JPS58106877A - Solar cell - Google Patents

Solar cell

Info

Publication number
JPS58106877A
JPS58106877A JP56205182A JP20518281A JPS58106877A JP S58106877 A JPS58106877 A JP S58106877A JP 56205182 A JP56205182 A JP 56205182A JP 20518281 A JP20518281 A JP 20518281A JP S58106877 A JPS58106877 A JP S58106877A
Authority
JP
Japan
Prior art keywords
solar cell
phosphor layer
energy
solar
beams
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56205182A
Other languages
Japanese (ja)
Inventor
Masashi Yamaguchi
真史 山口
Zeio Kamimura
税男 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP56205182A priority Critical patent/JPS58106877A/en
Publication of JPS58106877A publication Critical patent/JPS58106877A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/055Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means where light is absorbed and re-emitted at a different wavelength by the optical element directly associated or integrated with the PV cell, e.g. by using luminescent material, fluorescent concentrators or up-conversion arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To obtain the solar cell having radiation-resisting property and high efficiency by also acquiring photo-voltic power from beams having energy lower than the forbidden band width energy of a semiconductor base body by utilizing the wavelength conversion of beams by a rare-earth phosphor. CONSTITUTION:A solar cell proper 13 is manufactured in such a manner that the junction structure 12 of P-N, Schottky, MIS or a hetero junction or the like is formed to the semiconductor base body 11 made of a GaAs, InP, etc. The solar cell is formed in such a manner that a phosphor layer 14 containing a rare-earth element, such as Er, Yb, Tm, etc. is shaped onto the surface of the solar cell proper 13. According to such constitution, indirect photovoltaic current I2 is also generated in the solar cell proper 13 by multistage excitation fluorescence 16 because said fluorescence 16 is generated through the irradiation of solar rays 15 in the phosphor layer 14 formed to the surface of the solar cell proper 13. The energy of solar rays is utilized effectively because beams having energy lower than forbidden band width are also applied particularly through the multistage excitation phosphor 16 in the phosphor layer 14.

Description

【発明の詳細な説明】 本発明は半導体太陽電池本体表面に希土類けい光体層を
設け、この希土類けい光体層における太陽光の波長変換
を通じて、上記半導体基体の光起電力効果に太陽光スペ
クトルを整合させた高効率で耐放射線性を有する太陽電
池に関するものである。
Detailed Description of the Invention The present invention provides a rare earth phosphor layer on the surface of a semiconductor solar cell body, and through wavelength conversion of sunlight in this rare earth phosphor layer, the photovoltaic effect of the semiconductor substrate is The present invention relates to solar cells with high efficiency and radiation resistance that match the following.

従来の太陽電池は、例えば第1図に示す構成のように、
主に、GaAs、InPllpの半導体基体lの損傷を
防護する目的で、太陽電池の表面にSi偽、A40.等
からなるカバーグラス層3が設けられていた。このよう
な構成の従来の太陽電池においては、太陽光ヂの照射に
よる太陽電池基体内の光、起電力効果のみを利用してい
るので、得られる光起電力出力は!電のみであり、エネ
ルギー変換効率には自ずから限界があった。また、カバ
ーグラス層Jは太陽光を吸収こそすれ、エネルギー変換
には有効な作用をせず、変換効率を低下させる等の欠点
があった。
A conventional solar cell, for example, has the configuration shown in FIG.
Mainly, for the purpose of protecting the GaAs, InPllp semiconductor substrate l from damage, silicon fake, A40. A cover glass layer 3 consisting of, etc. was provided. Conventional solar cells with such a configuration utilize only the light and electromotive force effect within the solar cell base caused by sunlight irradiation, so the resulting photovoltaic output is ! Since it only uses electricity, there is a natural limit to energy conversion efficiency. In addition, the cover glass layer J has the disadvantage that it absorbs sunlight, does not have an effective effect on energy conversion, and reduces the conversion efficiency.

