JPS58107080A - Automatic correction system of gain of motor speed control system - Google Patents

Automatic correction system of gain of motor speed control system

Info

Publication number
JPS58107080A
JPS58107080A JP56206386A JP20638681A JPS58107080A JP S58107080 A JPS58107080 A JP S58107080A JP 56206386 A JP56206386 A JP 56206386A JP 20638681 A JP20638681 A JP 20638681A JP S58107080 A JPS58107080 A JP S58107080A
Authority
JP
Japan
Prior art keywords
speed
gain
control system
command
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56206386A
Other languages
Japanese (ja)
Other versions
JPH0118672B2 (en
Inventor
Takanobu Iwagane
岩金 孝信
Toru Kai
徹 甲斐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Manufacturing Co Ltd filed Critical Yaskawa Electric Manufacturing Co Ltd
Priority to JP56206386A priority Critical patent/JPS58107080A/en
Publication of JPS58107080A publication Critical patent/JPS58107080A/en
Publication of JPH0118672B2 publication Critical patent/JPH0118672B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/04Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors by means of a separate brake
    • H02P29/045Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors by means of a separate brake whereby the speed is regulated by measuring the motor speed and comparing it with a given physical value

Abstract

PURPOSE:To correct the gain of a speed amplifier automatically by giving a motor a predetermined torque command in a short time, varying the proportional gain of the speed amplifier in response to the quantity of variation of speed during that time and keeping the transient response of the speed control system constant. CONSTITUTION:A changeover switch SWO is connected to a contact 201 only when the position of a contact 202 is given the torque command Etau (Es is the line voltage of the command) under normal operation. Switches SW1, SW2... are each used for changing over the gains of the speed amplifier 2. A sample holding circuit 6 transmits the output to a switch changeover mechanism consisting of the level comparator 7 of speed feed-back signals Nfb and a memory 8. The transmitting signal level and the level set value E1, E2... of the mechanism are compared, and the ON-OFF of the switches SW1, SW2... is selected. Accordingly, the most excellent transient response can be obtained at all times even when the motor plus load torque of a driving system are varied.

Description

【発明の詳細な説明】 本発明は、電動機速度制御系において速度フィードバッ
ク信号のレベル量に対応して速度ア・ンプのゲインを自
動的に補正する方式に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for automatically correcting the gain of a speed amplifier in response to the level of a speed feedback signal in a motor speed control system.

まず、速度制御系について簡単に説明しておこう。First, let's briefly explain the speed control system.

第7図は、一般的な速度制御系の構成を示すプルツク図
である。
FIG. 7 is a pull diagram showing the configuration of a general speed control system.

速度指令部lに速度指令Mr@fが与えられると、速度
アンプコを経てその出力はトルク指令となり、トルク制
御装置3を介してその出力が電動機(1M流用でも交流
用でもよくそれを問わない)を駆動する。その電動機回
転軸に連結された速度検出器!からの速度フィードバッ
ク信号が速度アンプコへ負帰還される。
When a speed command Mr@f is given to the speed command unit l, its output becomes a torque command via the speed amplifier controller, and the output is sent to the electric motor (whether for 1M diversion or AC use, it doesn't matter) via the torque control device 3. to drive. A speed detector connected to the motor's rotating shaft! The speed feedback signal from the speed amplifier is negatively fed back to the speed amplifier.

この制御系を自動制御系ブローツク図で表わすと第一図
のように示すことができる。
This control system can be expressed as an automatic control system block diagram as shown in Figure 1.

Uは減算器、44/は加算器、Tx、は負荷トルク、K
Mは速度アンプゲイン(V7ff)、Kτ指令−Fルク
変換係数(k#町今〕、GD”は(電動機+負葡)トル
ク(kCII−人XTaは速度検出変換係数(V/r%
)、8はラプラス演算子、Nは電動機速度である。ここ
でトルク制御装置3は必ずしも線形である必要はない。
U is a subtracter, 44/ is an adder, Tx is load torque, K
M is speed amplifier gain (V7ff), Kτ command - F torque conversion coefficient (k # machiima), GD" is (motor + negative) torque (kCII - person
), 8 is the Laplace operator, and N is the motor speed. Here, the torque control device 3 does not necessarily have to be linear.

第1図から速度に関する伝達関数を計算すると、次式が
得られる。
When the transfer function related to speed is calculated from FIG. 1, the following equation is obtained.

