JPS5810641A - Sensor for detecting combustion state - Google Patents

Sensor for detecting combustion state

Info

Publication number
JPS5810641A
JPS5810641A JP10865081A JP10865081A JPS5810641A JP S5810641 A JPS5810641 A JP S5810641A JP 10865081 A JP10865081 A JP 10865081A JP 10865081 A JP10865081 A JP 10865081A JP S5810641 A JPS5810641 A JP S5810641A
Authority
JP
Japan
Prior art keywords
semiconductor
sensor
gas
temperature
resistance value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10865081A
Other languages
Japanese (ja)
Inventor
Nobuaki Murakami
伸明 村上
Hironori Iokura
五百蔵 弘典
Katsuyuki Tanaka
克之 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUIGARO GIKEN KK
Figaro Engineering Inc
Original Assignee
FUIGARO GIKEN KK
Figaro Engineering Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUIGARO GIKEN KK, Figaro Engineering Inc filed Critical FUIGARO GIKEN KK
Priority to JP10865081A priority Critical patent/JPS5810641A/en
Publication of JPS5810641A publication Critical patent/JPS5810641A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0031General constructional details of gas analysers, e.g. portable test equipment concerning the detector comprising two or more sensors, e.g. a sensor array

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Regulation And Control Of Combustion (AREA)

Abstract

PURPOSE:To allow a combustion state sensor to be independent of the change in temperature of exhaust gas, by providing on one surface of a heat-resistant insulating substrate a metallic oxide semiconductor to contact a gas to be inspected, while providing on the other surface a metallic oxide semiconductor to contact a reference gas. CONSTITUTION:A recess 2 is formed in one surface at the distal end of an aluminum heat-resistant insulating substrate 1 and filled with semiconductor 3 of a metallic oxide, such as SnO2, TiO2 or the like, to form a detecting element. In this case, it is desirable to mix into the semiconductor 3 a substance having the same thermal expansion coeffcient as that of the substrate l1 in order to prevent failure of the semiconductor 3. In addition, a recess 1 is formed also in the other surface of the substrate 1 and filled with a semiconductor 12 having resistance temperature characteristics corresponding to those of the above-mentioned semiconductor 3 to form a compensating element. Then thus constituted sensor is mounted in a combustion chamber or an exhaust pipe so that the semiconductor 3 will contact a gas to be inspected, while the semiconductor 12 will contact a reference gas. Thereby, the change in resistance value of the semiconductor 3 is compensated by the change in resistance value of the semiconductor 12 to detect a combustion state independently of the change in temperature of the exhaust gas.

Description

【発明の詳細な説明】 この発明は、金属酸化物半導体の抵抗値が、周囲の雰囲
気のガス組成により変化することを利用した、燃焼状態
検出用センサの改良にかんするものである。さらに詳細
に言うと、金属酸化物半導体の抵抗値の温度依存性を補
償し、雰囲気ガスの温度が変化する場合にも、正確に燃
焼状態を検出しうるようにしたものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a combustion state detection sensor that utilizes the fact that the resistance value of a metal oxide semiconductor changes depending on the gas composition of the surrounding atmosphere. More specifically, the temperature dependence of the resistance value of the metal oxide semiconductor is compensated for, and the combustion state can be accurately detected even when the temperature of the atmospheric gas changes.

燃焼状態検出用センサは、内燃機関や燃焼機器の燃焼室
や排気管に取りつけられて、排気ガス等の組成を検出す
るものである。そしてセンサの加熱には、高温の排気ガ
ス等が用いられる。しかしながら、排気ガス等の温度は
一定ではない。またセンサに用いる半導体の抵抗値は温
度によっても変化する。このため、排気ガス等の温度変
化によって検出精度が低下することになる。
A combustion state detection sensor is attached to a combustion chamber or an exhaust pipe of an internal combustion engine or combustion equipment to detect the composition of exhaust gas or the like. High temperature exhaust gas or the like is used to heat the sensor. However, the temperature of exhaust gas and the like is not constant. Furthermore, the resistance value of the semiconductor used in the sensor also changes depending on the temperature. For this reason, detection accuracy decreases due to temperature changes in the exhaust gas and the like.

