JPS5886726A - Forming method for pattern - Google Patents

Forming method for pattern

Info

Publication number
JPS5886726A
JPS5886726A JP56184495A JP18449581A JPS5886726A JP S5886726 A JPS5886726 A JP S5886726A JP 56184495 A JP56184495 A JP 56184495A JP 18449581 A JP18449581 A JP 18449581A JP S5886726 A JPS5886726 A JP S5886726A
Authority
JP
Japan
Prior art keywords
film
pattern
graft
irradiated
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56184495A
Other languages
Japanese (ja)
Inventor
Katsuyuki Harada
原田 勝征
Osamu Kogure
小暮 攻
Hiroshi Murase
村瀬 啓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP56184495A priority Critical patent/JPS5886726A/en
Publication of JPS5886726A publication Critical patent/JPS5886726A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)

Abstract

PURPOSE:To form a resist pattern for fine processing on a substrate to be processed, by making use of a vapor-phase graft copolymerization method for a macromolecular material. CONSTITUTION:A chemical substance, such as polymethyl methacrylate, which is known as a conventional radical initiator and capable of producing a radical even with the application of high-energy beams, or a macromolecular material similar thereto, is mixed with a radical initiator, and ultraviolet rays are applied thereto in an ambience of a gas produced from the mixture solution of a monomer capable of vinyl polymerization, such as methyl methacrylate, and of an initiator, such as propionaldehyde, of about 0.5-4wt% to the monomer. Thereby a vapor-phase graft copolymerization film is formed selectively on the part of a base film whereon the beams are applied. By this constitution, the swelling due to a developing solution is eliminated, the resolution is improved remarkably, and a resist pattern for fine processing can be formed.

Description

【発明の詳細な説明】 を利用し、被加〒基板−ヒに高精度微細加工用の任意の
レジストパターンを乾式法により直接形成しうるパター
ン形成法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a pattern forming method in which an arbitrary resist pattern for high-precision microfabrication can be directly formed on a substrate to be processed using a dry method.

従来、IC 及びLSI等の製造においては、被加工基
板面上に高分子化合物等からなるレジストを塗布して膜
を形成し、これに紫外線、遠紫外線、X線及び電子線等
の高エネルギー線を照射して、高分子主鎖を分解(ポジ
型)又は高分子主鎖間の架橋(ネガ型)を誘起して潜像
を作り、この工程に続く現像工程で、上記照射1・てよ
り分解又は架橋した部分と非照射部分との現像液に対す
る溶解速度の差を利用して顕像化し、これらのパターン
によシ被加工基板を加工l,2ている。
Conventionally, in the manufacture of ICs and LSIs, etc., a resist made of a polymer compound, etc. is applied onto the surface of the substrate to be processed to form a film, and this is then exposed to high-energy rays such as ultraviolet rays, far ultraviolet rays, X-rays, and electron beams. is irradiated to create a latent image by decomposing the polymer main chain (positive type) or inducing crosslinking between the polymer main chains (negative type), and in the development process that follows this step, the above irradiation 1. The pattern is visualized by utilizing the difference in dissolution rate in a developer between the decomposed or crosslinked portion and the non-irradiated portion, and the substrate to be processed is processed using these patterns.

これらの加工プロセスに用いられる実用的レジスト材料
は、使用する高エネルギー線に対して高感度であり、又
、加工精度を上げるためには高解像性であることが必要
である。しかしながら、現像工程は、必ず有機溶媒又は
アルカリ溶液等に浸漬して行われるため、現像液中でパ
ターン部分の膨潤が進行して解像性が低下する欠点を有
し、特にネガ型レジストにおいて顕著で、これが解像性
の制限要因となっている。
Practical resist materials used in these processing processes must be highly sensitive to the high-energy beams used, and must also have high resolution in order to improve processing accuracy. However, since the developing process is always performed by immersion in an organic solvent or alkaline solution, it has the disadvantage that the pattern part swells in the developing solution and the resolution decreases, which is especially noticeable in negative-tone resists. This is a limiting factor for resolution.

一方、LSI等集積化が進行し、被加工基板面上に形成
されるパターンのサイズが微細化し、2μm程度以下に
なってくると、被加工基板の加工は、従来用いられてい
た腐食液による化学エツチングは等方エツチングによる
アンダーカットの量□が無視できなくなるため、四フッ
化炭素ガス又は四塩化炭素ガス等の高周波プラズマによ
り加工するドライエツチングが用いられるようになって
きた。このため、レジストはこれらのドライエツチング
雰囲気で分解あるいは変形が起りKくい、いわゆる耐ド
ライエツチング性を具備する必要がある。しかしながら
、ポジ型レジストにおいては、高感度にするために高エ
ネルギー照射に対して分解しやすい分子構造のものが必
要となるととから、感度と耐ドライエツチング性が相反
する傾向とあり、いまだ両性能を満足するものは実現し
ていない。
On the other hand, as the integration of LSI etc. progresses and the size of the pattern formed on the surface of the substrate to be processed becomes finer, to about 2 μm or less, the processing of the substrate to be processed will no longer be done using the conventionally used corrosive liquid. In chemical etching, since the amount of undercut caused by isotropic etching cannot be ignored, dry etching using high frequency plasma of carbon tetrafluoride gas or carbon tetrachloride gas has come to be used. For this reason, the resist must have so-called dry etching resistance, since it is unlikely to be decomposed or deformed in these dry etching atmospheres. However, in order to achieve high sensitivity in positive resists, a molecular structure that is easily decomposed by high-energy irradiation is required, and sensitivity and dry etching resistance tend to be at odds with each other. Nothing has been achieved that satisfies the above.

