JPH0448658A - Lamination type solar battery and its manufacture - Google Patents

Lamination type solar battery and its manufacture

Info

Publication number
JPH0448658A
JPH0448658A JP2156283A JP15628390A JPH0448658A JP H0448658 A JPH0448658 A JP H0448658A JP 2156283 A JP2156283 A JP 2156283A JP 15628390 A JP15628390 A JP 15628390A JP H0448658 A JPH0448658 A JP H0448658A
Authority
JP
Japan
Prior art keywords
solar cell
type
stacked
junction
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2156283A
Other languages
Japanese (ja)
Other versions
JP2705283B2 (en
Inventor
Tomoki Inada
稲田 知己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2156283A priority Critical patent/JP2705283B2/en
Publication of JPH0448658A publication Critical patent/JPH0448658A/en
Application granted granted Critical
Publication of JP2705283B2 publication Critical patent/JP2705283B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To enable ready and sure mutual connection of solar batteries by connecting at least one of lamination surfaces among solar batteries by direct junction of battery materials. CONSTITUTION:A p-n junction solar battery 21 of GaAlAs, a p-n junction solar battery 22 of GaAs and a pin junction solar battery 23 of Ge are laminated in the order of decreasing proximity to solar light. The p-n junction solar battery 21 of GaAlAs is composed of a p-type GaAlAs layer 3 and an n-type GaAlAs layer 4. The p-n junction solar battery 22 of GaAs is composed of a p-type GaAs layer 5 and an n-type GaAs layer 6. The pin junction solar battery 23 of Ge is composed of a p-type Ge layer 7, an i-type Ge layer 8 and an n-type Ge layer 9. Each layer which constitutes each of p-n junction or pin junction solar batteries 21 to 23 is formed by epitaxial growth. A surface electrode 2 and a protecting film 1 are formed on a surface of the p-n junction solar battery 21 of GaAlAs at a side nearest solar light and a rear electrode 10 is formed on a rear of the pin junction solar battery 23 of Ge at a side farthest from solar light.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、光電変換効率の高い積層型太陽電池及びその
製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a stacked solar cell with high photoelectric conversion efficiency and a method for manufacturing the same.

[従来の技術] 現在、石炭1石油などの化石燃料による火力発電、ある
いは水力や原子力による発電など、従来のエネルギ源に
代替できるだけのエネルギを生じ、かつ地球の環境を汚
染しないクリーンなエネルギ源として、太陽電池による
太陽光からの発電が試みられている。その中で最も大き
な課題は、光電変換時の効率をいかにして上げるかとい
うことである。
[Conventional technology] At present, thermal power generation using fossil fuels such as coal and petroleum, or power generation using hydropower and nuclear power, are clean energy sources that produce enough energy to replace conventional energy sources and do not pollute the earth's environment. , attempts have been made to generate electricity from sunlight using solar cells. The biggest challenge among these is how to increase the efficiency during photoelectric conversion.

そのため高効率化をめざした各種太陽電池の開・発が盛
んで、その中でも光を吸収して電気に変換する半導体材
料の持つ性質を利用したpn接合型太陽電池は、最も現
実性の高いシステムとして研究開発が盛んである。単一
接合の太陽電池では太陽光スペクトルの指標であるAM
 (Air Mass)で表わされるAMI(地上で太
陽が天頂にある場合の太陽光を示す)のときCdTeや
GaAsで20%以上の効率が達成されているが、実用
化のためには40%以上の高効率が必要とされる。現実
には単一接合の太陽電池でその様な高効率を達成するこ
とは理論的に不可能である。
For this reason, various types of solar cells are being actively developed with the aim of increasing efficiency, and among these, pn junction solar cells, which utilize the properties of semiconductor materials to absorb light and convert it into electricity, are the most practical system. As such, research and development is active. For single-junction solar cells, AM is an index of the sunlight spectrum.
At AMI (air mass), which indicates sunlight when the sun is at its zenith on the ground, an efficiency of over 20% has been achieved with CdTe and GaAs, but for practical use it needs to be over 40%. high efficiency is required. In reality, it is theoretically impossible to achieve such high efficiency with a single junction solar cell.