この発明は、半導体の抵抗温度係数を補償することによ
って、排気ガス等の温度変化の影響を受けることなく、
正確に燃焼状態を検出しうるようにしたセンサを提供す
ることを目的とする。
This invention compensates for the temperature coefficient of resistance of the semiconductor, thereby eliminating the influence of temperature changes from exhaust gas, etc.
It is an object of the present invention to provide a sensor capable of accurately detecting combustion conditions.

以FK、図面によってこの発明の実施例について説明す
る。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図〜第3図は、この発明の最も基本的な実施例を示
すもので、第1図はその正面図をあられし、センサの第
一の面と検出素子を示すものであり、第2図はその背面
図で、センサの第二の面と補償素子を示すものであり、
第3図は、第1図のA−A方向での断面図である。
Figures 1 to 3 show the most basic embodiment of the present invention, with Figure 1 showing its front view and showing the first surface and detection element of the sensor. Figure 2 is its rear view, showing the second side of the sensor and the compensation element;
FIG. 3 is a sectional view taken along the line AA in FIG. 1.

まず第一の面と、検、出素子とについて説明する。First, the first aspect and the detection and output elements will be explained.

f1+は基体のアルミナ製の耐熱絶縁性基板で、その先
端部には、第一のくぼみ部(2)が設けである。くぼみ
部(2)の内部には、第一の金属酸化物半導体(3)を
充填して収容する。金属酸化物半導体(3)には、Sn
O2、TlO2、Fe201、Z n01MgFe2O
4、Co O等のものを広く用いることができる。また
半導体(3)と基板mとの熱膨張の差による、半導体(
3)の破損をさけるためには、半導体(3)に基板と同
じ熱膨張率をもつ物質を混入して、熱膨張率を基板(1
)と一致させることが望ましい。半導体(3)のガスへ
の感度の向上、応答の迅速化のためには、半導体(:1
)に、酸化ルテニウム、ロジウム等の貴金属触媒を添加
するようにする。半導体(3)の表面には、多孔質触媒
層(4)が設けられている。多孔質触媒層(4)には、
アルミナ、ンリカ等の耐熱性の触媒担体に、パラジウム
や白金を担持させたものを用いる。触媒層(4)を設け
るのは、燃焼ガス中の被毒成分、例えば硫黄分、をアル
ミナ等の担体に吸着かせて除去するため、および燃焼ガ
ス中の未反応成分を燃焼させて除去するためである。半
導体(3)には、白金線、あるいは白金−ロジウム合金
線のような貴金属線からなる第一の一対の電極(5a)
、(5b)が埋設しにあり、半導体(3)の抵抗値を検
出する。
f1+ is a heat-resistant insulating substrate made of alumina as a base, and a first depression (2) is provided at the tip thereof. A first metal oxide semiconductor (3) is filled and housed inside the recess (2). The metal oxide semiconductor (3) includes Sn
O2, TlO2, Fe201, Z n01MgFe2O
4, Co2O, etc. can be widely used. Furthermore, due to the difference in thermal expansion between the semiconductor (3) and the substrate m, the semiconductor (
In order to avoid damage to the semiconductor (3), a substance having the same coefficient of thermal expansion as the substrate is mixed into the semiconductor (3), so that the coefficient of thermal expansion is lower than that of the substrate (1).
) is desirable. In order to improve the sensitivity of the semiconductor (3) to gas and speed up the response, the semiconductor (:1
), add a noble metal catalyst such as ruthenium oxide or rhodium. A porous catalyst layer (4) is provided on the surface of the semiconductor (3). The porous catalyst layer (4) includes:
A heat-resistant catalyst carrier such as alumina or phosphoric acid supported on palladium or platinum is used. The catalyst layer (4) is provided in order to remove poisonous components in the combustion gas, such as sulfur content, by adsorbing them to a carrier such as alumina, and to remove unreacted components in the combustion gas by burning them. It is. The semiconductor (3) has a first pair of electrodes (5a) made of a noble metal wire such as a platinum wire or a platinum-rhodium alloy wire.
, (5b) are buried and detect the resistance value of the semiconductor (3).

このようにして半導体(3)と電極(5a) 、(5b
)  とで、検出素子を構成する。
In this way, the semiconductor (3) and the electrodes (5a), (5b
) constitute a detection element.

