
流量は80mj/minである・プラズマ重合スチレン
go溶s性 表1にプラズマ重合スチレン膜の重合条件と膜の溶解性
を示す。表1に示すようにモノヤー圧0.15Torr
においては印加電力0.06W/dで形成した膜社シク
ロヘキサンに可溶であり、印加電力を増加させゐと不溶
になることがわかる・又、毫ツマー圧0.3Torrに
おいても印加電力が増加すると、膜の溶解性が低下する
傾向を示す。
On the other hand, in dry etching such as reactive ion etching using a resist as a mask, the resist film is etched from a direction perpendicular to the substrate and the film thickness decreases. When forming a resist, the resist becomes extremely thin at the stepped portions, which can cause an accident where the substrate side is etched due to excessive etching, but when the resist is formed by plasma polymerization, Even on the surface, the resist grows with almost the same thickness as on the flat part, and the above-mentioned O-slip accident does not occur. (6) Embodiments of the invention The inside of reaction chamber 1 was evacuated at 2X10-" Torrt. Cooling water was passed through the reactor (the base that supports 2 also serves as the ground electrode) and the alIQ was 60 wm (). JPI
A high-frequency power source S is connected to the Il electrode 3 via a matching circuit 4, and a high-frequency power of 6 MHz is applied to it.The gap between the electrodes is 3 s.
In the reaction chamber Bi, an inlet pipe 6 equipped with a spout for spouting out monomer gas is connected to a seven-tube chamber 8, which houses a seven-tube tube 7, through a pulp 9. Depending on the type of monomer being used, a carrier gas may be introduced through the pulp 10 to supply peak gas. Adjust the pulp 9 without introducing styrene as a 7-mer gas until the predetermined pressure is reached, and 1346
High frequency power of MHx was applied and the flow rate of styrene at this time was 80 mj/min. - Plasma polymerized styrene solubility Table 1 shows the polymerization conditions and solubility of the plasma polymerized styrene film. As shown in Table 1, the monoyer pressure is 0.15 Torr.
It can be seen that it is soluble in cyclohexane formed at an applied power of 0.06 W/d, and becomes insoluble as the applied power is increased. Also, when the applied power is increased at a pressure of 0.3 Torr, , the solubility of the membrane tends to decrease.

@t  yツズマ重會ステレy@0重舎条件と膜OII
解性プラズマ重合スチレン膜の電子層露光特性ネガ型レ
ジストでは、重合膜が所定現僚液に溶解す為必要がある
・上記のシクロヘキサンに可溶なプラズマ重合スチレン
IIK電子線を露光した◎結果を表2に示す・図中Dg
uとは規格化残存膜厚0.5 Kおける電子線露光量で
あり、感度を表わす・又、図2Kt14ツマー圧Q、 
3 Torr a印加電力0、8 W/clfで形成し
た膜の感度曲線を示す・図2の横軸には電子線露光量(
C/d)をとってあり、縦軸には規格化残存lll[厚
をとっである0なシ、加速電圧は1!OKV、初期膜厚
1μmで現儂はシクロヘキサン(20℃)20秒行なワ
た結果である・この膜の感度は8xlO−’or値Fi
3ノo’であ為・!I2よシ、シクロヘキサンに可溶愈
重合膜は全てネガ曹を形成できることがわかる・又表2
よりeツマ−圧0.3Torr一定の時を比較すゐと印
加電力0.8 W/c11で形成した膜が印加電力0.
2W/cI&で形唆した膜より感度が約2倍高いことが
わが為・このM因としでは、印加電力が高い条件で形成
したI[は璧ツマー分子に与えられるエネルギーが多く
、活性糧の密kが高いため重合反応が進行し分子量が高
くなっていることが考えられる〇本実施例のグッズマ重
合スチレンレジストでは、幅1.Bμmのネガ截レジス
トパターンが形成できる。
@t y Tsuzuma Jyukai Sterey @0 Jyusha conditions and membrane OII
Electron layer exposure characteristics of decomposable plasma-polymerized styrene film Negative-tone resists are necessary because the polymeric film dissolves in a given solution. Shown in Table 2・Dg in the figure
u is the electron beam exposure amount at a normalized residual film thickness of 0.5 K, and represents the sensitivity.
The sensitivity curve of the film formed with 3 Torr a applied power of 0 and 8 W/clf is shown. The horizontal axis of Fig. 2 shows the electron beam exposure amount (
C/d) is taken, and the vertical axis is the normalized residual lll [thickness is taken as 0, acceleration voltage is 1! OKV, the initial film thickness is 1 μm, and the current value is cyclohexane (20°C) for 20 seconds.The sensitivity of this film is 8xlO-'or value Fi.
3 no o' de aame・! It can be seen that all the cyclohexane-soluble polymerized films can form negative carbon dioxide as shown in Table 2.
Comparing the results when the e-summer pressure is constant at 0.3 Torr, the film formed with an applied power of 0.8 W/c11 is the same as the film formed with an applied power of 0.3 Torr.
The sensitivity is about twice as high as that of the film induced by 2W/cI&.The reason for this M is that I[ formed under high applied power conditions has a lot of energy given to the membrane molecules, and the active ingredient It is thought that because the density k is high, the polymerization reaction progresses and the molecular weight becomes high. In the Goodsma polymerized styrene resist of this example, the width is 1. A negative cut resist pattern of B μm can be formed.