そこで、太陽光エネルギ分布をうまく利用するために禁
制帯幅の違う複数の接合を積み重ねた積層型太陽電池の
開発が進められている。これは、太陽電池の太陽光入射
面に近い側の電池に禁制帯幅の大きな半導体を用い、そ
こで吸収されない長波長の光を、より禁制帯幅の小さな
半導体を用いた太陽電池で光電変換する考え方に基づい
たものである。
Therefore, in order to make good use of the solar energy distribution, the development of stacked solar cells in which multiple junctions with different forbidden band widths are stacked is underway. This uses a semiconductor with a large forbidden band width in the side of the solar cell near the sunlight incident surface, and converts the long-wavelength light that is not absorbed there into photoelectric power using a semiconductor with a smaller band gap. It is based on the way of thinking.

ところで、複数の太陽電池を接続する手段に、■ビタキ
シャル成長により複数の太陽電池(セル)を連続形成す
るモノリシック・カスケード型、■金属電極で複数のセ
ルを接続するメタル・インターコネクト型、■複数のセ
ルを接着剤で貼り合わせたメカニカル・スタック型があ
る。
By the way, methods for connecting multiple solar cells include: ■monolithic cascade type, in which multiple solar cells are successively formed by bitaxial growth, ■metal interconnect type, in which multiple cells are connected using metal electrodes, and ■multiple solar cells. There is a mechanical stack type in which cells are glued together.

モノリシック型は複数のセルをピタキシャル成長させる
場合において低抵抗接続ができない等の問題があり、現
状ではこれらの電池間の接続は主として接着剤によって
いる。この場合、実際の光電変換効率は、各電池を理想
的に積層したときの効率から接着層の光の吸収による損
失分を引いたものとなる。
The monolithic type has problems such as the inability to make low-resistance connections when a plurality of cells are grown pitaxially, and currently connections between these cells are mainly made using adhesives. In this case, the actual photoelectric conversion efficiency is obtained by subtracting the loss due to absorption of light by the adhesive layer from the efficiency when the cells are ideally stacked.

[発明が解決しようとする課題] 複数の太陽電池を接続するための接着剤は、光の透過率
を良好にするために、有機高分子系の接着剤をごく薄く
塗付することが多い。この場合の問題点としては、長時
問屋外にさらされることにより紫外線や熱による劣化が
あげられる。そのため接着強度が低下したり、光透過率
が下がったりする。
[Problems to be Solved by the Invention] As an adhesive for connecting a plurality of solar cells, an organic polymer adhesive is often applied very thinly to improve light transmittance. Problems in this case include deterioration due to ultraviolet rays and heat due to long-term exposure to the outdoors. As a result, adhesive strength and light transmittance decrease.

このように接着剤は積層型太陽電池そのものの寿命を支
配する重要な因子であるに屯拘らず、現在のところ来だ
良い材料が得られていない。
Although the adhesive is an important factor governing the lifespan of the stacked solar cell itself, no good material has been available at present.

また、使用される接着剤は殆ど絶縁性に近いため直列構
造の積層型太陽電池(シリーズ積層型太陽電池)が作れ
ない。そのため並列に使ういわゆるタンデム積層型太陽
電池に限られてしまう。
Furthermore, since most of the adhesives used are nearly insulative, it is not possible to create stacked solar cells with a series structure (series stacked solar cells). Therefore, it is limited to so-called tandem stacked solar cells that are used in parallel.

なお、前述したようにエピタキシャル成長法により、接
着剤を用いることなく連続的に作ることも可能である。
Note that, as described above, it is also possible to continuously produce the film by epitaxial growth without using an adhesive.

この場合は、直列にしても並列にしても使用することが
できる。
In this case, they can be used either in series or in parallel.

しかし、格子定数の不整合により異種材料間の成長が困
難な場合が多く、必ずしも希望通りの組合せの電池とは
ならない。
However, growth between different materials is often difficult due to mismatching of lattice constants, and the desired combination of batteries is not necessarily achieved.

本発明の目的は、積層型太陽電池を構成する各太陽電池
同士の接続を容易かつ確実に行なうことが可能で、しか
も電池寿命を延すことが可能な積層型太陽電池を提供す
ることにある。
An object of the present invention is to provide a stacked solar cell in which the solar cells constituting the stacked solar cell can be easily and reliably connected to each other, and the battery life can be extended. .

また、本発明の目的は、製造容易な積層型太陽電池の製
造方法を提供することにある。
Another object of the present invention is to provide a method for manufacturing a stacked solar cell that is easy to manufacture.