(6a)、(6b)は基板(1)に設けた一対の第一の
溝で、シ゛の底部に電極(5a)、(5b)に用い、た
貴金属線を収容し、緻密質の無機接着剤を充填して、貴
金属線を保護する。貴金属線の端部は、基板に設けた透
孔に収容した第一の一対の金属棒(7a)、(7b)に
溶接してあり、検出素子の抵抗値を外部へと伝える。
(6a) and (6b) are a pair of first grooves provided in the substrate (1), and the noble metal wires used for the electrodes (5a) and (5b) are housed at the bottom of the screen, and a dense inorganic adhesive is used. Protect the precious metal wire by filling it with a chemical agent. The ends of the noble metal wires are welded to a first pair of metal rods (7a) and (7b) housed in through holes provided in the substrate, and transmit the resistance value of the detection element to the outside.

つぎに第二の面と、補償素子とについて説明する。l川
は、第一のくぼみ部(2)と対向して基板DJに設けた
第二のくほみ部で、その内部に第二の半導体(12)を
充填して収容する。半導体02)には一対の貴金属線か
らなる第二の一対の電極(18a)、(18b)を埋設
して、補償素子を構成する。第二の半導体(12)には
、第一の半導体(3)と、抵抗温度特性がほぼ一致する
ものを用いればよいが、第一の半導体(3)と同じ材料
のものを用いるのがよい。また第一のくぼみ部(2)と
第二のくぼみ部110gの間隔は、できる限り薄くする
ことが望ましい。(14a)、(14b)は一対の第二
の溝で、第二の一対の電極(18a)、(18b)に用
いた貴金属線を収容し、緻密質無機接着剤により保護す
る。(15a)、(15b)は第二の一対の金属棒で、
基板i11に固着してあり、第二の貴金属線に接続され
て、補償素子の抵抗値を外部に伝える。
Next, the second aspect and the compensation element will be explained. The l river is a second recess provided in the substrate DJ opposite to the first recess (2), and the second semiconductor (12) is filled and accommodated therein. A second pair of electrodes (18a) and (18b) made of a pair of noble metal wires are embedded in the semiconductor 02) to constitute a compensation element. The second semiconductor (12) may have a resistance temperature characteristic that is almost the same as the first semiconductor (3), but it is better to use the same material as the first semiconductor (3). . Further, it is desirable that the distance between the first recessed portion (2) and the second recessed portion 110g be as thin as possible. A pair of second grooves (14a) and (14b) accommodate the noble metal wires used for the second pair of electrodes (18a) and (18b), and are protected by a dense inorganic adhesive. (15a) and (15b) are a second pair of metal rods,
It is fixed to the substrate i11 and connected to the second noble metal wire to transmit the resistance value of the compensation element to the outside.

(16a)、(16b)は、ボルト・ナツト止めにより
基板tl)を外部に固着するための透孔である。
(16a) and (16b) are through holes for fixing the substrate tl) to the outside by bolts and nuts.

なお、この実施例では、基板Hに2つのくぼみ部(2)
、111)を設けて、検出素子と補償素子とを収容した
が、くぼみ部を設けずに半導体を基板+1)上に層状に
構成してもよい。この場合には、基板+1+の厚さが、
2つの素子の間隔となるので、基板を薄くし、2つの素
子の温度をそろえるようにする。
In addition, in this example, there are two recesses (2) in the substrate H.
, 111) are provided to accommodate the detection element and the compensation element, however, the semiconductor may be formed in a layer on the substrate +1) without providing the recess. In this case, the thickness of the substrate +1+ is
Since this is the distance between the two elements, the substrate should be made thinner and the temperature of the two elements should be made the same.

また、この実施例では、2つの素子を対向させて設けた
が、各素子の加熱温度を等しくとれる範囲内で、ずらし
て設けてもよい。さらに触媒層(4)は設けなくてもよ
い。
Further, in this embodiment, the two elements are provided facing each other, but they may be provided offset within a range where the heating temperature of each element can be maintained equally. Further, the catalyst layer (4) may not be provided.

つぎにこの実施例の機能について説明する。Next, the functions of this embodiment will be explained.