又、従来のレジストプロセスにおいては、レジストの合
成、塗布溶媒への溶解、塗布及び現像等多くの溶媒−と
接触するため、レジストが不純物により汚染される機会
が多く、微量の不純物の混入汚染を嫌う半導体プロセス
では問題があった。特に、素子サイズが超微細化するに
つれ、例えば、MOSプロセスにおけるゲート酸化膜の
ように、わずかの不純物により附子がとれなくなり素子
が劣化する。
In addition, in the conventional resist process, since the resist comes into contact with many solvents during synthesis, dissolution in a coating solvent, coating, and development, there are many opportunities for the resist to be contaminated with impurities. There were problems with the semiconductor process, which they disliked. Particularly, as the device size becomes ultra-fine, a small amount of impurity, such as a gate oxide film in a MOS process, cannot be removed and the device deteriorates.

更に又、従来のレジストプロセスでは、レジスト中及び
工程雰囲気中の塵埃が直接歩留りに影響を与えるため、
厳重に管理したクリーンルーム内でレジスト溶液の精密
な濾過を行わなければならない等の欠点があった。
Furthermore, in the conventional resist process, dust in the resist and in the process atmosphere directly affects the yield.
This method has drawbacks such as the need to perform precise filtration of the resist solution in a strictly controlled clean room.

本発明はこのような現状に鑑みてなされたものであり、
その目的は、従来法の問題点を解決し、被加工基板面上
に高精・度微細加工用の任意のレジストパターンを乾式
法により直接形成しうるパターン形成峡−を提供するこ
とである。
The present invention was made in view of the current situation, and
The purpose is to solve the problems of the conventional methods and to provide a pattern forming system that can directly form any resist pattern for high-precision, fine-patterning on the surface of a substrate to be processed by a dry method.

本発明につき概説すれば、本発明のパターン形成法は、
基板上に高エネルギー線照射により付加重合開始可能な
活性点を生成する基材よりなる膜を形成し、該膜に高エ
ネルギー線をパターン照射した後、該照射膜をモノマー
ガス雰囲気内でパターン照射部を選択的にグラフト重合
させてパターン形状のグラフト重合膜を形成することを
特徴とするものである。
To summarize the present invention, the pattern forming method of the present invention is as follows:
A film made of a base material that generates active points that can initiate addition polymerization by irradiation with high-energy rays is formed on a substrate, and after pattern irradiation of the film with high-energy rays, the irradiated film is pattern-irradiated in a monomer gas atmosphere. The method is characterized in that a graft polymer film having a pattern shape is formed by selectively graft polymerizing parts.

本発明は、一般に知られている高分子材料に高エネルギ
ー線を照射することにより生成する付加重合開始可能な
活性点(すなわちボ1ツマ−ラジカル)へのグラフト重
合をモノマーガスの気相中で行わせる気相グラフト重合
法を用い、これを微細加工用のレジストノくターン形成
法に応用したものである。
The present invention involves graft polymerization to active sites capable of initiating addition polymerization (i.e., bottomer radicals), which are generated by irradiating a generally known polymeric material with high-energy rays, in the gas phase of monomer gas. This method uses a vapor phase graft polymerization method and applies it to a resist pattern formation method for microfabrication.

本発明における基材としては、高エネルギー線により効
率良く上記活性点を生成するものであれば使用可能であ
るが、後記するように、実用的微細加工プロセスを目的
とする場合、後の工程であるドライ加工プロセスにおけ
るエツチング速度の速い材料種とすること力;望ましい
As the base material in the present invention, any material that can efficiently generate the above-mentioned active points with high-energy rays can be used. However, as described later, when the purpose is a practical microfabrication process, It is desirable to have a material type that has a high etching rate in certain dry processing processes.

このような基材としては、ポリメチルメタクリレート、
ポリメチルビニルケトン、ポ1ノ塩イヒビニル、ポリ塩
化ビニリデン、セルロース、ポリアクリロニトリル及び
ポリフッ化ビニ1ノデン等の高分子材料、過酸化ベンゾ
イル、過酸イヒカプリリル、過酸化ラウロイル、第3級
フ゛チルペルイソブチレート、ジー第3級ブチルペルフ
タレート、アゾビスインブチロニトリル及びテトラメチ
ルチウラムジスルフィド等のような通常のラジカル開始
剤として知られ高エネルギー線照射によってもラジカル
を生成できる化学物質及び上記高分子材料と上記ラジカ
ル開始剤との混合物を適用することができ、又、このよ
うな混合物の使用によりラジカル発生効率を向上するこ
とができ、その結果として感度を上げるととができる。
Such base materials include polymethyl methacrylate,
Polymeric materials such as polymethyl vinyl ketone, polyvinyl salt, polyvinylidene chloride, cellulose, polyacrylonitrile, and polyvinylidene fluoride, benzoyl peroxide, caprylyl peroxide, lauroyl peroxide, tertiary methyl perisobutyl Chemical substances that are known as ordinary radical initiators and can generate radicals even when irradiated with high-energy rays, such as di-tertiary butyl perphthalate, azobisin butyronitrile, and tetramethylthiuram disulfide, and the above-mentioned polymeric materials. A mixture of the above-mentioned radical initiator and the above-mentioned radical initiator can be applied, and by using such a mixture, the efficiency of radical generation can be improved, and as a result, the sensitivity can be increased.