[課題を解決するための手段] 本発明の要旨は、各太陽電池間をその電池材料の直接接
合により貼り合わせることで、実質的に接着層を排し、
接着層による光の吸収をなくすことにより変換効率を上
げるようにしたものである。
[Means for Solving the Problems] The gist of the present invention is to bond solar cells together by directly bonding their cell materials, thereby substantially eliminating the adhesive layer.
The conversion efficiency is increased by eliminating light absorption by the adhesive layer.

即ち、本発明の積層型太陽電池は、半導体を用いた太陽
電池を複数個積み重ねた積層型太陽電池において、各太
陽電池間の積層面の少なくとも1つを、電池材料間の直
接接合により接続したものである。
That is, the stacked solar cell of the present invention is a stacked solar cell in which a plurality of solar cells using semiconductors are stacked, and at least one of the stacked surfaces between each solar cell is connected by direct bonding between cell materials. It is something.

また、上記積層型太陽電池には、p型とn型の材料間の
直接接合により構成されるpn型太陽電池が含まれてい
てもよい。
Further, the stacked solar cell may include a pn-type solar cell configured by direct bonding between p-type and n-type materials.

さらに、上記太陽電池は、太陽光に近い側から順にGa
Al−As、GaAs、Ge、あるいはGaAIAs、
GaAs、Siの各太陽電池を積層したものであること
が好ましい。
Furthermore, the solar cell has Ga
Al-As, GaAs, Ge, or GaAIAs,
It is preferable to use a stack of GaAs and Si solar cells.

また、太陽電池間の接続強度をより高めるために、上記
積層型太陽電池は、太陽電池間を接合する直接接合層に
電池材料のごくうすい酸化層が含まれていることが好ま
しい。
Further, in order to further increase the connection strength between the solar cells, it is preferable that in the above-described stacked solar cell, a very thin oxidized layer of the cell material is included in the direct bonding layer that connects the solar cells.

さらに、本発明の積層型太陽電池の製造方法は、積層型
太陽電池の構成要素となる半導体を用いた複数の太陽電
池を個別に形成し、各半導体太陽電池の接続すべき面を
平坦かつ清浄にし、親水性にした後、接続すべき面を必
要に応じて加圧、加熱して半導体太陽電池同士を直接貼
り合せ、その状態で所定時間放置することにより半導体
太陽電池を複数積み重ねて接続するようにしたものであ
る。
Furthermore, the method for manufacturing a stacked solar cell of the present invention involves individually forming a plurality of solar cells using semiconductors that are constituent elements of the stacked solar cell, and keeping the surfaces to be connected of each semiconductor solar cell flat and clean. After making it hydrophilic, pressurize and heat the surfaces to be connected as necessary to directly bond the semiconductor solar cells together, and leave them in this state for a predetermined period of time to stack and connect multiple semiconductor solar cells. This is how it was done.

[作用コ 半導体太陽電池には、pn接合型、ショットキ接合型等
各種のものが含まれる。このような太陽電池を積み重ね
て接続した積層型太陽電池を形成する場合、各半導体太
陽電池の接着したいウェハ面を平坦かつ清浄にした後、
異物を挟み込まないようにして半導体太陽電池同士を直
接貼り合せる。
[Semiconductor solar cells include various types such as pn junction type and Schottky junction type. When forming a stacked solar cell in which such solar cells are stacked and connected, after the wafer surface to which each semiconductor solar cell is to be bonded is made flat and clean,
Semiconductor solar cells are bonded directly to each other without getting any foreign objects between them.

任意の時間放置すると、太陽電池間の接着が完成する。After leaving it for an arbitrary period of time, the adhesion between the solar cells is completed.

吸引力は近接した分子間力あるいは吸着した02ガスや
水分による接合力と考えられる。
The attraction force is considered to be a force between adjacent molecules or a bonding force due to adsorbed 02 gas or moisture.

したがって、例えばウェハ間に水を挟んだり、ウェハ面
を酸化させて挟んでも良い、また接着の完全性を高める
ために加圧したり加熱しても良いが、電池そのものの構
造をこわさないようにしなければならない。また酸化層
が厚すぎると、そこでの光の吸収が大きくなるので極力
薄くすべきである。
Therefore, for example, water may be sandwiched between the wafers, the wafer surfaces may be oxidized and the wafers may be sandwiched, and pressure or heat may be applied to improve the integrity of the adhesion, but care must be taken to avoid damaging the structure of the battery itself. Must be. Furthermore, if the oxide layer is too thick, light absorption there will increase, so it should be made as thin as possible.