センサの第一の面を被検ガスと、第二の面を基準ガスと
それぞれ接触するように、センサを燃焼室や排気管に取
りつける。ここに被検ガスとしては、燃焼室内の燃焼中
のガス、あるいは燃焼後の排ガスを用いる。また基準ガ
スとしては、周囲空気が望ましいが、組成が一定してい
るものであれば他のガスでもよい。内燃機関や燃焼機器
を作動させると、センサは高温の排ガス等にふれて、動
作温度まで加熱される。被検ガスの組成は、検出素子中
の第一の半導体(3)の抵抗値により検出される。セン
サの加熱は高温の被検ガスによって行うので、センサの
温度は不規則に変動する。また半導体の抵抗値の温度依
存性はきわめて複雑である。
The sensor is attached to the combustion chamber or exhaust pipe so that the first surface of the sensor is in contact with the test gas and the second surface is in contact with the reference gas. Here, as the gas to be tested, the gas being combusted in the combustion chamber or the exhaust gas after combustion is used. Further, as the reference gas, ambient air is desirable, but other gases may be used as long as the composition is constant. When an internal combustion engine or combustion equipment is operated, the sensor comes into contact with high-temperature exhaust gas and heats up to its operating temperature. The composition of the gas to be detected is detected by the resistance value of the first semiconductor (3) in the detection element. Since the sensor is heated by the high-temperature test gas, the temperature of the sensor fluctuates irregularly. Furthermore, the temperature dependence of the resistance value of semiconductors is extremely complicated.

このため検出素子中の半導体(3)の抵抗値も複雑に変
動する。
For this reason, the resistance value of the semiconductor (3) in the detection element also varies in a complicated manner.

検出素子の抵抗温度依存性の補償には、補償素子を用い
る。補償素子は検出素子と対向して設けであるので、そ
の温度はほぼ等しい。半導体の抵抗温度依存性は複雑で
あるが、2つの半導体の温度依存性を等しくすることは
容易である。したがって補償素子によって、検出素子の
温度依存性を正確に補償することができる。
A compensation element is used to compensate for the resistance temperature dependence of the detection element. Since the compensation element is provided facing the detection element, their temperatures are approximately equal. Although the resistance temperature dependence of semiconductors is complicated, it is easy to make the temperature dependencies of two semiconductors equal. The compensation element therefore makes it possible to accurately compensate for the temperature dependence of the detection element.

第4図および第5図は、他の実施例を図示したもので、
第4図はその軸方向断面図を、第5図は第4図を基準と
した左側の側面図である。
4 and 5 illustrate other embodiments,
FIG. 4 is an axial sectional view thereof, and FIG. 5 is a left side side view based on FIG. 4.

図において、(1)は有底の円筒状の基体で、その外周
面を第一の面と、内筒面を第二の面としている。基体(
1)の外周面の先端附近に、くぼみ部12υが設けてあ
り、その内部に第一の半導体(イ)が充填して収容しで
ある。半導体(イ)には一対の貴金属線(28a) 、
(28b) ((28a)のみを透視図として示す)、
が電極として埋設してあり、半導体と電極とで検出素子
を構成している。貴金属線(23a)の他の部分は一対
の溝、(その一方のみを(24a)として透視図で図示
する。)、に緻密質無機接着剤により埋設してあり、貴
金属線の先端部は外部へひきだされて、検出素子の抵抗
値を外部まで伝える。
In the figure, (1) is a cylindrical base with a bottom, the outer circumferential surface of which is the first surface, and the inner cylindrical surface thereof which is the second surface. Substrate (
A recessed portion 12υ is provided near the tip of the outer circumferential surface of 1), and the first semiconductor (a) is filled and housed inside the recessed portion 12υ. The semiconductor (a) has a pair of noble metal wires (28a),
(28b) (only (28a) is shown as a perspective view),
is buried as an electrode, and the semiconductor and electrode constitute a detection element. The other part of the precious metal wire (23a) is embedded in a pair of grooves (only one of which is shown as (24a) in a perspective view) with a dense inorganic adhesive, and the tip of the precious metal wire is exposed to the outside. The resistance value of the detection element is transmitted to the outside.