表1 プラズマ重合漠テレンlea電子=m光臀性実施
例2 実施例1と同様にしてシリコン基板を投首し、反応容器
内を排気した後モノマーとしてα−クロロアクリa =
 )リルを0.45Torrとなるように導入し、高周
波電力を印加した。この時のα−クロロアクリロニトリ
ルの流量は70mj/mとし、印加電力は0.15W/
mとした・放電を2.5分間行なったところ、0,8μ
mの膜厚の重合膜が得られた。実施例1と同様にして照
射量を2.5X10”””07mとして電子線を照射し
、現儂液にN、N−ジメチルホルムア之ドを用いて液1
120’Cで20秒間現像したところ、幅2μmのネガ
型レジストパターンを形成できた。
Table 1 Plasma-polymerized desert terene lea electron = m photoresistivity Example 2 After dropping the silicon substrate in the same manner as in Example 1 and evacuating the inside of the reaction vessel, α-chloroacrylic acid was used as a monomer.
) A riller was introduced at a pressure of 0.45 Torr, and high frequency power was applied. At this time, the flow rate of α-chloroacrylonitrile was 70 mj/m, and the applied power was 0.15 W/m.
m and discharged for 2.5 minutes, the discharge was 0.8μ
A polymer film with a thickness of m was obtained. Electron beam irradiation was carried out in the same manner as in Example 1, with an irradiation dose of 2.5 x 10""07 m, and solution 1 was added to the current solution using N,N-dimethylformamide.
When developed at 120'C for 20 seconds, a negative resist pattern with a width of 2 μm could be formed.