また、上述した貼り合わせにより、太陽電池の構成その
ものを作っても良い。たとえばp型GaAsとn型Ga
Asの貼り合わせによりpn接合型GaAs太陽電池を
作り、GeやSiの他の太陽電池とさらに貼り合せても
よい。
Furthermore, the structure of the solar cell itself may be created by the above-described bonding. For example, p-type GaAs and n-type GaAs
A pn junction type GaAs solar cell may be made by bonding As together, and may be further bonded to other solar cells made of Ge or Si.

積層型の太陽電池として最も好ましいのは、入射光側か
ら順にGaAlAs、GaAs、Geの各pn接合型(
あるいはp−1−n接合型を含む)の太陽電池を積層し
たもの、またはGaAlAs。
The most preferable stacked solar cells are GaAlAs, GaAs, and Ge pn junction types (from the incident light side).
or GaAlAs.

GaAs、Siの各pn接合型(あるいはp−1−n接
合型を含む)の太陽電池を積層したものである。
This is a stack of GaAs and Si pn junction type (or p-1-n junction type included) solar cells.

[実施例コ 以下、本発明の実施例を図面を用いて具体的に説明する
[Embodiments] Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

実施例1 第1図に示す構造の積層型太陽電池を作った。Example 1 A stacked solar cell with the structure shown in Figure 1 was made.

太陽光に近い側から順にG a A I A sのpn
接合型太陽電池21、G a A sのpn接合型太陽
電池22、Geのpin接合型太陽電池23が積み重ね
られている。GaAlAsのpn接合型太陽電池21は
、p型GaAlAs層3とn型GaAIA s N 4
とから構成される。GaAsのpn接合型太陽電池22
はp型G a A s N 5とn型GaAsN6とか
ら構成される。Geのpin接合型太陽電池23はp型
GeF’7.i型Ge層8及びn型GeFI9から構成
される。
G a A I A s pn in order from the side closest to sunlight
A junction solar cell 21, a GaAs pn junction solar cell 22, and a Ge pin junction solar cell 23 are stacked. A GaAlAs pn junction solar cell 21 includes a p-type GaAlAs layer 3 and an n-type GaAIA s N 4
It consists of GaAs pn junction solar cell 22
is composed of p-type GaAsN5 and n-type GaAsN6. The Ge pin junction solar cell 23 is a p-type GeF'7. It is composed of an i-type Ge layer 8 and an n-type GeFI 9.

各pn接合型もしくはpin接合型太陽電池21〜23
を構成する各層はエピタキシャル成長により構成されて
いる。
Each pn junction type or pin junction type solar cell 21 to 23
Each layer constituting the is formed by epitaxial growth.

太陽光に近い側のGaAlAsのpn接合型太陽電池2
10表面に表面電極2と保護膜1を形成し、太陽光に遠
い側のGeのpin接合型太陽電池23の裏面に裏面電
極10を形成した。
GaAlAs pn junction solar cell 2 on the side closer to sunlight
A front electrode 2 and a protective film 1 were formed on the surface of the solar cell 10, and a back electrode 10 was formed on the back surface of the Ge pin junction solar cell 23 on the side far from sunlight.

このような積層型太陽電池を製作するために、予めGa
AlAsのpn接合型太陽電池21、GaAsのpn接
合型太陽電池22、Geのpin接合型太陽電池23を
個別に準備した。
In order to manufacture such a stacked solar cell, Ga
An AlAs pn junction solar cell 21, a GaAs pn junction solar cell 22, and a Ge pin junction solar cell 23 were individually prepared.

次に、G a A I A sのpn接合型太陽電池2
1およびGaAsのpn接合型太陽電池22の接合面A
と、GaAsのpn型太陽電池22およびGe0pin
型太陽電池23の接合面Cとを作るに際し、接合面A、
Cとなる面取外の各太陽電池表面にS i 02保護膜
を設けて保護するようにした。
Next, the p-n junction solar cell 2 of GaAIAs
1 and the junction surface A of the GaAs p-n junction solar cell 22
, GaAs pn type solar cell 22 and Ge0pin
When making the bonding surface C of the type solar cell 23, the bonding surface A,
A S i 02 protective film was provided on the surface of each solar cell outside the chamfered area C to protect it.