本発明は、これらの欠点を除去するためになされたもの
で、その目的は、太陽光エネルギーを有効に利用し、し
かも耐放射線性を有する高効率太陽電池を提供すること
にある。
The present invention has been made to eliminate these drawbacks, and its purpose is to provide a highly efficient solar cell that effectively utilizes solar energy and has radiation resistance.

かかる目的を達成するために、本発明で4ま、GaAa
、InPなどの半導体太陽電池本体表面にEr 。
In order to achieve this object, the present invention provides 4 GaAa
, Er on the surface of the semiconductor solar cell body such as InP.

Yb、Tmなどの希土類元素を含むけい光体層を設け、
希土類けい光体による光の波長変換を利用することによ
り半導体基体の県止帯輻エネルギーよりも低エネルギー
の光からも光起電力を得るようにする。
A phosphor layer containing rare earth elements such as Yb and Tm is provided,
By utilizing the wavelength conversion of light by the rare earth phosphor, photovoltaic power can be obtained from light with lower energy than the band-stop energy of the semiconductor substrate.

以下に、図面を参照しながら、実施例を用いて本発明の
詳細な説明するが、かかる実施例は本発明の例示に過ぎ
ず、本発明のl112I内で種々の改良や変形があり得
ることは勿論である。
The present invention will be described in detail below using examples with reference to the drawings, but these examples are merely illustrative of the present invention, and various improvements and modifications may be made within the scope of the present invention. Of course.

第一図は本発明太陽電池の構成の一例を示す。FIG. 1 shows an example of the configuration of the solar cell of the present invention.

ここで、Gem5.ImPなどの半導体基体//にP−
m。
Here, Gem5. Semiconductor substrate such as ImP//P-
m.

シ曹ツFキ、 MIIあるいはヘテW接合などの接を倉
むけい光体層l#を設け、以て太陽電池を構成する。
A solar cell is constructed by providing a phosphor layer l# with a junction such as a metal F junction, a MII or a heat junction.

この太陽電池に太陽光/1を照射することにより1太陽
電池本体/Jにおいて光起電力■1が直接に生ずること
は勿論である。本発明においては、太陽電池本体/Jの
表面に設けられているけい光体層l参内において太陽光
/jの照射による多段励起けい光/4が生ずるので、こ
のけい光14により太陽電池本体/Jにおいて間接的光
起電力I!もtた生ずることとなる。特に、従来構造で
は、太陽光スペクトルのうち半導体基体//の禁止帯幅
より高エネルギーのもののみが利用されてぃたのに対し
て、本発明太陽電池においては禁止帯幅よりも低エネル
ギーの光をもけい光体層/ヂにおける多段励起けい光1
4を通じて活用するので、太陽光エネルギーの有効利用
がなされている。
Of course, by irradiating this solar cell with sunlight/1, a photovoltaic force 1 is directly generated in 1 solar cell body/J. In the present invention, since multi-stage excitation fluorescence /4 is generated by irradiation with sunlight /j in the phosphor layer l provided on the surface of the solar cell body /J, this fluorescence 14 causes the solar cell body / Indirect photovoltaic force I! This will also occur. In particular, in the conventional structure, only the part of the solar spectrum with higher energy than the forbidden band width of the semiconductor substrate was used, whereas in the solar cell of the present invention, only the part of the solar spectrum with energy lower than the forbidden band width was used. Multi-stage excitation fluorescence in the light-emitting phosphor layer/di 1
4, making effective use of solar energy.

従来の太陽電池においては、直接的光起電力I。In conventional solar cells, direct photovoltaic power I.

のみしか利用していないのに対して、本発明太陽電池に
おいては、間接的光起電力!、をも利用でき、光起電力
はr、+ I、となる。したがって、本発明による太陽
電池は、従来の太陽電池に比べて、(Is+ Id /
 Is倍の高効率化がはかられている。
In contrast, in the solar cell of the present invention, only indirect photovoltaic power is used! , can also be used, and the photovoltaic force becomes r,+I. Therefore, the solar cell according to the present invention has (Is+Id/
Efficiency is increased by a factor of Is.

第Jglは本発明太陽電池の他の構成例を示す。No. Jgl shows another example of the structure of the solar cell of the present invention.