ここに、 である。Here, It is.

したがって、速度制御系の過渡応答は時定数丁、で代表
される。
Therefore, the transient response of the speed control system is represented by a time constant of d.

次に、この速度制御系において負荷イナーシャが変わる
場合を考えてみる。
Next, consider a case where the load inertia changes in this speed control system.

メ3す (3式)が示すように時定数T、はGD”に比徴するか
ら、負qaepが増大すれば過渡応答が悪化する。
As shown in Equation 3, the time constant T is comparable to GD'', so as the negative qaep increases, the transient response deteriorates.

従来、通常の用途では、軽い負1fj GD”時に速度
アンプゲインムを設定j、Grが増大してもそのまま運
転する方法をとる。
Conventionally, in normal applications, a method is used in which the speed amplifier gain is set at the time of a slight negative 1fj GD'' and the operation is continued even if Gr increases.

しかし、次の2つの場合を良く考察してみると、GD”
の変化にしたがって、比例的に速度アンプゲインを変え
た方が望ましいことが分る。
However, if we carefully consider the following two cases, GD”
It turns out that it is desirable to change the speed amplifier gain proportionally according to the change in .

■ 速度変動率を重視して比例積分(PX)制御を行な
う場合、 @ 速度制御ループの外側に位置制御ループを付加する
場合(位置決め) 両者とも良く似ているのでOについて説明してみる。
■ When performing proportional integral (PX) control with emphasis on speed fluctuation rate @ When adding a position control loop outside the speed control loop (positioning) Since both are very similar, I will explain O.

いま、P工制御とした場合に速度アンプゲインなKm 
(/ + BT )、ただしTは積分時間、とおけば、
系の特性方程式は B”T@T+BT+/ −0 となり、龜動系とならない条件としては?)*T。
Now, when using P control, the speed amplifier gain Km
(/ + BT), where T is the integration time, then
The characteristic equation of the system is B"T@T+BT+/-0. What are the conditions for it not to become a oscillating system?) *T.

を満たす必要がある。must be met.

したがって、負i GD”の増大によって時定数T。Therefore, by increasing the negative i GD'', the time constant T.

が大きくなると、一定の積分時間では振動系を構成する
ことになり、応用上不都合を生ずる場合がある。
When becomes large, an oscillating system is formed for a certain integration time, which may cause problems in terms of application.

ここにおいて本発明は、従来装置の不具合な克服するた
めに、時定数!、を工費に保って同一過渡応答が維持で
きる電動機速度制御系のゲイン自動補正方式を提供する
ことを、その目的とする。
Here, the present invention aims at overcoming the disadvantages of conventional devices by reducing the time constant! The object of the present invention is to provide an automatic gain correction method for a motor speed control system that can maintain the same transient response while keeping construction costs low.

第3図は、本発明の一実施例の構成を示すブ四ツク図で
ある。
FIG. 3 is a block diagram showing the configuration of an embodiment of the present invention.

図面において同一符号は同一もしくは相当部分とする。In the drawings, the same reference numerals indicate the same or corresponding parts.

この実施例は、速度アンプコのゲインKMの切換をJ段
階としているが、一般にはその数にこだわらない。
In this embodiment, the gain KM of the speed amplifier is switched in J stages, but in general, the number does not matter.

R1〜RIは抵抗、八は摺動抵抗、 sw、、 ay、
はスイッチ、OFは演算増幅器、8Woは切換スイッチ
、6はサンプルホールド回路、7ate・・・・・・は
レベルコンパレータとメモリからなるゲイン操作機構で
ある。
R1 to RI are resistances, 8 is sliding resistance, sw,, ay,
is a switch, OF is an operational amplifier, 8Wo is a changeover switch, 6 is a sample hold circuit, and 7ate... is a gain operation mechanism consisting of a level comparator and memory.