その後、接合面A、Cとなる面の平坦化と清浄化を行な
って、その面を親水性にしてから乾燥後貼り合わせた。
Thereafter, the surfaces to be bonded surfaces A and C were flattened and cleaned to make them hydrophilic, and then bonded together after drying.

10kg/cm2の加圧で50時間放置後、ざらに加圧
下で300℃、5時閘加熱した。でき上がった積層型太
陽電池は、後述する比較例1とそん色のない接合強度を
持ち、40.5%という高い変換効率を達成できた。
After being left under pressure of 10 kg/cm2 for 50 hours, it was heated at 300° C. for 5 hours under rough pressure. The completed stacked solar cell had a bonding strength comparable to that of Comparative Example 1, which will be described later, and achieved a high conversion efficiency of 40.5%.

実施例2 第1!!Iに示す積層型太陽電池で、p型GaAs層5
とn型GaAs層6からなるpn接合のGaAs太陽電
池22を作る際、p型とn型のウェハを後述する条件下
の直接接合で貼り合せて作った。
Example 2 1st! ! In the stacked solar cell shown in I, the p-type GaAs layer 5
When making the p-n junction GaAs solar cell 22 consisting of the and n-type GaAs layers 6, p-type and n-type wafers were bonded together by direct bonding under the conditions described below.

即ち、エピタキシャル成長で作製するのではなく、両ウ
ェハを接合面Bて貼り合わせることによりpn接合を作
製した。その後、前述した接合面Aと接合面Cを同様に
直接接合で貼り合せた。なお、p型GaAlAs層3.
n型GaAIAsF’4゜p型Ge層7.i型Ge層8
.n型Ge層9はエピタキシャル成長による。
That is, the pn junction was fabricated not by epitaxial growth but by bonding both wafers together with the bonding surface B in place. Thereafter, the above-described bonding surfaces A and C were bonded together by direct bonding in the same manner. Note that the p-type GaAlAs layer 3.
n-type GaAIAsF'4゜p-type Ge layer7. i-type Ge layer 8
.. The n-type Ge layer 9 is formed by epitaxial growth.

上記直接接合は、それらの接合面A、B、CをH2O2
とH2S Oaの混合物中で親水性にし、表面に水を残
したまま貼り付け、1kg/cm2の加圧下で室温放f
f148h、200℃で10h加熱処理した。得られた
積層型太陽電池の変換効率は39.6%と高かった。
In the above direct bonding, those bonding surfaces A, B, and C are connected to H2O2
It was made hydrophilic in a mixture of
Heat treatment was performed at f148h and 200°C for 10h. The conversion efficiency of the obtained stacked solar cell was as high as 39.6%.

比較例1 第2図に示す構造の積層型太陽電池を作った。Comparative example 1 A stacked solar cell with the structure shown in Figure 2 was made.

各太陽電池の構成は実施例1と同じである。GaA I
 A sのpn型太陽電池21及びGaAsのpn型太
陽電池220間と、GaAs0pn型太陽電池22及び
Ge0pin型太陽電池230間に有機高分子系接着剤
からなる接着層り、Eをそれぞれ介設して貼り合わせた
。これら接着層り、Eにそれぞれ電極11.12を埋め
込んで、いわゆるタンデム構造とした。各太陰電池単独
の変換効率は実施例1と同じであった。しかし、積層型
太陽電池としての変換効率は31.2%と低かった。
The configuration of each solar cell is the same as in Example 1. GaAI
An adhesive layer E made of an organic polymer adhesive is interposed between the As pn type solar cell 21 and the GaAs pn type solar cell 220, and between the GaAs pn type solar cell 22 and the Ge pin type solar cell 230. I pasted it together. Electrodes 11 and 12 were embedded in each of these adhesive layers E to form a so-called tandem structure. The conversion efficiency of each solar cell alone was the same as in Example 1. However, the conversion efficiency as a stacked solar cell was as low as 31.2%.

実施例の効果 以上述べたように本実施例によれば、太陽電池材料を直
接貼り合わせることにより、接着剤を使うことなく太陽
電池間を接続するようにしたことにより、接着層の光の
吸収がなくなり、変換効率をより高めることができる。
Effects of Example As described above, according to this example, by directly bonding the solar cell materials to connect the solar cells without using adhesive, the light absorption of the adhesive layer is reduced. , and the conversion efficiency can be further improved.