そして更には、メチルメタクリレート、メチルイソプロ
ペニルケトン、メチルビニルケトン及びエチルアクリレ
ート等のようなビニル重合可能なモノマーと、これらの
モノマーに対し0.5〜3重量係程度のプロピオンアル
デヒド、ジアセチル及びイソバレルアルデヒド等の開始
剤との混合溶液から発生するガス雰囲気中で紫外線照射
によシ得られる気相重合体も本発明だおける基材として
適用することができる。
Furthermore, vinyl-polymerizable monomers such as methyl methacrylate, methyl isopropenyl ketone, methyl vinyl ketone, and ethyl acrylate, and propionaldehyde, diacetyl, and isovaler in a weight ratio of about 0.5 to 3 to these monomers are further added. A gas phase polymer obtained by irradiation with ultraviolet light in a gas atmosphere generated from a mixed solution with an initiator such as an aldehyde can also be used as the base material in the present invention.

本発明においては、上記の基材からなる膜を通常の塗布
法等により形成し、これに高エネルギー線をパターン照
射する。高エネルギー線としては電子線、X線及び遠紫
外線等を使用することができ、X線又は遠紫外線を用い
る場合には、それらを吸収するマスクと組合せて−くタ
ーン照射を行うことができる。
In the present invention, a film made of the above-mentioned base material is formed by a conventional coating method, and is irradiated with high-energy radiation in a pattern. As high-energy rays, electron beams, X-rays, deep ultraviolet rays, etc. can be used. When X-rays or far ultraviolet rays are used, turn irradiation can be performed in combination with a mask that absorbs them.

本発明においては、上記パターン照射後、該照射膜を各
種モノマーガス雰囲気内でノ(ターン照射部を選択的に
グラフト重合させる。付加重合開始可能なモノマーガス
雰囲気としては、スチレン、マレイミド、ジビニルベン
ゼン、N−ビニルカルバゾール、ビニルフェロセン、ヒ
ニルトリクロロシラン、アクリロニトリル及びメチルメ
タクリレート等のガス雰囲気を適用するととができ、こ
れらの適用に際しては、照射後の基材膜が酸素と接触し
ないようにしてすばやく酸素のない真空雰囲気にした後
、3ミ+J/<−ル程度の王力になるように上記モノマ
ーガスを導入し、通常常温に所定時間保持することによ
抄グラフト重合を行い、均一な光沢膜を得ることができ
る。
In the present invention, after the pattern irradiation, the irradiated film is selectively graft-polymerized in the irradiated areas in various monomer gas atmospheres.The monomer gas atmosphere that can initiate addition polymerization includes styrene, maleimide, divinylbenzene, etc. , N-vinylcarbazole, vinylferrocene, hinyltrichlorosilane, acrylonitrile, methyl methacrylate, etc. can be applied. When applying these, it is necessary to quickly remove oxygen by preventing the substrate film from coming into contact with oxygen after irradiation. After creating a vacuum atmosphere free from dust, the above monomer gas is introduced to give a power of about 3 mm+J/<-L, and is usually kept at room temperature for a predetermined period of time to carry out graft polymerization, resulting in a uniform glossy film. can be obtained.

グラフト重合膜形成、後は、通常のプラズマアッシング
法によシ高エネルギー線非照射部であるグラフト重合膜
が形成されていない基材膜を除去することにより所望の
パターンを得ることができる。
After the graft polymerization film is formed, a desired pattern can be obtained by removing the base material film on which the graft polymerization film is not formed, which is the part that is not irradiated with high energy rays, by a normal plasma ashing method.

本発明によれば、気相グラフト重合により基材膜面にグ
ラフト重合膜パターンを形成することにより、従来のレ
ジストプロセスにおいて必ず用いられていた湿式による
現像過程が不用となり、とれにより従来のレジストプロ
セスの欠点であった現像溶液による膨潤がなくなり、解
像性を著しく改善することが可能となる。又、後記実施
例に示すように、基材膜形成を光気相重合とすることに
より、レジストプロセス全般−う5ドライ雰囲気となり
、かつモノマー溶液の蒸気だけがレジストの供給源とな
るため、従来プロセスに比べ、溶媒や人為的取扱いによ
るレジスト及び加工基板の汚染に対してはるかに有利と
なる。
According to the present invention, by forming a graft polymer film pattern on the base film surface by vapor phase graft polymerization, the wet development process that is always used in the conventional resist process is no longer necessary, and the conventional resist process Swelling caused by the developer solution, which was a disadvantage of the previous method, is eliminated, and resolution can be significantly improved. In addition, as shown in the examples below, by using photo-vapor phase polymerization to form the base film, the entire resist process becomes a dry atmosphere, and only the vapor of the monomer solution becomes the supply source of the resist, which is different from conventional methods. This method is much more advantageous in preventing contamination of the resist and processed substrate by solvents and human handling.