切換スイッチ8WOは通常運転では接点コ0コの位置に
、トルク指令xf(x−はその電源電圧)を与えるとき
のみ接点m/に接続される。また、スイ、テ8W/ 、
 8WJ s・・・・・・はそれぞれ速度アンプコのゲ
インKMの切替用である。サンプルホールド回路は速度
フィードバック信号Mfbを適蟲な時点でサンプリング
して、次段のゲイン操作機構へ送出する。その送出され
た信号のレベルとこの機構のレベル設定値”1#”l#
・・・・・・と比較し、スイッチ8W/ 。
The changeover switch 8WO is connected to the contact m/ only when the torque command xf (x- is the power supply voltage) is applied to the contact position 0 during normal operation. Also, Sui, Te8W/,
8WJs... are for switching the gain KM of the speed amplifier. The sample and hold circuit samples the speed feedback signal Mfb at an appropriate time and sends it to the gain operating mechanism at the next stage. The level of the transmitted signal and the level setting value of this mechanism “1#”l#
Compared to ......, the switch is 8W/.

eVコ、・・・・・・のオン、オフを選択する。Select on/off for eV...

以下、第参図のタイムチャートを参照しながら、動作説
明をする。
The operation will be explained below with reference to the time chart shown in FIG.

まず、切替スイッチ8WOをJO/の位置に接続し、一
定のトルク指令(電圧)Itを印加しトルク制御装置J
を介して電動機参を駆動する。(Δt1≧Δt・]適当
な時間Δ1.後にサンプル信号を送出し、速度フィード
バック信号Mfbをサンプリング1.、賢化分ΔMft
)Oとしてホールドする。
First, connect the selector switch 8WO to the JO/ position and apply a constant torque command (voltage) It to the torque control device J.
Drive the electric motor through. (Δt1≧Δt・] Send a sample signal after an appropriate time Δ1., sample the speed feedback signal Mfb 1., and increase the amount of time ΔMft
) Hold as O.

(1)  ΔMtbo> It’) ”雪ならば、スイ
ッチ8W/オン。
(1) ΔMtbo>It') ``If it's snowing, switch 8W/on.

8WJオン、・・・・・・ (−)1.)ΔNfbo > 1.ならば、スイッ’f
−sw/ * 7.8W2オン、…・・・ (im)  l、’> 1m>ΔNft1Oならば、ス
イッチ8Wlオフ、8W2オフ、・・・・・・ なお、この機構内のそれぞれのメモリーはスイッチaw
1 、 aWJ、・・・・・・の状態を保持するための
ものである。
8WJ on... (-)1. ) ΔNfbo > 1. In that case, switch 'f
-sw/ * 7.8W2 on, ...... (im) If l,'>1m>ΔNft1O, switch 8Wl off, 8W2 off, ...... In addition, each memory in this mechanism is a switch. aw
1, aWJ, . . .

ここで、ΔMfboの意味を考えてみると、微少時間Δ
t、における速度の変化分を表わしているから、ΔMf
bO/Δ〜は加速度を示していることになる。
Here, if we consider the meaning of ΔMfbo, we will find that the minute time Δ
Since it represents the change in speed at t, ΔMf
bO/Δ~ indicates acceleration.

そうすると。Then.

の関係から、Δt・が一定、τが一定のときには、GD
鵞eC//ΔIfbO となって、速度の変化分Δ1lfboをチェックすれば
、GDI F)状態が分る。
From the relationship, when Δt is constant and τ is constant, GD
If the speed change Δ1lfbo is checked, the GDIF state can be determined.

そこで、前述の条件(1)〜(1m)に戻ってみると、
(1)は、速度の変化分へNfbOが最も大きいから、
GDIが最も小さい場合である。例えば、このときを初
期設定−に対応させればよい。なお、ゲイン抵抗はへの
みとなっている。
So, if we return to the conditions (1) to (1m) mentioned above,
(1) is because NfbO is the largest for the change in speed,
This is the case where GDI is the smallest. For example, this time may be made to correspond to the initial setting -. Note that the gain resistance is only .

次に、(鶴)の状態では、初期設定時のGD”より大き
くなって来たので、スイッチ8W/をオフし、ゲイン抵
抗を(へ+へ)として速度アンプゲイン[。
Next, in the (crane) state, the GD has become larger than the initial setting, so turn off the switch 8W/ and set the gain resistor to (to +) to obtain the speed amplifier gain [.

を略々一定に保つ。is kept approximately constant.

さらに、(船ではGDIの増加が上鮎のレベル−より大
きくなり、スイッチBVIt 、 aWJともオフし、
ゲイン抵抗を(R1+ 1.+ 1−として速度アンプ
ゲインKm′Ik111整する。
Furthermore, (on the ship, the increase in GDI is greater than the level of Kamiayu, and switches BVIt and aWJ are both turned off,
The speed amplifier gain Km'Ik111 is adjusted by setting the gain resistance to (R1+ 1.+ 1-).

そして、スイッチ8W/ 、 !IWコ、・・・・・・
のように多段の切替は、GDtの変化範囲と調整幅に依
存する。
And switch 8W/,! IW co...
The multi-stage switching depends on the change range and adjustment width of GDt.

ところで、速度の変化分ΔMfbOを固定し、微少時間
Δちで比較すれば、GDIがΔt、に比例するので処理
が簡単となる。
By the way, if the change in speed ΔMfbO is fixed and the comparison is made over a minute time Δ, the process becomes simple because GDI is proportional to Δt.

また、本発明は始動時に限らず運転中にチェックするこ
とも可能である。
Furthermore, the present invention can be checked not only at the time of startup but also during operation.

さらに%振動的になることを避けるだけならば積分時間
を変えてもよい。
Furthermore, the integration time may be changed if only to avoid oscillation.

しかして、数値制御工作機用ム0(交流駆動)主軸はマ
シニングセンタをはじみ旋盤用にも適用されるようにな
って来た。
As a result, M0 (AC drive) spindles for numerically controlled machine tools have come to be used not only in machining centers but also in lathes.

これらの用途においては、加工運転に入るまえに工具あ
るいはワークの着脱のため、所定の位置に精度よく位置
決めする必費がある。
In these applications, it is necessary to precisely position the tool or workpiece at a predetermined position for attachment and detachment before starting machining operation.

ところが、ギヤまたはベルトによる変速とワーク尋の種
類によっては電動機軸から見てjIL菊のGpmが大幅
に変化することがある。
However, depending on the speed change using gears or belts and the type of work piece, the GPM of the jIL chrysanthemum may change significantly when viewed from the motor shaft.

かくして、本発明によれば、駆動系のGD”に変化があ
っても、常に最良の過渡応答を実現することができる。
Thus, according to the present invention, even if there is a change in GD of the drive system, the best transient response can always be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の速度制御系の構成図、第一図はその速変
制御ブロック線図、第J図は本発明の一実施例の構成図
、第4図はその動作を示すタイムチャートス声る。 l・・・速度指令部、コ・・・速度アンプ、ν・・・減
算器、J・・・トルク制御装置、ダ・・・電動機、!・
・・速度検出器、6・・・サンプルホールド回路、りs
rs・・・、・・・スイッチ切替1am(レベルコンパ
レータとメモリからなる)’、 swo・・・切替スイ
ッチで20/とコ0コはその接点、R,。# ”* *
 RI * R4a R(・・抵抗、−・・・摺動抵抗
、sw/ 、 aWJ、・・・、・・・スイッチ、OP
・・・演算増幅器s ’ref・・・速度指令、 Mf
b・・・速度フィードバック、6Mft)O・・・速度
の変化分。 出願人代理人   猪 股    清 壓1図 馬2図 AA−
Fig. 1 is a block diagram of a conventional speed control system, Fig. 1 is a block diagram of its speed change control, Fig. J is a block diagram of an embodiment of the present invention, and Fig. 4 is a time chart showing its operation. voice L...Speed command unit, K...Speed amplifier, ν...Subtractor, J...Torque control device, D...Electric motor!・
...Speed detector, 6...Sample hold circuit, ris
rs...,...switch changeover 1am (consists of level comparator and memory)', swo...changeover switch, 20/ and 0 are its contacts, R,. #”**
RI * R4a R (...resistance, -...sliding resistance, sw/, aWJ,...,...switch, OP
...Operation amplifier s'ref...Speed command, Mf
b...Velocity feedback, 6Mft) O...Velocity change. Applicant's agent Seiji Inomata 1 picture horse 2 picture AA-

Claims (1)

【特許請求の範囲】[Claims] 速度指令部と指令速度とフィードバック速度の偏差を増
幅する速度アンプと電動機の発生トルクを制御する装置
と速度制御される電動機とその速度を検出する速度検出
器からなる速度制御系において、運転中の電動機に短時
間一定のトルク指令を加え、その間の速度変化量に応じ
て前記速彦ア
In a speed control system consisting of a speed command unit, a speed amplifier that amplifies the deviation between the command speed and the feedback speed, a device that controls the torque generated by the motor, a speed-controlled motor, and a speed detector that detects its speed, A constant torque command is applied to the electric motor for a short period of time, and the speed change
JP56206386A 1981-12-21 1981-12-21 Automatic correction system of gain of motor speed control system Granted JPS58107080A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56206386A JPS58107080A (en) 1981-12-21 1981-12-21 Automatic correction system of gain of motor speed control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56206386A JPS58107080A (en) 1981-12-21 1981-12-21 Automatic correction system of gain of motor speed control system

Publications (2)

Publication Number Publication Date
JPS58107080A true JPS58107080A (en) 1983-06-25
JPH0118672B2 JPH0118672B2 (en) 1989-04-06

Family

ID=16522480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56206386A Granted JPS58107080A (en) 1981-12-21 1981-12-21 Automatic correction system of gain of motor speed control system

Country Status (1)

Country Link
JP (1) JPS58107080A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60162492A (en) * 1984-02-02 1985-08-24 Toshiba Corp Automatic regulator of controlling motor speed
JPS60245491A (en) * 1984-05-18 1985-12-05 Mitsubishi Electric Corp Speed controller of motor
JPS61293197A (en) * 1985-06-21 1986-12-23 Mitsubishi Electric Corp Inverter
JPS62100194A (en) * 1985-10-25 1987-05-09 Fanuc Ltd Control system for torque in servomotor
JPH02303386A (en) * 1989-05-17 1990-12-17 Funai Denki Kenkyusho:Kk Servo gain regulator for automatic tracking device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5261686A (en) * 1975-11-17 1977-05-21 Fuji Electric Co Ltd Testing method of process
JPS52155503A (en) * 1976-06-21 1977-12-24 Mitsubishi Electric Corp Rotation controlling device
JPS5534836A (en) * 1978-08-31 1980-03-11 Mitsubishi Electric Corp Speed controller

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5261686A (en) * 1975-11-17 1977-05-21 Fuji Electric Co Ltd Testing method of process
JPS52155503A (en) * 1976-06-21 1977-12-24 Mitsubishi Electric Corp Rotation controlling device
JPS5534836A (en) * 1978-08-31 1980-03-11 Mitsubishi Electric Corp Speed controller

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60162492A (en) * 1984-02-02 1985-08-24 Toshiba Corp Automatic regulator of controlling motor speed
JPS60245491A (en) * 1984-05-18 1985-12-05 Mitsubishi Electric Corp Speed controller of motor
JPS61293197A (en) * 1985-06-21 1986-12-23 Mitsubishi Electric Corp Inverter
JPS62100194A (en) * 1985-10-25 1987-05-09 Fanuc Ltd Control system for torque in servomotor
JPH02303386A (en) * 1989-05-17 1990-12-17 Funai Denki Kenkyusho:Kk Servo gain regulator for automatic tracking device

Also Published As

Publication number Publication date
JPH0118672B2 (en) 1989-04-06

Similar Documents

Publication Publication Date Title
JP3595357B2 (en) Tandem control method using digital servo
US10025297B2 (en) Machine tool and parameter adjustment method therefor
US4374349A (en) Control system for an industrial robot
WO1999044108A1 (en) Synchronization controller
JPS61248719A (en) Control system for driving of injection molding machine driven by servomotor
JPS58107080A (en) Automatic correction system of gain of motor speed control system
US5093972A (en) Tapping control unit
US8076891B2 (en) Motor controller
JPH10105247A (en) Overshoot preventing method for servomotor
JPH05146989A (en) Control device for industrial robot
US4378483A (en) Device for moving a welding torch during the welding of seams, especially of circumferential seams
JP3433817B2 (en) Feed control device
JP3301190B2 (en) Spindle operation switching method
JP2000010612A (en) Projection compensating method and motor controller with projection compensating function
JPH01255015A (en) Robot controller
JPH0764644A (en) Gain switching device for positioning servo mechanism
SU1509829A1 (en) Apparatus for program control of metal-working machines
JP5233592B2 (en) Numerical control method and apparatus
JPS587388B2 (en) Shoumoden Kiyokushiki - Kuyosetsuki
JPH05228824A (en) Polishing robot control method
JPH0433109A (en) Main shaft driving device for machine tool
JPH09167023A (en) Servo control method
JPS58120448A (en) Table control method of machine tool
GB895113A (en) Improvements in and relating to electric closed-loop control system
JPS6227941B2 (en)