また、紫外線や熱による劣化のおそれもなくなるため、
接着強度が低下したり、光透過率が下がったりするよう
なことかない。
In addition, there is no risk of deterioration due to ultraviolet rays or heat,
There is no decrease in adhesive strength or light transmittance.

さらに、絶縁性の接着剤が使用されないため、得られる
積層型太陽電池は低抵抗接続が可能となり、従ってタン
デム積層型太陽電池に限定されることなく、シリーズ積
層型太陽電池にも適用できる。
Furthermore, since no insulating adhesive is used, the resulting stacked solar cell can have low-resistance connections, and is therefore not limited to tandem stacked solar cells, but can also be applied to series stacked solar cells.

さらにまた、エピタキシャル成長法による接続と異なり
、異種材料間の接続であっても支障なく接続することが
できる。
Furthermore, unlike connection by epitaxial growth, connection can be made without any problem even when connecting different materials.

このように本実施例によれば、実用レベルの高効率で、
長寿命の太陽電池が期待できる。またコストも従来より
はるかに小さくなると考えられ、夢のクリーンエネルギ
と言われてきた太陽光発電を現実のものとし得るため、
極めて大きな経済的普及効果と、工学レベルのインパク
トを与えることができる。
As described above, according to this embodiment, with high efficiency at a practical level,
We can expect long-life solar cells. It is also believed that the cost will be much lower than before, making solar power generation, which has been said to be a dream clean energy, a reality.
It can have an extremely large economic dissemination effect and an impact on an engineering level.

なお、上記実施例1,2て用いたGeの太陽電池の代り
にSiの安価な電池を使っても良い。
Note that an inexpensive Si battery may be used instead of the Ge solar battery used in Examples 1 and 2 above.

また、上記実施例では、3段積層型の太陽電池について
説明したが、2段積層型の太陽電池にも本発明を適用す
ることができる。この場合、変換効率の比較的高いもの
同士の組合せ、例えばGaAlAsとGaAs、GaA
lAsとSiあるいはGaAsと81などの接合が望ま
しい。
Further, in the above embodiments, a three-tier stacked solar cell was described, but the present invention can also be applied to a two-tier stacked solar cell. In this case, a combination of materials with relatively high conversion efficiency, such as GaAlAs and GaAs, GaA
A junction of lAs and Si or GaAs and 81 is desirable.

また、本発明はpn接合型に限定されず、ショットキ接
合型の太陽電池にも適用できる。
Furthermore, the present invention is not limited to pn junction type solar cells, but can also be applied to Schottky junction type solar cells.

[発明の効果コ 本発明によれば、次のような優れた効果を発揮すること
ができる。
[Effects of the Invention] According to the present invention, the following excellent effects can be exhibited.

(1)請求項1に記載の積層型太陽電池によれば、積層
型太陽電池を構成する各太陽電池同士の接着を容易かつ
確実に行なうことができ、しかも電池を長寿命化させる
ことができる。
(1) According to the stacked solar cell according to claim 1, the solar cells constituting the stacked solar cell can be easily and reliably bonded to each other, and the life of the battery can be extended. .

(2)請求項2に記載の積層型太陽電池によれば、太陽
電池同士のみならず、太陽電池そのものも直接接合によ
り構成するようにしたので、任意の組合せの積層型太陽
電池が容易に得られる。
(2) According to the stacked solar cell according to claim 2, not only the solar cells but also the solar cells themselves are constructed by direct bonding, so that a stacked solar cell in any combination can be easily obtained. It will be done.

(3)請求項3に記載の積層型太陽電池によれば、より
高い変換効率が得られる。
(3) According to the stacked solar cell according to claim 3, higher conversion efficiency can be obtained.

(4)請求項4に記載の積層型太陽電池によれば、接合
強度をより高めることができる。
(4) According to the stacked solar cell according to claim 4, the bonding strength can be further increased.