基体f1+の内筒部の先端部には、第二の半導体(ホ)
を充填し、一対の貴金属線(26a) 、(26b)を
接続して、補償素子を構成する。基体(1)の内筒部の
深さは、第一の半導体翰と第二の半導体(ハ)とが基体
をはさんで対向するように調整する。基体+11の内筒
部には、一対の保護管(27a) 、(27b)を設け
て、貴金属線(26a)、(26b)を収容する。また
基体fl lの底部にはネジ部つきのフランジ(ハ)を
設けて、センサを燃焼室等へ取りつけられるようにする
A second semiconductor (E) is placed at the tip of the inner cylindrical portion of the base f1+.
A pair of noble metal wires (26a) and (26b) are connected to form a compensation element. The depth of the inner cylindrical portion of the base (1) is adjusted so that the first semiconductor wire and the second semiconductor (c) face each other with the base in between. A pair of protective tubes (27a) and (27b) are provided in the inner cylindrical portion of the base body +11 to accommodate noble metal wires (26a) and (26b). Further, a flange (c) with a threaded portion is provided at the bottom of the base fl l so that the sensor can be attached to a combustion chamber or the like.

なお、この実施例では、半導体(イ)、(ハ)の材料、
電極線(28a)、(26a)、(26b)の材料等は
、第1図〜第3図の実施例と同じであるので、説明を省
略した。
In addition, in this example, the materials of semiconductors (a) and (c),
The materials of the electrode wires (28a), (26a), and (26b) are the same as those in the embodiments shown in FIGS. 1 to 3, so their explanations are omitted.

以下に、この発明の効果について説明する。The effects of this invention will be explained below.

第6図は、この発明のセンサに適した検出回路の一例を
示すもので、図においてSI)は検出素子、(ψは補償
素子、(至)は増幅器である。■は制御機器で、センサ
の出力によって駆動され、燃焼を停止させたり、空燃比
を制御したりするだめのものである。
FIG. 6 shows an example of a detection circuit suitable for the sensor of the present invention. In the figure, SI) is a detection element, (ψ is a compensation element, and (to) is an amplifier. It is driven by the output of the engine, and is used to stop combustion and control the air-fuel ratio.

第7図は、この発明のセンサを芯方式の石油ストーブに
取りつけたものを示す一例である。図において141)
はストーブ本体で、(6)はその油槽、■は芯、■は多
数の小透孔に)を有する一次燃焼室でに)は2次燃焼室
である。センサ(47)は、1次燃焼室−の内壁の上部
に取りつけである。なお、センサーηを1次燃焼室−の
外壁にとりつけ、小透孔■を介して、センサ17)に燃
焼ガスがふれるようにしてもよい。セ/す1′I)には
第1図〜第8図の実施例のものを用いた。この場合に、
検出素子および補償素子は、ともに0.5重量−の酸化
ルテニウムと49.5重量%の酸化第二錫を50重量%
のアルミナ骨材と混練したものを用い、触媒層(4)は
取りはずして試験を行った。(ト)は混合器で、羽根車
状の旋回器や、多数の透孔をたがいちがいに設けた2枚
の板等で構成し、燃焼ガスの流路に垂直な方向のガス組
成の濃度分布を解消させるだめのものである。
FIG. 7 shows an example of the sensor of the present invention attached to a wick type kerosene stove. 141 in the figure)
(6) is the stove body, (6) is its oil tank, (2) is the wick, (2) is the primary combustion chamber with many small through holes, and (2) is the secondary combustion chamber. The sensor (47) is attached to the upper part of the inner wall of the primary combustion chamber. Alternatively, the sensor η may be attached to the outer wall of the primary combustion chamber, and the combustion gas may come into contact with the sensor 17) through the small through hole (2). For cell/cell 1'I), those of the embodiments shown in FIGS. 1 to 8 were used. In this case,
Both the detection element and the compensation element are made of 50% by weight of 0.5% by weight of ruthenium oxide and 49.5% by weight of stannic oxide.
The catalyst layer (4) was removed and tested. (G) is a mixer, which consists of an impeller-like swirler and two plates with many through holes arranged one after the other, and the concentration distribution of the gas composition in the direction perpendicular to the flow path of the combustion gas. This is something that cannot be solved.

芯から蒸発した燃料は、1次燃焼室−の壁面に設けた透
孔(ハ)から供給される空気と混合しつつ燃焼し、2次
燃焼室で燃焼を完了する。この場合に室内酸素濃度が低
下すると、第8図の曲線Bに示すように大量のCOが発
生する。この機構は次のように考えられる。正常燃焼時
には、−火燃焼室に)内に若干の未反応の燃料が存在す
るが、その濃度は低くしかもほぼ一定であるので、セン
サθカの抵抗値もほぼ一定である。これに対して室内酸
素濃度が低下すると、未反応燃料とともにdOやH2の
濃度が増大する。そしてこれらの各成分により、センサ
17)の抵抗値が変化する。これらの各成分の濃度比等
は、不明であること、およびCOのみが有害なガスであ
ることから、COを中心に以下の説明を行う。このとき
センサ1力の温度も、第8図の曲線Cに示すように、急
激に低下する。これらはつぎのような過程によるもので
ある。室内酸素濃度が低下すると、不完全燃焼が生じ、
−火燃焼室(ロ)の温度が低下する。透孔(ハ)からの
空気の導入は、燃焼にともなう負圧によっているので、
−次燃焼室一の温度が低下すると、透孔に)からの空気
の供給量も減少する。−次燃焼室一の温度が低下すると
、芯からの蒸発量も減少する。このとき空気供給量も減
少しているので、不完全燃焼は解消せず、さらに−次燃
焼室一の温度が低下する。
The fuel evaporated from the wick burns while mixing with air supplied from a through hole (c) provided in the wall of the primary combustion chamber, and combustion is completed in the secondary combustion chamber. In this case, when the indoor oxygen concentration decreases, a large amount of CO is generated as shown by curve B in FIG. This mechanism can be thought of as follows. During normal combustion, there is some unreacted fuel in the combustion chamber, but its concentration is low and almost constant, so the resistance value of the sensor θ is also almost constant. On the other hand, when the indoor oxygen concentration decreases, the concentrations of dO and H2 increase together with unreacted fuel. The resistance value of the sensor 17) changes depending on each of these components. Since the concentration ratio of each of these components is unknown and only CO is a harmful gas, the following explanation will focus on CO. At this time, the temperature of the sensor 1 force also drops rapidly, as shown by curve C in FIG. These are caused by the following process. When the indoor oxygen concentration decreases, incomplete combustion occurs,
-The temperature of the fire combustion chamber (b) decreases. Air is introduced through the through hole (c) due to the negative pressure associated with combustion, so
- When the temperature of the secondary combustion chamber decreases, the amount of air supplied through the through holes also decreases. - When the temperature in the secondary combustion chamber decreases, the amount of evaporation from the wick also decreases. At this time, since the amount of air supplied is also decreasing, incomplete combustion is not resolved and the temperature in the secondary combustion chamber further decreases.

このように、燃焼状態の変化とともにセンサ@ηの温度
も変化するので、検出素子の抵抗値は、第9図の曲線り
に示すように複雑な変化をする。すなわち、室内酸素濃
度が21%から、17.8%まで低下すると、800 
PPm程度のCoが発生するにもかかわらず、その抵抗
値が増大する。これはCOの発生による雰囲気の変化の
影響よりも、温度低下の影響をセンサ1カが受けるため
である。室内酸素濃度がさらに低下すると、センサ@の
の抵抗値も減少するが、室内酸素濃度16.7%での抵
抗値と室内酸素濃度21%の抵抗値が等しくなり、室内
酸素濃度が16.5%程度まで低下してはじめて、検出
が可能な程度に抵抗値が減少する。
In this way, the temperature of the sensor @η changes as the combustion state changes, so the resistance value of the detection element changes in a complicated manner as shown by the curved line in FIG. In other words, when the indoor oxygen concentration decreases from 21% to 17.8%, 800%
Even though Co of approximately PPm is generated, its resistance value increases. This is because the sensor is more affected by the temperature drop than by the change in atmosphere due to the generation of CO. As the indoor oxygen concentration further decreases, the resistance value of the sensor @ also decreases, but the resistance value at an indoor oxygen concentration of 16.7% and the resistance value at an indoor oxygen concentration of 21% become equal, and the indoor oxygen concentration becomes 16.5%. %, the resistance value decreases enough to be detectable.

これに対して、検出素子の抵抗値を、補償素子の抵抗値
で補償した、本発明での結果を、第9図の曲線Eに示す
。この場合に検出回路は第6図のものを用い、回路電源
は0.7ボルト、とした。回路の出力は、室内酸素濃度
が19%程度から立ち上り、センサ0乃の温度変化の影
響を受けることなく燃焼状態を検出できることがわかる
On the other hand, curve E in FIG. 9 shows the result of the present invention in which the resistance value of the detection element is compensated by the resistance value of the compensation element. In this case, the detection circuit shown in FIG. 6 was used, and the circuit power supply was set to 0.7 volts. It can be seen that the output of the circuit rises from an indoor oxygen concentration of about 19%, and the combustion state can be detected without being affected by the temperature change of sensor 0.

なおこの試験例では、センサ1′t)の取りつけ位置を
一次燃焼室一の上部としたが、他の位置でもよい。ただ
し芯(財)の附近では、雰囲気中に大量の未反応燃料が
存在してCO検出の妨害ガスとなること、および雰囲気
温度が低くセ/す@のを充分可熱できないためのぞまし
くない。
In this test example, the sensor 1't) was installed in the upper part of the primary combustion chamber 1, but it may be installed in another position. However, in the vicinity of the core, there is a large amount of unreacted fuel in the atmosphere, which becomes a gas that interferes with CO detection, and the ambient temperature is too low to heat up the carbon dioxide sufficiently. do not have.

上記の説明では、酸素供給量の変化によって排ガス等の
温度が変化する芯方式の石油ストーブを一例としたが、
燃焼にともなって、排ガス等の温度が不規則に変化する
内燃機関や燃焼機器であれば、本発明を好適に実施しう
る。
In the above explanation, an example was taken of a wick-type oil stove in which the temperature of exhaust gas changes depending on changes in the amount of oxygen supplied.
The present invention can be suitably implemented in any internal combustion engine or combustion device in which the temperature of exhaust gas or the like changes irregularly during combustion.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第8図は、本発明の第1の実施例を示し、第1
図は第一の面と検出素子を示す正面図、第2図は第二の
面と補償素子を示す背面図で、第3図は第1図のA−A
’方向断面図である。第4図および第5図は鵜の実施例
を示すもので、第4図は、一部透視図つき軸方向断面図
、第5図は第4図を基準とした左側面図である。 第6図は、本発明のセンサを用いた検出回路の一例を、
第7図は、本発明のセンサを用いた石油ストーブの一例
を示す。第8図は第7図の石油ストーブでの、室内酸素
濃度とCO発生量およびセンサの関係を示すもので、第
9図は、第7図の石油ストーブでの検出結果を示すもの
である。 (11・・・基板、 (3)、四・・・第一の半導体、 (1本(ハ)・・・第二の半導体。 第1ml 第2aa 第3s 第4図 第5m 第6図 第7図
1 to 8 show a first embodiment of the present invention, and FIG.
The figure is a front view showing the first surface and the detection element, FIG. 2 is a rear view showing the second surface and the compensation element, and FIG.
It is a sectional view in the ' direction. 4 and 5 show an embodiment of a cormorant. FIG. 4 is an axial sectional view with a partially transparent view, and FIG. 5 is a left side view based on FIG. 4. FIG. 6 shows an example of a detection circuit using the sensor of the present invention.
FIG. 7 shows an example of a kerosene stove using the sensor of the present invention. FIG. 8 shows the relationship between the indoor oxygen concentration, the amount of CO generated, and the sensor in the kerosene stove of FIG. 7, and FIG. 9 shows the detection results of the kerosene stove of FIG. 7. (11...substrate, (3), 4...first semiconductor, (1 (c)...second semiconductor. 1ml 2aa 3s 4th figure 5m 6th figure 7 figure

Claims (1)

【特許請求の範囲】 1、Lll  耐熱絶縁性基体に、被検ガスと接触する
第一の而と、基準ガスと接触する第二の面を設け、 (2)第一の面には、ガスによって抵抗値が変化する第
一の金属酸化物半導体に、一対の電極を接続した検出素
子を設け、 (3)第二の面には、第一の金属酸化物半導体とほぼ同
一の抵抗温度係数を有する第二の金属酸化物半導体に、
一対の電極を接続した、補償素子を設けたことを特徴と
する燃焼状態検出用センサ。 2、上記耐熱絶縁性基体は平板状であり、その表裏2面
を、それぞれ第一の面および第二の面としたことを特徴
とする特許請求の範囲第一項記載の燃焼状態検出用セン
サ。 3、上記耐熱絶縁性基体は有底円筒状で、そのう外周面
を第一の面、その内筒面を第二の面としたことを特徴と
する特許請求の範囲第一項記載の燃焼状態検出用センサ
[Claims] 1. A heat-resistant insulating substrate is provided with a first surface in contact with the test gas and a second surface in contact with the reference gas; (2) the first surface is provided with a gas (3) A detection element with a pair of electrodes connected is provided to the first metal oxide semiconductor whose resistance value changes depending on the temperature of the first metal oxide semiconductor; a second metal oxide semiconductor having
A combustion state detection sensor characterized by having a compensation element connected to a pair of electrodes. 2. The combustion state detection sensor as set forth in claim 1, wherein the heat-resistant insulating substrate has a flat plate shape, and its front and back surfaces are respectively a first surface and a second surface. . 3. The combustion according to claim 1, wherein the heat-resistant insulating substrate has a cylindrical shape with a bottom, and the outer circumferential surface thereof is the first surface, and the inner cylindrical surface thereof is the second surface. Sensor for status detection.
JP10865081A 1981-07-10 1981-07-10 Sensor for detecting combustion state Pending JPS5810641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10865081A JPS5810641A (en) 1981-07-10 1981-07-10 Sensor for detecting combustion state

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10865081A JPS5810641A (en) 1981-07-10 1981-07-10 Sensor for detecting combustion state

Publications (1)

Publication Number Publication Date
JPS5810641A true JPS5810641A (en) 1983-01-21

Family

ID=14490182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10865081A Pending JPS5810641A (en) 1981-07-10 1981-07-10 Sensor for detecting combustion state

Country Status (1)

Country Link
JP (1) JPS5810641A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0176787A2 (en) * 1984-09-03 1986-04-09 NGK Spark Plug Co. Ltd. Gas sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0176787A2 (en) * 1984-09-03 1986-04-09 NGK Spark Plug Co. Ltd. Gas sensor

Similar Documents

Publication Publication Date Title
US3597345A (en) Oxygen detection apparatus
US7867370B2 (en) Gas sensor element
US20070151851A1 (en) Gas sensor element
US4814059A (en) Electrochemical device having a heater and leak protection electrode
WO2007114267A1 (en) Catalytic combustion type gas sensor, detection device and compensating device
JP5373474B2 (en) Combustible gas detector
CN106324051A (en) Oxygen sensor for CO breakthrough measurements
CN103954623B (en) Non-contact solid burning rate testing method
Soejima et al. Multi-layered zirconia oxygen sensor for lean burn engine application
JPS5810641A (en) Sensor for detecting combustion state
JPS5821154A (en) Sensor for detecting combustion state
JP5021400B2 (en) Combustible gas detector
JP2010256112A (en) Gas sensor element, gas sensor incorporating the same, and method for manufacturing the gas sensor element
JPS6344674Y2 (en)
JP3696456B2 (en) Explosion-proof combustible gas sensor
JPS61223523A (en) Exposed type thermocouple
JPH09500959A (en) Method and apparatus for the detection of oxidizable substances in space
JP2004506195A (en) Pellet resistance sensor
JPS63165744A (en) Sensor for diagnosing deterioration of catalyst
JP2003075385A (en) Method of cleaning resistance change type humidity sensor
JPS5819624A (en) Detector for burning condition
JP2010256111A (en) Gas sensor element, gas sensor having the same built, and method for manufacturing the gas sensor element
JPS6234135Y2 (en)
JP3012960B2 (en) Combustion equipment
JP2000046775A (en) Contact combustion type gas sensor