一方グラフト重合は、1個の活性点すなわちポリマーラ
ジカルより高分子鎖が生長し、ポリマーラジカル同志の
再結合等により生長が停止する。したがって、基材の種
類、グラフト重合用モノマーの種類及びグラフト重合条
件を制御すれば、同一グラフト重合膜に対して照射高エ
ネルギー線量を減らすとと、すなわち高感度にすること
が可能である。一般に芳香環又は無機元素を有するポリ
マーは、プラズマアッシング速度が遅く、逆にポリメチ
ルメタクリレート又はポリメチルイソプロペニルケトン
等の脂肪族ポリマー又はこれらの)・ロゲン置換体は、
プラズマアッシング速度が比較的速い。これらの傾向は
他の一般的ドライエツチングにおいても同様である。
On the other hand, in graft polymerization, a polymer chain grows from one active site, that is, a polymer radical, and the growth is stopped due to recombination of the polymer radicals. Therefore, by controlling the type of substrate, the type of monomer for graft polymerization, and the graft polymerization conditions, it is possible to reduce the irradiation high energy dose to the same graft polymerized film, that is, to increase the sensitivity. In general, polymers with aromatic rings or inorganic elements have a slow plasma ashing rate, whereas aliphatic polymers such as polymethyl methacrylate or polymethyl isopropenyl ketone, or their )/logen substituted products, have a low plasma ashing rate.
Plasma ashing speed is relatively fast. These trends are similar in other general dry etching methods.

本発明においては、基材膜をプラズマアッシング速度の
速い材料とし、グラフト重合膜を逆にプラズマアッシン
グ速度の遅い材料とし、かつ、グラフト重合膜パターン
形成後、プラズマアジンングを行い、非照射部の基材を
除去することにより従来のレジストプロセスと同様のレ
ジストパターンが得られる。
In the present invention, the base film is made of a material with a fast plasma ashing rate, and the graft polymer film is made with a material with a slow plasma ashing rate, and after the graft polymer film pattern is formed, plasma aging is performed to remove the non-irradiated area. By removing the base material, a resist pattern similar to the conventional resist process is obtained.

しかしながら、一般にはレジストパターン形成後行われ
る基板のドライエツチング加工をクラフト重合膜パター
ン形成後直接行っても、基材膜が速くエツチング除去さ
れるため、目的とするドライエツチング加工を行うこと
ができる。
However, even if dry etching of the substrate, which is generally performed after forming a resist pattern, is performed directly after forming a craft polymer film pattern, the desired dry etching process can be performed because the base film is quickly etched away.

本発明拠おけるレジストの感度はモノマーのグラフト重
合性に起因するもので、従来のレジストの感度がポリマ
ー主鎖の分解のしやすさくポジ形)あるいはポリマー主
鎖間の架橋のしやすさくネガ形)に起因していたものと
異なる。
The sensitivity of the resist according to the present invention is due to the graft polymerizability of the monomer, and the sensitivity of conventional resists is different from that of the conventional resist (positive type due to the ease of decomposition of the polymer main chain) or negative type due to the ease of crosslinking between the polymer main chains. ) is different from that which was caused by

したがって、従来のポジ形レジストにおける感度と耐ド
ライエツチング性との相反現象及びネガ形レジストにお
ける感度と解像性の相反現象は生じない。
Therefore, the conflicting phenomenon between sensitivity and dry etching resistance in conventional positive resists and the conflicting phenomenon between sensitivity and resolution in negative resists does not occur.

次に、本発明を図面を参照して説明する。す1なわち、
図面は本発明によるノくターン形成の一具体例を示した
工程図であり、(a)は基板−1骨こ基材膜を形成する
工程、(b)は(a)の基材膜の所望のパターン領域に
高エネルギー線を照射する工程、(C)は(b)の照射
基材膜をモノマー雰囲気に置いてグラフト重合膜を形成
する工程、(d)は(a)、(b)及び(c)の工程に
より得られるグラフト重合膜パターンを表し、符号1は
基板、2は基材膜、3は高エネルギー線、4はモノマー
雰囲気、5はグラフト重合膜を示す。
Next, the present invention will be explained with reference to the drawings. That is,
The drawings are process diagrams showing a specific example of the formation of a cross-turn according to the present invention, in which (a) shows the step of forming the base film of substrate-1, and (b) shows the process of forming the base film of (a). A step of irradiating a desired pattern area with high energy rays, (C) is a step of placing the irradiated base film of (b) in a monomer atmosphere to form a graft polymerized film, and (d) is a step of (a) and (b). and (c), in which reference numeral 1 represents the substrate, 2 represents the base film, 3 represents the high energy beam, 4 represents the monomer atmosphere, and 5 represents the graft polymerized film.

実施に当っては、まず表面熱酸化したシリコンウェハ等
の基板1上に、高エネルギー線照射により付加重合開始
可能な活性点を生成する所定の基材を塗布して基材膜2
を形成し〔(a)工、程〕、次に、(a)の基材膜2の
所望のパターン領域に電子線、X線及び遠紫外線等の高
エネルギー線3を照射する〔(b)工程〕。この工程で
、基材膜2の高エネルギー線照射部分に付加重合開始可
能な活性点が生成される。次いで、(b)で得られた照
射基材膜を所定のモノマー雰囲気4内にさらしてパター
ン照射部を選択的にグラフト重合させてパターン形状の
グラフト重合膜5を形成する〔(C)工程〕。グラフト
重合は高エネルギー線3に照射され、付加重合開始可能
な活性点の生成された部分に生じる。このような工程を
経て、モノマーガス雰囲気を除去するととによシ所望の
グラフト重合膜パターンが得られる〔(d)工程〕。な
お、(d)における未照射部の基材膜2はその次の工程
(図示せず)におけるプラズマアッシングにより除去さ
れるが、照射部のグラフト重合膜パターンのプラズマア
ッシングによる膜厚減少は、全く生じないか又生じても
極く微量である。
In carrying out the process, first, on a substrate 1 such as a silicon wafer whose surface has been thermally oxidized, a predetermined base material that generates active points that can initiate addition polymerization by irradiation with high-energy rays is applied, and a base film 2 is formed.
[(a) step], and then irradiating the desired pattern area of the base film 2 of (a) with high energy rays 3 such as electron beams, X-rays, and deep ultraviolet rays [(b) process]. In this step, active points capable of initiating addition polymerization are generated in the high-energy ray irradiated portion of the base film 2. Next, the irradiated base film obtained in (b) is exposed to a predetermined monomer atmosphere 4 to selectively graft-polymerize the pattern irradiated areas to form a pattern-shaped graft-polymerized film 5 [Step (C)] . Graft polymerization occurs at a portion where active sites capable of initiating addition polymerization are generated by irradiation with high-energy rays 3. After completing these steps and removing the monomer gas atmosphere, a desired graft polymer film pattern can be obtained [step (d)]. Although the base film 2 in the unirradiated area in (d) is removed by plasma ashing in the next step (not shown), the film thickness of the graft polymer film pattern in the irradiated area is not reduced at all by plasma ashing. It does not occur, or even if it does, it is only in very small amounts.

次に、本発明を実施例により説明するが、本発明(士ど
れらによシなんら限定されるものではない。
Next, the present invention will be explained with reference to examples, but the present invention is not limited to these examples in any way.

実施例1 表面熱酸化したシリコンウェハ上に、ポリメチルメタク
リレート、ポリメチルイソプロペニルケトン、ポリフッ
化ビニリデン、過酸化ラウロイル又は1重量%の過酸化
ラウロイルを含むポリメチルメタクリレートを基材とし
て各々均一に塗布し、厚さ約0.2μmの膜を形成した
Example 1 Polymethyl methacrylate, polymethyl isopropenyl ketone, polyvinylidene fluoride, lauroyl peroxide, or polymethyl methacrylate containing 1% by weight lauroyl peroxide was uniformly coated on a silicon wafer whose surface had been thermally oxidized. A film with a thickness of about 0.2 μm was formed.

これらの各基材膜に、通常の電子線照射装置により幅約
5μm のラインパターンを照射した。
Each of these base films was irradiated with a line pattern having a width of approximately 5 μm using an ordinary electron beam irradiation device.

又、これらの各基材膜に、幅約5μmのライン状の穴を
あけた厚さ2μmの金薄膜をマスクとして、モリブデン
ターゲットによるX線及び重水素ランプによる遠紫外線
を照射した。この場合、X線及び遠紫外線照射は基材膜
が酸素と接触できない窒素雰囲気で行った。
Further, each of these base films was irradiated with X-rays from a molybdenum target and far ultraviolet rays from a deuterium lamp, using a 2-μm-thick thin gold film with linear holes about 5 μm wide as a mask. In this case, the X-ray and deep ultraviolet irradiation were performed in a nitrogen atmosphere where the base film could not come into contact with oxygen.

以上説明した方法により電子線、X線及び遠紫外線を照
射した基材膜を照射後、酸素と接触しないようにして、
すばやく酸素のない真空雰囲気に移した後、3ミリバー
ルの王力になるようにスチレンガスを導入後、1時間放
置し、照射部へのグラフト重合を行った。いずれの照射
源及び基材においても照射部に表面欠陥のない均−光沢
膜が得られた。更に又、非照射部での膜厚増加は認めら
れなかった。
After irradiating the base film with electron beams, X-rays, and far ultraviolet rays by the method explained above, avoid contact with oxygen.
After quickly transferring to an oxygen-free vacuum atmosphere, styrene gas was introduced to give a pressure of 3 mbar, and the mixture was left to stand for 1 hour to perform graft polymerization on the irradiated area. Regardless of the irradiation source and substrate, a uniformly glossy film with no surface defects in the irradiated area was obtained. Furthermore, no increase in film thickness was observed in non-irradiated areas.

高エネルギー線照射部の膜厚増加量を測定したところ、
高エネルギー線照射量が増加するにつれて膜厚増加量は
大きくなるが、グラフト重合の条件により0.6〜1.
0μm以上で膜厚増加の飽和現象がみられた。
When we measured the amount of increase in film thickness in the high-energy ray irradiated area, we found that
The amount of increase in film thickness increases as the amount of high-energy ray irradiation increases, but it varies from 0.6 to 1.0 depending on the graft polymerization conditions.
A saturation phenomenon of film thickness increase was observed above 0 μm.

第1表は、それぞれの基材について各高エネルギー線に
対して、照射部の膜厚増加を0.4μmとするに必要な
高エネルギー線照射量を示しだものである。
Table 1 shows the amount of high-energy ray irradiation required for each high-energy ray to increase the film thickness of the irradiated part by 0.4 μm for each base material.

第    1    表 次て、以上により作製した各基材膜−ヒのグラフト重合
膜パターンをプ・ラズマアツシング装置を使用1..5
0cc/分の酸素流者、1トルの反応ず子器内圧力で8
分間、13.56 MHz 、 −100wの高周波を
印加1−アッシングを行ったところ、高エネルギー線非
照射部であるグラフト重合膜の生成していない基材膜部
は完全に除去され、高エネルギー線照射部であるグラフ
ト重合膜パターンのみが残った。又、この場合、約50
0人(O,O5μm)のグラフト重合膜パターン部の膜
減り;バ、H,2めら凡/ζ0 実施例2 実施例1と同じ方法で膜厚0.2μm のポリメチルメ
タクリレート基材膜を4個作製し、実施例1と同じ方法
で電子線を照射した後、それぞれの基材が酸素と接触し
ないようにしてすばやく酸素のない真空雰囲気に移した
。このようにして真空雰囲気に移した基材膜に付加重合
可能な各種モノマーガス雰囲気として、それぞれ3ミリ
バールの圧力(てなるようにマレイミド、N−ビニルカ
ルバゾール、ビニルトリクロロシラン又はアクリロニト
リルのガスを導入したiまで1時間放置1−グラフト重
合を行った。いずれのモノマーガス雰囲気においても、
照射部に表面欠陥のない均−光沢膜が得られた。更に、
非照射部での膜厚増加は認められなかった。この場合も
、実施例1と同様1て高エネルギー線照射部の膜厚増加
量を測定j−たところ、高エネルギー線照射量が増加す
るに′つれて膜厚増加量は大きくなるがグラフト重合の
条件により0.6〜1.0μm以上で膜厚増加の飽和現
象がみられた7)第2表は、それぞれのモノマーガス雰
囲気に対して照射部の膜厚増加を0.4μm とするに
必要な高エネルギー線照射量を示1−だものである。
Table 1 Next, the graft polymer film pattern of each base material film-H produced as above was measured using a plasma aching device. .. 5
8 at 0 cc/min oxygen flow and 1 Torr internal pressure
When performing 1-ashing by applying a high frequency of -100W at 13.56 MHz for 1 minute, the base material film part where no graft polymerized film is formed, which is the part not irradiated with high-energy rays, was completely removed, and the high-energy rays Only the graft polymer film pattern, which was the irradiated area, remained. Also, in this case, about 50
0 people (O, O 5 μm) Graft polymer film thinning of the pattern part; B, H, 2 squares / ζ0 Example 2 A polymethyl methacrylate base film with a film thickness of 0.2 μm was prepared using the same method as in Example 1. After producing four pieces and irradiating them with an electron beam in the same manner as in Example 1, they were quickly transferred to an oxygen-free vacuum atmosphere so that each base material did not come into contact with oxygen. Maleimide, N-vinylcarbazole, vinyltrichlorosilane, or acrylonitrile gas was introduced into the base film, which was thus transferred to a vacuum atmosphere, as an atmosphere of various monomer gases capable of addition polymerization, each at a pressure of 3 mbar. 1-Graft polymerization was carried out by standing for 1 hour until i. In any monomer gas atmosphere,
A uniformly glossy film with no surface defects in the irradiated area was obtained. Furthermore,
No increase in film thickness was observed in non-irradiated areas. In this case, as in Example 1, the amount of increase in the film thickness of the high-energy ray irradiated area was measured, and it was found that as the amount of high-energy ray irradiation increased, the amount of increase in the film thickness increased, but graft polymerization did not occur. 7) Table 2 shows that when the film thickness increase in the irradiated area is 0.4 μm for each monomer gas atmosphere, This shows the required amount of high-energy ray irradiation.

第   2   表 次に、以上によシ作製した各基材膜上のグラフト重合膜
パターンを実施例1と同じ方法でプラズマアッシングし
、実施例1と同様のグラフト重合膜パターンを得た。
Table 2 Next, the graft polymer film pattern on each base film prepared above was subjected to plasma ashing in the same manner as in Example 1 to obtain the same graft polymer film pattern as in Example 1.

実施例3 表面熱酸化したシリコンウェハを真空中で0℃に冷却し
た後あらかじめ脱気し、−5℃に冷却した0、 4 m
lのプロピオンアルデヒドを含むメチルメタクリレート
モノマー溶液によ多発生するガスを導入した。どの場合
のガス圧力は7.5トルであった。この状態でシリコン
ウェハ表面に石英ガラス窓を通して高圧水銀灯を3時間
照射しシリコンウェハ表面に気相重合膜よりなる基材膜
を形成した。この場合の気相重合膜の厚さは0.23μ
mであった。
Example 3 A silicon wafer whose surface was thermally oxidized was cooled to 0°C in vacuum, degassed in advance, and cooled to -5°C.
A large amount of gas was introduced into the methyl methacrylate monomer solution containing 1 ml of propionaldehyde. Gas pressure in all cases was 7.5 Torr. In this state, the surface of the silicon wafer was irradiated with a high-pressure mercury lamp through a quartz glass window for 3 hours to form a base film made of a vapor phase polymerized film on the surface of the silicon wafer. The thickness of the gas phase polymerized film in this case is 0.23μ
It was m.

次に、基材膜が酸素と接触できない状態でそれぞれ電子
線照射装置、X線照射装置及び遠紫外線照射装置に移1
−1実施例1と同様の方法で各エネルギー畔を照射した
Next, the base film is transferred to an electron beam irradiation device, an X-ray irradiation device, and a far ultraviolet irradiation device in a state where it cannot come into contact with oxygen.
-1 Each energy field was irradiated in the same manner as in Example 1.

照射後、基材膜が酸素と接触しないようにしてすばやく
酸素のない真空雰囲気に移した後、3ミリバールの圧力
になるようにスチレンガスを導入後1時間放置し、照射
部へのグラフト重合を行った。いずれの照射源及び基材
膜ておいても照射部に表面欠陥のない均−光沢膜が得ら
れた。又、更に非照射部1でおける膜厚増加は認められ
なかった。
After irradiation, the base film was quickly transferred to an oxygen-free vacuum atmosphere to avoid contact with oxygen, and then styrene gas was introduced at a pressure of 3 mbar and left for 1 hour to prevent graft polymerization on the irradiated area. went. Regardless of the irradiation source and base film, a uniformly glossy film with no surface defects in the irradiated area was obtained. Furthermore, no increase in film thickness was observed in the non-irradiated area 1.

高エネルギー線照射部の膜厚増加量を測定したところ、
高エネルギー線照射量が増加するにつれて膜厚増加量は
大きくなるが、グラフト重合の条件により0.6〜1.
0μm以上で膜厚増加の飽和現象がみられた。
When we measured the amount of increase in film thickness in the high-energy ray irradiated area, we found that
The amount of increase in film thickness increases as the amount of high-energy ray irradiation increases, but it varies from 0.6 to 1.0 depending on the graft polymerization conditions.
A saturation phenomenon of film thickness increase was observed above 0 μm.

第3表は、それぞれの高エネルギー線に対して、照射部
の膜厚増加を0.4μm とするに必要な高エネルギー
線照射量を示したものである。
Table 3 shows, for each high-energy ray, the amount of high-energy ray irradiation required to increase the film thickness of the irradiated area by 0.4 μm.

第    3    表 次に、以上により作製した各基材膜上のグラフト重合膜
パターンを、実施例1と同じ方法でプラズマアッシング
し、実施例1と同様のグラフト取合膜パターンを得た。
Table 3 Next, the graft polymerized film pattern on each base film prepared above was subjected to plasma ashing in the same manner as in Example 1 to obtain the same graft polymerized film pattern as in Example 1.

実施例4 実施例1と同じ方法で、膜厚、0.2μmのポリメチル
メタクリレート基材膜を作製した後、実施例1と同じ方
法で電子線照射を行った。この場合、電子線照射のライ
ンパターン幅は5μm。
Example 4 A polymethyl methacrylate base film having a film thickness of 0.2 μm was prepared in the same manner as in Example 1, and then electron beam irradiation was performed in the same manner as in Example 1. In this case, the line pattern width of electron beam irradiation is 5 μm.

6μm、1μm、0.5μmlO,2μmとし、それぞ
れについて照射世才変えた。
The thickness was 6 μm, 1 μm, 0.5 μmlO, and 2 μm, and the irradiation period was changed for each.

電子線照射後、基材膜が酸素と接触しないようにしてす
ばやく酸素のない真空雰囲気に移し、これに3ミリバー
ルのスチレンガスを導入したままで1時間放置し電子線
照射部へのグラフト重合を行った。
After electron beam irradiation, the base film was quickly moved to an oxygen-free vacuum atmosphere to prevent it from coming into contact with oxygen, and 3 mbar styrene gas was introduced into this and left for 1 hour to allow graft polymerization to the electron beam irradiated area. went.

以上の方法により作製したグラフト重合パターンを走査
形電子顕微鏡で観察し、5μm ライン幅のグラフト重
合膜が実施例1より200μC/dの照射量で0.4μ
mの膜厚であることと比較し、他のライン幅で0.4μ
mの膜厚を与える電子線照射量を決定した。得られた結
果を第4表に示す。
The graft polymerization pattern prepared by the above method was observed with a scanning electron microscope, and it was found that the graft polymerization film with a line width of 5 μm was 0.4 μm at an irradiation dose of 200 μC/d from Example 1.
0.4μ for other line widths compared to 0.4μ for other line widths.
The electron beam irradiation dose that would give a film thickness of m was determined. The results obtained are shown in Table 4.

第   4   表 本発明によるレジストプロセスは、上言己の実施例に示
しだように、光気相重合法による基材膜形成、高エネル
ギー線照射、選択的グラフト重合及び被加工基板のドラ
イエッチングカロエとすべて真空中又は外気と接触させ
ないで遂行でき、かつ有機溶媒等を使用しないため、不
純物による素子汚染や、塵埃等による歩留りイ氏下刃;
著しく改善されると共に、従来必要とされていた高精度
のクリーンル−ム等も不用となり、大幅な経済化が可能
となる。
Table 4 The resist process according to the present invention, as shown in the above examples, includes base film formation by photo-vapor phase polymerization, high-energy ray irradiation, selective graft polymerization, and dry etching of the substrate to be processed. All of this can be carried out in a vacuum or without contact with the outside air, and because it does not use organic solvents, there is no risk of device contamination due to impurities or the yield rate due to dust, etc.
Not only is this a significant improvement, but the high-precision clean room that was previously required is no longer necessary, making it possible to achieve significant economic savings.

以上説明したように、本発明によれば、被フJロ〒基板
面上に高精度微細加工用の任意のレジストパターンを乾
式法により直接形成すること力5できる。
As described above, according to the present invention, it is possible to directly form any resist pattern for high-precision microfabrication on the surface of a substrate to be processed by a dry method.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明による−(ターン形成の一具体例を示した
工程図である。 1・・・・・・基板 2・・・・・・基材膜3 ・・・
・・・高エネルギー線 4 ・・・・・・モノマー雰囲気 5 ・・・・・・ グラフト重合膜 特許出願人 日本電信電話公社 代理人 中・本  宏
The drawings are process diagrams showing a specific example of turn formation according to the present invention. 1... Substrate 2... Base film 3...
...High energy rays 4 ...Monomer atmosphere 5 ... Graft polymer membrane patent applicant Hiroshi Nakamoto, agent of Nippon Telegraph and Telephone Public Corporation

Claims (1)

【特許請求の範囲】[Claims] (1)基板上に高エネルギー線照射により付加重合開始
可能な活性点を生成する基材よりなる膜を形成し、該膜
に高エネルギー線をパターン照射した後、該照射膜をモ
ノマーガス雰囲気内でパターン照射部を選択的にグラフ
ト重合させてパターン形状のグラフト重合膜を形成する
ととを特徴とするパターン形成法。
(1) Form a film made of a base material that generates active points that can initiate addition polymerization by irradiation with high-energy rays on a substrate, irradiate the film with high-energy rays in a pattern, and then place the irradiated film in a monomer gas atmosphere. A method for forming a pattern, comprising: selectively graft-polymerizing the irradiated portion of the pattern to form a graft-polymerized film having a pattern shape.
JP56184495A 1981-11-19 1981-11-19 Forming method for pattern Pending JPS5886726A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56184495A JPS5886726A (en) 1981-11-19 1981-11-19 Forming method for pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56184495A JPS5886726A (en) 1981-11-19 1981-11-19 Forming method for pattern

Publications (1)

Publication Number Publication Date
JPS5886726A true JPS5886726A (en) 1983-05-24

Family

ID=16154174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56184495A Pending JPS5886726A (en) 1981-11-19 1981-11-19 Forming method for pattern

Country Status (1)

Country Link
JP (1) JPS5886726A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61138255A (en) * 1984-12-07 1986-06-25 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Resist enabling upper imageable plasma development
JPS61189639A (en) * 1985-02-19 1986-08-23 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Formation of negative resist image
JPS63249837A (en) * 1987-04-06 1988-10-17 Fujitsu Ltd Formation of resist mask
JPH01123232A (en) * 1987-11-09 1989-05-16 Mitsubishi Electric Corp Pattern forming method
KR100508108B1 (en) * 2002-10-14 2005-08-18 학교법인 포항공과대학교 Method for formation of polymer pattern

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61138255A (en) * 1984-12-07 1986-06-25 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Resist enabling upper imageable plasma development
JPS61189639A (en) * 1985-02-19 1986-08-23 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Formation of negative resist image
JPH0523430B2 (en) * 1985-02-19 1993-04-02 Intaanashonaru Bijinesu Mashiinzu Corp
JPS63249837A (en) * 1987-04-06 1988-10-17 Fujitsu Ltd Formation of resist mask
JPH01123232A (en) * 1987-11-09 1989-05-16 Mitsubishi Electric Corp Pattern forming method
KR100508108B1 (en) * 2002-10-14 2005-08-18 학교법인 포항공과대학교 Method for formation of polymer pattern

Similar Documents

Publication Publication Date Title
EP0095212B1 (en) Method of forming a resist mask resistant to plasma etching
JPS61189639A (en) Formation of negative resist image
JPS6360891B2 (en)
EP0161256B1 (en) Graft polymerized sio 2? lithographic masks
US4388397A (en) Photosensitive composition for dry development
JPS5886726A (en) Forming method for pattern
JPH02115853A (en) Production of semiconductor device
JPS6360899B2 (en)
EP0236914B1 (en) Fabrication of electronic devices utilizing lithographic techniques
JPH033213B2 (en)
JPS6219051B2 (en)
JPS59125730A (en) Positive type resist composition
JPS5961928A (en) Pattern formation
US4960676A (en) Method for forming pattern by using graft copolymerization
JPH0241740B2 (en)
JPS6360898B2 (en)
US4588675A (en) Method for fine pattern formation on a photoresist
US4954424A (en) Pattern fabrication by radiation-induced graft copolymerization
JPS60119549A (en) Pattern forming material and pattern forming method
JP2633264B2 (en) Pattern formation method
JPS62229141A (en) Resist for radiation and formation of pattern by using said resist
JPH03182758A (en) Formation of rugged pattern
JPH02257624A (en) Formation of resist pattern
JPS6091350A (en) Ionizing radiation sensitive negative type resist
JPH0243172B2 (en)