(5)請求項5に記載の積層型太陽電池の製造方法によ
れば、接着剤を用いず、またエピタキシセル成長によら
ず、メカニカルに太陽電池を接続するので、製造が簡単
になり、積層型太陽電池を安価に提供することができる
(5) According to the method for manufacturing a stacked solar cell according to claim 5, the solar cells are mechanically connected without using an adhesive or by epitaxy cell growth, which simplifies the manufacturing process. type solar cells can be provided at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例による積層型太陽電池の断面図
、第2図は従来の積層型太陽電池の断面図である。 1は保護膜、2は電極、3はp型GaAlAs層、4は
n型G a A I A s層、5はp型GaAs層、
6はn型GaAsF’、7はp型GeN、8はl型Ge
層、9はn型Ge層、10〜12は電極、A、B、Cは
接合面、D、Eは接着層である。 本実施例による断面図 第1図 第2図
FIG. 1 is a sectional view of a stacked solar cell according to an embodiment of the present invention, and FIG. 2 is a sectional view of a conventional stacked solar cell. 1 is a protective film, 2 is an electrode, 3 is a p-type GaAlAs layer, 4 is an n-type GaAIAs layer, 5 is a p-type GaAs layer,
6 is n-type GaAsF', 7 is p-type GeN, 8 is l-type Ge
9 is an n-type Ge layer, 10 to 12 are electrodes, A, B, and C are bonding surfaces, and D and E are adhesive layers. Cross-sectional diagram of this embodiment Fig. 1 Fig. 2

Claims (1)

【特許請求の範囲】 1、半導体を用いた太陽電池を複数積み重ねた積層型太
陽電池において、 各太陽電池間の積層面の少なくとも1つを、太陽電池材
料間の直接接合により接続したことを特徴とする積層型
太陽電池。 2、請求項1に記載の積層型太陽電池は、p型とn型の
材料間の直接接合により構成されるpn接合型太陽電池
を含むことを特徴とする積層型太陽電池。 3、請求項1または2に記載の太陽電池は、太陽光に近
い側から順にGaAlAs、GaAs、Ge、あるいは
GaAlAs、GaAs、Siの各太陽電池を積み重ね
たものであることを特徴とする積層型太陽電池。 4、請求項1ないし3のいずれかに記載の太陽電池は、
上記直接接合層に太陽電池材料のごくうすい酸化層が含
まれていることを特徴とする積層型太陽電池。 5、積層型太陽電池の構成要素となる半導体を用いた複
数の太陽電池を個別に形成し、 各半導体太陽電池の接続すべき面を平坦かつ清浄にし、
親水性にした後、 接続すべき面を必要に応じて加圧、加熱して半導体太陽
電池同士を直接貼り合せ、 その状態で所定時間放置することにより 半導体太陽電池を複数積み重ねて接続するようにしたこ
とを特徴とする積層型太陽電池の製造方法。
[Claims] 1. A stacked solar cell in which a plurality of solar cells using semiconductors are stacked, characterized in that at least one of the stacked surfaces between each solar cell is connected by direct bonding between solar cell materials. A stacked solar cell. 2. The stacked solar cell according to claim 1 includes a pn junction solar cell configured by direct bonding between p-type and n-type materials. 3. The solar cell according to claim 1 or 2 is a stacked type solar cell, characterized in that it is a stack of GaAlAs, GaAs, Ge, or GaAlAs, GaAs, and Si solar cells in order from the side closer to sunlight. solar cells. 4. The solar cell according to any one of claims 1 to 3,
A stacked solar cell characterized in that the direct bonding layer includes a very thin oxidized layer of a solar cell material. 5. Form multiple solar cells individually using semiconductors that are the constituent elements of a stacked solar cell, and make the surfaces to be connected of each semiconductor solar cell flat and clean;
After making it hydrophilic, the semiconductor solar cells are directly bonded together by pressurizing and heating the surfaces to be connected as necessary, and then left in this state for a predetermined period of time to stack and connect multiple semiconductor solar cells. A method for manufacturing a stacked solar cell characterized by the following.
JP2156283A 1990-06-14 1990-06-14 Stacked solar cell and method of manufacturing the same Expired - Fee Related JP2705283B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2156283A JP2705283B2 (en) 1990-06-14 1990-06-14 Stacked solar cell and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2156283A JP2705283B2 (en) 1990-06-14 1990-06-14 Stacked solar cell and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0448658A true JPH0448658A (en) 1992-02-18
JP2705283B2 JP2705283B2 (en) 1998-01-28