ここで、Gaムj、InPなどの半導体基体g 、 2
/’にPw−n。
Here, a semiconductor substrate g, such as Ga, InP, etc.
Pw-n in /'.

シ璽ットキ、 Mllあるいはへテロ接合などの接金1
111JJ 、 JZ’を形成した太陽電池本体# 、
 2?’を複微個連結する。かかる連結構造において、
連結部の界面に電極Sと共にけい光体層〃をも形成し、
更に上部電極Iおよび下部電極lをそれぞれ上部および
下部の太陽電池1およびn′の外表面に形成し、以て太
陽電池を構成する。上部の太陽電池nに太陽光lを入射
させると、この上部太陽電池においては、太陽光スペク
トルのうち半導体基体1の禁止帯幅より高エネルギーの
光により光起電力I、が生ずる。一方、上部半導体基体
〃を透過する半導体基体lの禁止帯幅より低エネルギー
の光によって、けい光体層Bに多段励起けい光ふが生ず
ることとなり、このけい光ムにより下部の太陽電池n′
に間接的光起電力■、が生ずる。本例の構造においても
、太陽光エネルギーの有効利用がはかられ、高効率の太
陽電池が得られる。なお、本例においては、半導体基体
y 、 2/’は同一素材でも異なる素材でもかまわな
い。また、上部太陽電池nの表面にけい光体層を設け、
上部太陽電池nにおける変換効率を向上させる構造とす
ることもできる。
Welding such as seal, Mll or heterojunction 1
111JJ, solar cell body # forming JZ',
2? Concatenate multiple '. In such a connected structure,
A phosphor layer is also formed along with the electrode S at the interface of the connection part,
Further, an upper electrode I and a lower electrode I are formed on the outer surfaces of the upper and lower solar cells 1 and n', respectively, thereby constructing a solar cell. When sunlight l is incident on the upper solar cell n, a photovoltaic force I is generated in the upper solar cell due to light having higher energy than the forbidden band width of the semiconductor substrate 1 in the sunlight spectrum. On the other hand, light with energy lower than the forbidden band width of the semiconductor substrate l that passes through the upper semiconductor substrate causes a multi-stage excitation phosphorescence to occur in the phosphor layer B, and this phosphorescence causes the lower solar cell n'
An indirect photovoltaic force ■ is generated. In the structure of this example as well, solar energy can be used effectively and a highly efficient solar cell can be obtained. In this example, the semiconductor substrates y and 2/' may be made of the same material or different materials. Further, a phosphor layer is provided on the surface of the upper solar cell n,
It is also possible to adopt a structure that improves the conversion efficiency in the upper solar cell n.

さらに、本発明太陽電池を宇宙用太陽電池として用いる
場合には、太陽電池本体の表面に設けられたけい光体層
が放射線防護に有効であり、従って本発明による太陽電
池は耐放射線性をも兼ね備えている。
Furthermore, when the solar cell of the present invention is used as a space solar cell, the phosphor layer provided on the surface of the solar cell body is effective for radiation protection, and therefore the solar cell of the present invention has radiation resistance. It has both.

以上説明したように、本発明太陽電池には、太陽光エネ
ルギーを有効利用でき、変換効率が高く、シかも、宇宙
線に対しては放射義防謹作用を有し、長寿命であるなど
の利点がある。
As explained above, the solar cell of the present invention can effectively utilize sunlight energy, has high conversion efficiency, has radiation protection against cosmic rays, has a long life, etc. There are advantages.

【図面の簡単な説明】[Brief explanation of the drawing]

第11jは従来の太陽電池の構成例を示す断面図、第一
図は本発明太陽電池の構成の一例を示す断面図、111
13図は本発明太陽電池の他の構成例を示す断wI図で
ある。 l・・・半導体基体、  −・・・P−ys接合、  
3・・・カバーグラス層、      ダ・・・太陽光
、/か・・半導体基体、 lj・・・接合構造、/3・
・・太陽電池本体、/41・・・けい光体層、lj・・
・太陽光、/ト・・多段励起けい光、−/−テ・・半導
体基体、−12v JJ・・・接合構造、刀、コ・・・
太陽電池本体、J・・・電極、     訂・・・けい
光体層、ム・・・多段励起けい光1.27・・・太陽光
、 コ・・・上部電極、λり・・・下部電極。 −シ ー)ト 味
11j is a cross-sectional view showing an example of the structure of a conventional solar cell, and FIG. 1 is a cross-sectional view showing an example of the structure of the solar cell of the present invention.
FIG. 13 is a cross-sectional view showing another example of the structure of the solar cell of the present invention. l...semiconductor substrate, -...Pys junction,
3...cover glass layer, da...sunlight, /ka...semiconductor substrate, lj...junction structure, /3...
...Solar cell body, /41...phosphor layer, lj...
-Sunlight, /T...Multi-stage excitation fluorescence, -/-TE...Semiconductor substrate, -12v JJ...Junction structure, sword, co...
Solar cell main body, J...electrode, correction...phosphor layer, mu...multistage excitation fluorescence 1.27...sunlight, C...upper electrode, λri...lower electrode . -Shi)to flavor

Claims (1)

【特許請求の範囲】[Claims] GaAs、ImFなどの半導体太陽電池本体表面に1i
:r、Yb、Tmなどの希土類元素を含むけい光体層を
設けたことを特徴とする太陽電池。
1i on the surface of semiconductor solar cell body such as GaAs, ImF etc.
: A solar cell characterized by being provided with a phosphor layer containing a rare earth element such as r, Yb, or Tm.
JP56205182A 1981-12-21 1981-12-21 Solar cell Pending JPS58106877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56205182A JPS58106877A (en) 1981-12-21 1981-12-21 Solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56205182A JPS58106877A (en) 1981-12-21 1981-12-21 Solar cell

Publications (1)

Publication Number Publication Date
JPS58106877A true JPS58106877A (en) 1983-06-25

Family

ID=16502768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56205182A Pending JPS58106877A (en) 1981-12-21 1981-12-21 Solar cell

Country Status (1)

Country Link
JP (1) JPS58106877A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6084765A (en) * 1983-09-02 1985-05-14 ティーピー ブイ エナージィ システムズ,インコーポレーテッド Light emitting unit
JPH0494470U (en) * 1990-12-27 1992-08-17

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6084765A (en) * 1983-09-02 1985-05-14 ティーピー ブイ エナージィ システムズ,インコーポレーテッド Light emitting unit
JPH0494470U (en) * 1990-12-27 1992-08-17

Similar Documents

Publication Publication Date Title
US4332973A (en) High intensity solar cell
Swanson et al. Point-contact silicon solar cells
US4409422A (en) High intensity solar cell
US3929510A (en) Solar radiation conversion system
US3690953A (en) Vertical junction hardened solar cell
WO2003079457A1 (en) Luminescence conversion and application to photovoltaic energy conversion
Andreev et al. High current density GaAs and GaSb photovoltaic cells for laser power beaming
ES2149137A1 (en) Intermediate band semiconductor photovoltaic solar cell
Turner et al. Photoelectrochemistry with p‐Si electrodes: Effects of inversion
EP0848432A3 (en) High efficieny tandem solar cells and operating method
EP0022956B1 (en) Solar cell and process for producing it
JPH08330611A (en) Si solar cell and manufacture thereof
Green Enhancement of Schottky solar cell efficiency above its semiempirical limit
Richards et al. Up-and down-conversion materials for photovoltaic devices
Kolodinski et al. Quantum efficiencies exceeding unity in silicon leading to novel selection principles for solar cell materials
JPH02201972A (en) Solar cell
Nelson Quantum-Well Structures for Photovoltaic Energy
JPS58106877A (en) Solar cell
JPH0237116B2 (en)
JPH0448658A (en) Lamination type solar battery and its manufacture
Andreev Heterostructure solar cells
JPH03285360A (en) Solar cell
James III-V compound heterojunction solar cells
Iles et al. Design and fabrication of thermophotovoltaic cells
JPH10125940A (en) Photoelectric conversion element