実施例3 実施例1と同様にしてシリコン基板を設置し反応容器内
を排気し九稜、モノマーとしてアクリル酸メチルをo、
a’rorrとなゐように導入し高周波を印加した。こ
の時のアクリル酸メチルの流量Fi30m I 7m 
l n *印加電力riO,2W/cdとシタ。放電を
30分間行な啼たところ0.9βmの膜厚の重合膜が得
られ九〇一実施例1と同様にして電子線を照射しくjl
l射量: I X 1 G−’ C’/cd)、現11
液に酢114 ソア電ルを用いて液温20℃で30秒間
現像したところ、幅2..5μmのネガ型レジストパタ
ーンを形成できたー 実施例4 実施例1と同様にしてシリコン基板を設置し、反応容器
内を排気した後、モノマーとしてモノクールベンゼンを
0.3Torrとなるように導入し、高周波を印加し九
〇この時のモノクールベンゼンの流量は80mj/m1
ne印加電力は0.5 W/(31とし九〇放電を2分
間行なったところt、SamoaK厚の重合膜が得られ
た・実施例1と同様にして電子線を照射しく照射量: 
lXl0−”C/If)It像液に酢酸n−プロピルを
用いて、液温20”Cで20秒間現像したところ幅2μ
mのネガ型レジストパターンを形成でき九〇 実施例5 実施例1と同様にしてシリコン基板を設置し、反応容器
内を排気した後、モノ!−としてアリルベンゼンを0.
2Torrとなるように導入し高周波を印加した口この
時のアリルベンゼンの流量FiSOm l / m 1
 n +印加電力ti 0.1’W/C1Fとした◎放
電を15分間行なったところ1.3μmの膜厚の重合膜
が得られた◎実施例1と同様にして電子線を照射しく照
射量: 6 X 10−’ C/(d ) %現像液に
シクロヘキサンを用いて液温20℃で20秒間現像した
ところ、幅2μmのネガ型レジストパターンを形成でき
九〇 実施例6 実施例1と同様にしてシリコン基板を設置し、反応容器
内を排気した後、モノマーとしてトリエチルシランを0
.9Torrとなるように導入し、高周波を印加した◎
この時のトリエチルシランのa量は40mj/m1ne
印加電力は0.3W/dとした0放電を40分間行なっ
たところ0.9μmの膜厚の重合膜が得られ九〇実施例
1と同様にして電子−を照射しく照射量: 5X10−
’C/c11)、現像液にシクロヘキサンを用いて液温
20℃で20秒間現像したところ、幅2.5Jmのネガ
型レジストパターンを形成できた・ 上記の実施例ではネガ型レジストの現像において、簡便
さの点から通常の現像液による現像を行なったが、これ
は周知のドライ現像にて実施することも可能である。
Example 3 A silicon substrate was placed in the same manner as in Example 1, the inside of the reaction vessel was evacuated, and methyl acrylate was added as a monomer.
A high frequency was applied so that it was a'rorr. Flow rate of methyl acrylate at this time Fi30m I7m
l n *applied power riO, 2W/cd and sita. When the discharge was carried out for 30 minutes, a polymer film with a thickness of 0.9βm was obtained, and the polymer film was irradiated with an electron beam in the same manner as in Example 1.
L radiation amount: I X 1 G-'C'/cd), current 11
When I developed it for 30 seconds at a solution temperature of 20°C using Vinegar 114 Soardel as a solution, the width was 2. .. A negative resist pattern of 5 μm was formed - Example 4 A silicon substrate was placed in the same manner as in Example 1, and the inside of the reaction vessel was evacuated, then monocool benzene was introduced as a monomer to a pressure of 0.3 Torr. High frequency was applied and the flow rate of monocool benzene at this time was 80 mj/m1
The applied power was 0.5 W/(31) and 90 discharge was performed for 2 minutes, and a polymer film of SamoaK thickness was obtained.The electron beam was irradiated in the same manner as in Example 1. Irradiation amount:
When developed for 20 seconds at a solution temperature of 20"C using n-propyl acetate in the lXl0-"C/If)It image solution, the width was 2μ.
Example 5 A silicon substrate was placed in the same manner as in Example 1, and the inside of the reaction vessel was evacuated. − as allylbenzene as 0.
The flow rate of allylbenzene was introduced at a pressure of 2 Torr and a high frequency was applied.FiSOml/m1
n + applied power ti 0.1'W/C1F ◎ When discharge was performed for 15 minutes, a polymer film with a thickness of 1.3 μm was obtained ◎ The electron beam was irradiated in the same manner as in Example 1. : 6 x 10-'C/(d)% When the developer was developed using cyclohexane at a temperature of 20°C for 20 seconds, a negative resist pattern with a width of 2 μm could be formed.90 Example 6 Same as Example 1 After setting up a silicon substrate and evacuating the inside of the reaction vessel, add 0 of triethylsilane as a monomer.
.. The pressure was set to 9 Torr and high frequency was applied◎
The amount of triethylsilane at this time is 40 mj/m1ne
After 40 minutes of zero discharge with an applied power of 0.3 W/d, a polymer film with a thickness of 0.9 μm was obtained.90 Electron irradiation was performed in the same manner as in Example 1. Irradiation amount: 5×10−
'C/c11), using cyclohexane as the developer and developing for 20 seconds at a solution temperature of 20°C, a negative resist pattern with a width of 2.5 Jm could be formed. In the above example, in developing a negative resist, Although the development was carried out using a normal developer for convenience, it is also possible to carry out the development by a well-known dry development.

(η 発明の効果 本発明においては、平行平板の反応装置を用−てプラズ
マ重合を行なう屯ので、外部コイルから高周波電力を印
加する方式に比し高い膜生成速度を実現でき、又平行平
板では従来法では溶剤に吋溶な高分子膜の生成が離しい
ものでありたが、供給するモノマー圧力と流量を制御し
た上で、高岡型レジスト膜を形成すゐことができゐ◎こ
のように、能率的でかつ信頼性の^いネガ製レジスト膜
が形成できるので、半導体素子等リングラフィ技術を用
いて製造する製品の歩留9.信軸性、生産性の向上!$
を図れる効果がある・尚、本発明に用いることのできる
壱)i−重合条件等は実施例記載のものに限定されるこ
となく、上記目的に対応し、適宜選択奥施し得る4ので
ある・
(Effects of the Invention In the present invention, since plasma polymerization is performed using a parallel plate reactor, a higher film formation rate can be achieved compared to a method in which high frequency power is applied from an external coil. In the conventional method, it was difficult to form a polymer film that was soluble in solvents, but by controlling the pressure and flow rate of the monomer supplied, it was possible to form a Takaoka-type resist film.◎In this way, Since it is possible to form an efficient and reliable negative resist film, the yield of products manufactured using phosphorography technology, such as semiconductor devices, is improved.9. Improved reliability and productivity! $
1) The i-polymerization conditions, etc. that can be used in the present invention are not limited to those described in the examples, but can be appropriately selected according to the above purpose.

【図面の簡単な説明】[Brief explanation of drawings]

Claims (1)

【特許請求の範囲】[Claims] グッズマ重合法によりレジスト膜を形成する方法におい
て、反応容器内に相対する平行平板型電極の接地側電極
上に基板を設置し、平行平板型電極に印加する高周波電
力を、およそIW/m以下の小電力として現侭液に可溶
な重合膜を基板上に形成することを特徴とするネガ型レ
ジスト膜の形成方法◎
In the method of forming a resist film by the Goodsma polymerization method, a substrate is placed on the ground side electrode of parallel plate electrodes facing each other in a reaction vessel, and the high frequency power applied to the parallel plate electrodes is set at approximately IW/m or less. A method for forming a negative resist film, which is characterized by forming a polymer film on a substrate that is soluble in a current liquid with a small amount of electric power.
JP20784881A 1981-12-22 1981-12-22 Formation of negative type resist film Pending JPS58107535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20784881A JPS58107535A (en) 1981-12-22 1981-12-22 Formation of negative type resist film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20784881A JPS58107535A (en) 1981-12-22 1981-12-22 Formation of negative type resist film

Publications (1)

Publication Number Publication Date
JPS58107535A true JPS58107535A (en) 1983-06-27

Family

ID=16546522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20784881A Pending JPS58107535A (en) 1981-12-22 1981-12-22 Formation of negative type resist film

Country Status (1)

Country Link
JP (1) JPS58107535A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6426853A (en) * 1986-12-16 1989-01-30 Konishiroku Photo Ind Silver halide color photographic sensitive material containing novel cyan coupler

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6426853A (en) * 1986-12-16 1989-01-30 Konishiroku Photo Ind Silver halide color photographic sensitive material containing novel cyan coupler

Similar Documents

Publication Publication Date Title
JPH0669119A (en) Method for holding of line width of photosensitive polyimide pattern
US4568601A (en) Use of radiation sensitive polymerizable oligomers to produce polyimide negative resists and planarized dielectric components for semiconductor structures
JPS61189639A (en) Formation of negative resist image
US4489146A (en) Reverse process for making chromium masks using silicon dioxide dry etch mask
JPH0342492B2 (en)
JPS58107535A (en) Formation of negative type resist film
JPS6219051B2 (en)
JPS58207041A (en) Radiosensitive polymer resist
JPS59163829A (en) Pattern formation
JPS58108205A (en) Formation of high polymer film
US4588675A (en) Method for fine pattern formation on a photoresist
JPH0328852A (en) Photosensitive resin composition
JPS5886726A (en) Forming method for pattern
JPH0329802B2 (en)
JPS59121042A (en) Negative type resist composition
JPS6360898B2 (en)
JPS5866938A (en) Formation of film of material sensitive to far ultraviolet light
JPS6363564B2 (en)
JPS5972441A (en) Dry type development method
JPS58210621A (en) Formation of resist film
JPH0234453B2 (en)
JP2618978B2 (en) Resist material and pattern forming method using the resist material
JPS60114857A (en) Photosensitive composition for dry development
JPH05175115A (en) Forming method for resist pattern
JPS5862643A (en) Ionization radiation sensitive negative type resist