Family

ID=15624436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2156283A Expired - Fee Related JP2705283B2 (en) 1990-06-14 1990-06-14 Stacked solar cell and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2705283B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05343712A (en) * 1992-06-05 1993-12-24 Hitachi Ltd Manufacture of tandem heterogeneous photoelectric conversion element
WO2008123198A1 (en) 2007-03-30 2008-10-16 Nifco Inc. Damper device
GB2467934A (en) * 2009-02-19 2010-08-25 Iqe Silicon Compounds Ltd Photovoltaic cell
JP2010186822A (en) * 2009-02-10 2010-08-26 National Institute Of Advanced Industrial Science & Technology Photoelectric conversion device, and method of manufacturing the same
WO2011024534A1 (en) * 2009-08-27 2011-03-03 独立行政法人産業技術総合研究所 Multi-junction photoelectric converter, integrated multi-junction photoelectric converter, and method for manufacturing same
JP2014504002A (en) * 2010-12-03 2014-02-13 ザ・ボーイング・カンパニー Direct wafer bonding
US9048289B2 (en) 2009-02-19 2015-06-02 Iqe Silicon Compounds Limited Formation of thin layers of semiconductor materials
US9087950B2 (en) 2009-06-05 2015-07-21 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device and method for manufacturing the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05343712A (en) * 1992-06-05 1993-12-24 Hitachi Ltd Manufacture of tandem heterogeneous photoelectric conversion element
WO2008123198A1 (en) 2007-03-30 2008-10-16 Nifco Inc. Damper device
JP2010186822A (en) * 2009-02-10 2010-08-26 National Institute Of Advanced Industrial Science & Technology Photoelectric conversion device, and method of manufacturing the same
GB2467934A (en) * 2009-02-19 2010-08-25 Iqe Silicon Compounds Ltd Photovoltaic cell
GB2467934B (en) * 2009-02-19 2013-10-30 Iqe Silicon Compounds Ltd Photovoltaic cell
US9048289B2 (en) 2009-02-19 2015-06-02 Iqe Silicon Compounds Limited Formation of thin layers of semiconductor materials
US9087950B2 (en) 2009-06-05 2015-07-21 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device and method for manufacturing the same
WO2011024534A1 (en) * 2009-08-27 2011-03-03 独立行政法人産業技術総合研究所 Multi-junction photoelectric converter, integrated multi-junction photoelectric converter, and method for manufacturing same
JPWO2011024534A1 (en) * 2009-08-27 2013-01-24 独立行政法人産業技術総合研究所 Multi-junction photoelectric conversion device, integrated multi-junction photoelectric conversion device, and manufacturing method thereof
JP2014504002A (en) * 2010-12-03 2014-02-13 ザ・ボーイング・カンパニー Direct wafer bonding
US9564548B2 (en) 2010-12-03 2017-02-07 The Boeing Company Direct wafer bonding

Also Published As

Publication number Publication date
JP2705283B2 (en) 1998-01-28

Similar Documents

Publication Publication Date Title
US20170018675A1 (en) Multi-junction photovoltaic micro-cell architectures for energy harvesting and/or laser power conversion
JP2016527857A (en) Solar cell assembly
JPH05114747A (en) Improved monolithic tandem-type solar cell
TW200539275A (en) Laminate type thin-film solar cell and production method thereof
CN106347621A (en) Balloon equipped with a concentrated solar generator and employing an optimised arrangement of solar cells to power said balloon in flight
US4914044A (en) Method of making tandem solar cell module
CN106653950A (en) Preparation method of gallium arsenide-silicon multi-junction efficient solar cell
US20100089440A1 (en) Dual Junction InGaP/GaAs Solar Cell
US8878048B2 (en) Solar cell structure including a silicon carrier containing a by-pass diode
CN108987507A (en) The direct-connected solar cell module of fragment single side and preparation method
JPH0448658A (en) Lamination type solar battery and its manufacture
TWI409959B (en) Solar cells and apparatus comprising the same
CN108987508A (en) The direct-connected solar cell module of single side and preparation method
CN212725330U (en) Curved surface photovoltaic module
JP2010538455A (en) High efficiency hybrid solar cell
CN115000224A (en) Double-sided laminated solar cell, cell module and photovoltaic system
Escarra et al. A hybrid CPV/T system featuring transmissive, spectrum-splitting concentrator photovoltaics
CN209729932U (en) A kind of no main gate line component
KR101349847B1 (en) Solar Cell Package including By-Pass Diode
JP2936269B2 (en) Amorphous solar cell
CN111430495A (en) Multi-junction solar cell and power supply equipment
JP2015530746A (en) Photovoltaic system including optical module with light capture filter
CN109244155A (en) The two-sided direct-connected solar cell module of fragment and preparation method
CN108922933A (en) Two-sided direct-connected solar cell module and preparation method
CN219591399U (en) Laminated solar cell module

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081009

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081009

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091009

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees