JPS6113147A - Diffusion-type combustible gas measuring method - Google Patents

Diffusion-type combustible gas measuring method

Info

Publication number
JPS6113147A
JPS6113147A JP13449784A JP13449784A JPS6113147A JP S6113147 A JPS6113147 A JP S6113147A JP 13449784 A JP13449784 A JP 13449784A JP 13449784 A JP13449784 A JP 13449784A JP S6113147 A JPS6113147 A JP S6113147A
Authority
JP
Japan
Prior art keywords
gas
combustible gas
combustible
specimen
hydrogen sulfide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13449784A
Other languages
Japanese (ja)
Other versions
JPH0360385B2 (en
Inventor
Wataru Sato
亘 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Keiki KK
Original Assignee
Riken Keiki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Keiki KK filed Critical Riken Keiki KK
Priority to JP13449784A priority Critical patent/JPS6113147A/en
Publication of JPS6113147A publication Critical patent/JPS6113147A/en
Publication of JPH0360385B2 publication Critical patent/JPH0360385B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0011Sample conditioning
    • G01N33/0013Sample conditioning by a chemical reaction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0011Sample conditioning
    • G01N33/0014Sample conditioning by eliminating a gas

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To prevent corrosion of metallic parts, by allowing a specimen gas to pass through a ferric hydroxide contained eliminating layer arranged in such a way that it embraces a gas sensor. CONSTITUTION:A specimen gas containing combustible gas and hydrogen sulphide in common, after natural diffusion, arrives at a gas sensor 10 through penetrating hole 13, eliminating layer 14, and inside cover 11. At this moment, hydrogen sulphide gas in the specimen gas reacts with Ferric hydroxide in the eliminating layer 14 to be removed. As a result, even if a catalyst of platinum nature is used as a gas detecting element 6, no deterioration of its catalyst function is caused and no corrosion of the such metallic parts as stays 4, 5, partitions 8, etc. are observed. And, when the combustible gas in the specimen gas contacts the element 6, it burns on the surface of the element 6, causing thus heating of the element 6 and increase of its resistance. On the other hand, as the combustible gas does not burn on a compensating element 7, its resistance stays unchanged and consequently, balance of a bridge circuit is destroyed and an electric current corresponding to a concentration of the combustible gas is transmitted to a display for measurement of the concentration of the combustible gas.

Description

【発明の詳細な説明】 産−1」二の利 ′ この発明は、可燃ガスと硫化水素ガスとが共存する被検
ガス中に可燃ガスを検出するガスセンサを放置すること
により、自然拡散した被検ガスとガスセンサとを接触さ
せて可燃ガスを測定するようにした拡散式可燃ガス測定
方法に関する。
[Detailed Description of the Invention] Product-1' Second Advantages ' This invention detects naturally diffused gas by leaving a gas sensor that detects combustible gas in a sample gas in which combustible gas and hydrogen sulfide gas coexist. The present invention relates to a diffusion type combustible gas measuring method in which combustible gas is measured by bringing a detection gas into contact with a gas sensor.

従」Lの」L術 近年、安全性向上の要請等から、マンホール内などにお
いて可燃ガスの濃度を簡易迅速に測定する必要か生じて
きた。このような場所におけるガスは、可燃ガスの外に
硫化水素ガスも共存していることが多く、このため、可
燃ガスを測定する際に従来の拡散式ガスセンサをそのま
ま使用すると、硫化水素ガスが可燃ガスとともにガス検
出素子に接触して以下のような問題点が発生するのであ
る。第1は、硫化水素ガスが腐食性を有しているため、
ガス検出素子およびその周辺の金属部分が腐食してしま
うという問題点である。第2は、ガス検出素子が接触燃
焼式の素子であると、白金属の触媒を使用していること
が多いが、この触媒の触媒機能が硫化水素ガスとの反応
によって消失してしまうという問題点である。第3は、
ガス検出素子が半導体素子であると、可燃ガスおよび硫
化水素ガスの両方の濃度を検出する場合があり、このよ
うな場合にはいずれのガスを検出しているのか不明であ
るという問題点である。
In recent years, due to demands for improved safety, there has been a need to easily and quickly measure the concentration of combustible gas inside manholes and the like. Gases in such places often contain hydrogen sulfide gas in addition to combustible gas, so if you use a conventional diffusion-type gas sensor as is when measuring combustible gas, hydrogen sulfide gas will become flammable. When the gas comes into contact with the gas detection element, the following problems occur. First, because hydrogen sulfide gas is corrosive,
The problem is that the gas detection element and the metal parts around it corrode. The second problem is that when the gas detection element is a catalytic combustion type element, it often uses a platinum metal catalyst, but the catalytic function of this catalyst is lost due to reaction with hydrogen sulfide gas. It is a point. The third is
If the gas detection element is a semiconductor element, it may detect the concentration of both combustible gas and hydrogen sulfide gas, and in such cases, it is unclear which gas is being detected. .

仝(1か 決しようと る間 欝 この発明は、硫化水素ガスによって金属部分か腐食され
たり、触媒機能が消失したり、あるいはいずれのガスを
検出しているか不明であるという従来の問題点を解決す
るものである。
This invention solves the conventional problems of metal parts being corroded by hydrogen sulfide gas, catalytic function disappearing, or it being unclear which gas is being detected. It is something to be solved.

問題点−1るための手l:n− このような問題点は、可燃ガスと硫化水素ガスとが共存
する被検ガス中に可燃ガスを検出するガスセンサを放置
することにより、自然拡散した被検ガスとガスセンサと
を接触させて可燃ガスを測定するようにした拡散式可燃
ガス測定方法であって、前記被検ガスを、ガスセンサの
周囲を囲むよう配置され水酸化第2鉄を含む除去層を通
過させて硫化水素ガスを除去した後、ガスセンサに接触
させることにより解決することができる。
Problem 1: Steps to take: n- Such a problem can be solved by leaving a gas sensor that detects combustible gas in a test gas where combustible gas and hydrogen sulfide gas coexist. A diffusion type combustible gas measuring method in which a combustible gas is measured by bringing a test gas into contact with a gas sensor, the test gas being removed by a removal layer containing ferric hydroxide, which is arranged so as to surround the gas sensor. This can be solved by removing the hydrogen sulfide gas by passing it through and then contacting it with the gas sensor.

色囲 可燃ガスと硫化水素ガスとが共存する被検ガス中にガス
センサを放置すると、被検ガスは自然拡散しながら除去
層を通過する。この際、被検ガス中の硫化水素ガスが水
酸化第2鉄と以下のように反応して除去される。
When a gas sensor is left in a test gas in which combustible gas and hydrogen sulfide gas coexist, the test gas passes through the removal layer while naturally diffusing. At this time, hydrogen sulfide gas in the test gas is removed by reacting with ferric hydroxide as described below.

Fe2O,−3H2O+ 3 H2S = Fe介3+
 6 H2Oここで、−1−記反応はその速度か速いた
め、除去層の厚さを薄くすることかできる。このように
して硫化水素ガスが除去された被検ガスがガスセンサに
接触し、被検ガス中の可燃ガスが測定される。
Fe2O, -3H2O+ 3 H2S = Fe-mediated 3+
6 H2O Here, since the -1- reaction is fast, the thickness of the removal layer can be made thin. The test gas from which hydrogen sulfide gas has been removed in this way contacts the gas sensor, and the combustible gas in the test gas is measured.

また、前述した反応により生成された硫化鉄は空気中の
水分(湿気)および酸素ガスと以下のように反応し、再
び水酸化第2鉄に再生する。
Further, the iron sulfide produced by the above-described reaction reacts with moisture (humidity) in the air and oxygen gas as described below, and is regenerated into ferric hydroxide.

2Fe2−+6H20+302=2Fe203・6H2
0+ S この結果、除去層を交換することなく半永久的に使用す
ることができる。
2Fe2-+6H20+302=2Fe203・6H2
0+S As a result, the removal layer can be used semi-permanently without being replaced.

支厘遣 以下、この発明を実施するための装置の一実施例を図面
に基づいて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of an apparatus for carrying out the present invention will be described below with reference to the drawings.

第1図において、 1は検出部本体であり、この検出部
本体 1はメタン等の可燃ガスおよび硫化水素ガスが共
存する被検ガス中に放置されている。検出部本体1は略
円筒状のボディ 2を有し、このボディ 2には円板状
の基板3か取り付けられている。基板3には互いに平行
な2対のステー4、5か固定され、一方の対をなすステ
ー4間には前記可燃ガスを検出する、例えば接触燃焼式
のガス検出素子8が張り渡されている。前記残りの対を
なすステー5間には可燃ガスに対して不活性のM1j償
素子 7が張り渡されている。 8、9は基板3に嵌合
yれた仕切板であり、これらの仕切板8、9は補償素子
7がガス検出素子6の熱影響を受けるのを阻止する。前
述したステー4、5、・ガス検出素子6、補償素子7は
全体として、自然拡nk Lだ前記被検ガスに接触した
とき可燃ガスを検出してその濃度を測定するガスセンサ
1oを構成する。11は有底円筒状の内カバーであり、
この内カバー11は防爆のために必す設けられる。この
内力/<−]1は前記ガスセンサ1oの周囲を囲むよう
配置され、通気性の良好な焼結金属から構成されている
。12は内方、<−11の周囲を囲むよう配置さ゛れた
有底円筒状の外カバーであり、この外カバー12は前記
内カバー11の破損防止のために必ず設けられている。
In FIG. 1, reference numeral 1 denotes a detection unit main body, and this detection unit main body 1 is left in a sample gas in which combustible gas such as methane and hydrogen sulfide gas coexist. The detection unit main body 1 has a substantially cylindrical body 2, and a disc-shaped substrate 3 is attached to the body 2. Two pairs of stays 4 and 5 parallel to each other are fixed to the substrate 3, and a gas detection element 8 of, for example, a catalytic combustion type, for detecting the combustible gas is stretched between one pair of the stays 4. . An M1j compensation element 7, which is inert to combustible gas, is stretched between the remaining pairs of stays 5. Reference numerals 8 and 9 denote partition plates fitted into the substrate 3, and these partition plates 8 and 9 prevent the compensation element 7 from being affected by the heat of the gas detection element 6. The stays 4, 5, gas detection element 6, and compensation element 7 described above collectively constitute a gas sensor 1o that detects combustible gas and measures its concentration when it comes into contact with the natural expansion test gas. 11 is a bottomed cylindrical inner cover;
This inner cover 11 is indispensably provided for explosion protection. This internal force /<-]1 is arranged so as to surround the gas sensor 1o, and is made of sintered metal with good air permeability. Reference numeral 12 denotes a bottomed cylindrical outer cover disposed so as to surround <-11 on the inside, and this outer cover 12 is always provided to prevent the inner cover 11 from being damaged.

そして、この外カバー12には複数の貫通孔13が形成
されている。前記内カバー11と外カバー12との間に
は空隙が生しており、この空隙内にはガスセンサ10の
周囲を囲む除去層14が収納されている。この除去層1
4は、例えばグラスウールにグリセリンを含浸させ、さ
らに水酸化第2鉄の粉末をこれらの表面に刺着させたも
のが使用されている。なお、この発明においては前記グ
ラスウールの代わりに、不織布、石綿、スポンジ等の通
気性の良好なものを用いてもよい。また、前記グリセリ
ンは吸湿性を有しているため、グラスウールの表面か湿
潤状態となって水酸化第2鉄の粉末の付着性が良好とな
るとともに、水酸化第2鉄と硫化水素ガスとの反応の際
に使用される水分を補給する。前記除去層14中の水酸
化第2鉄は。
A plurality of through holes 13 are formed in this outer cover 12. A gap is formed between the inner cover 11 and the outer cover 12, and a removal layer 14 surrounding the gas sensor 10 is housed in the gap. This removal layer 1
4 is made by impregnating glass wool with glycerin and further adhering ferric hydroxide powder to the surface thereof. In this invention, instead of the glass wool, a material with good air permeability such as nonwoven fabric, asbestos, or sponge may be used. In addition, since the glycerin has hygroscopic properties, the surface of the glass wool becomes wet and the ferric hydroxide powder adheres well, and the ferric hydroxide and hydrogen sulfide gas Replenishes the water used during the reaction. The ferric hydroxide in the removal layer 14 is.

この除去層14を被検ガスが通過する際、被検ガス中の
硫化水素ガスと反応してガスセンサ10に悪影響を与え
る硫化水素ガスを除去する。このように、除去層】4を
従来から存在していた内力/<  11と外カバー12
との間の空隙に収納するようにしているので、構造が簡
単になるとともに安価に製作できる。前記ガス検出素子
6および補償素子7は、第2図に示すように直列に接続
されて第1の直列2辺15を構成するとともに、2個の
抵抗素子16.17が直列に接続されて第2の直列2辺
18を構成し、これら第1、第2の直列2辺15.18
が並列接続されてブリッジ回路19が構成されている。
When the test gas passes through this removal layer 14, the hydrogen sulfide gas that reacts with the hydrogen sulfide gas in the test gas and adversely affects the gas sensor 10 is removed. In this way, the removed layer】4 is replaced by the conventionally existing internal force/<11 and the outer cover 12
Since it is housed in the space between the two, the structure is simple and it can be manufactured at low cost. The gas detection element 6 and the compensation element 7 are connected in series to form two first series sides 15, as shown in FIG. 2, and these first and second two serial sides 15.18
are connected in parallel to form a bridge circuit 19.

前記接続点は入力端子20.21を構成し、これら入力
端子20.21には直流電源22が接続されている。一
方、前記第1、第2の直列2辺15.18の中間接続点
は出力端子23.24を構成し、これらの出力端子23
.24には表示器25が接続されている。
The connection points constitute input terminals 20.21, to which a DC power supply 22 is connected. On the other hand, the intermediate connection point between the first and second series sides 15.18 constitutes an output terminal 23.24, and these output terminals 23
.. A display 25 is connected to 24.

次に、この発明の一実施例の作用について説明する。Next, the operation of one embodiment of the present invention will be explained.

今、第1図に示すような検出部本体 1が、可燃ガスお
よび硫化水素ガスが共存する被検ガス中に放置されてい
るとする。このとき、被検ガスは自然拡散して貫通孔1
3.除去層14、内カバー11を通過して、ガスセンサ
10に到達する。このとき、被検ガス中の硫化水素ガス
は、除去層14中の水酸化第2鉄と以下のように反応し
除去される。
Now, it is assumed that the detection unit main body 1 as shown in FIG. 1 is left in a sample gas in which combustible gas and hydrogen sulfide gas coexist. At this time, the test gas naturally diffuses into the through hole 1.
3. It passes through the removal layer 14 and the inner cover 11 and reaches the gas sensor 10. At this time, hydrogen sulfide gas in the test gas reacts with ferric hydroxide in the removal layer 14 as follows and is removed.

Fe209・3H20+3H2S−Fe2sB+6H2
0この結果、ガス検出素子6に白金属の触媒を使用して
いても、その触媒機能が低下することはなく、また、ス
テー4.5、仕切板8等の金属部分が腐食されるような
こともない。そして、被検ガス中の可燃ガスはガス検出
素子6に接触したとき、ガス検出素子6の表面で燃焼す
る。これにより、ガス検出素子8か加熱されてその抵抗
値が大きくなる。一方、補償素子7の表面においては可
燃ガスは燃焼しないので、その抵抗値は変化せず、この
結果、ブリッジ回路18のバランスが崩れて可燃ガスの
濃度に対応した電流が表示器25に送られ、可燃ガスの
濃度が測定される。この可燃ガスの濃度測定によって、
除去層14中の水酸化第2鉄は前述のように硫化鉄とな
るが、この検出部本体1を硫化水素ガスから遠ざけてや
れば、前記硫化鉄は空気中の水分(湿気)および酸素と
以下のように反応して再び水酸化第2鉄に再生する。
Fe209・3H20+3H2S-Fe2sB+6H2
0 As a result, even if a platinum metal catalyst is used in the gas detection element 6, its catalytic function will not deteriorate, and metal parts such as the stay 4.5 and the partition plate 8 will not be corroded. Not at all. When the combustible gas in the test gas comes into contact with the gas detection element 6, it burns on the surface of the gas detection element 6. This heats the gas detection element 8 and increases its resistance value. On the other hand, since the combustible gas does not burn on the surface of the compensation element 7, its resistance value does not change, and as a result, the bridge circuit 18 becomes unbalanced and a current corresponding to the concentration of combustible gas is sent to the indicator 25. , the concentration of combustible gas is measured. By measuring the concentration of this combustible gas,
The ferric hydroxide in the removal layer 14 turns into iron sulfide as described above, but if the main body 1 of the detection section is moved away from the hydrogen sulfide gas, the iron sulfide is converted to moisture (humidity) and oxygen in the air. It is regenerated into ferric hydroxide through the following reaction.

2Fe2S3+6H20+302−2Fe203・6H
20+ S この結果、除去層14を交換しなくても継続使用するこ
とができ、メンテナンスフリーとなる。
2Fe2S3+6H20+302-2Fe203・6H
20+S As a result, the removal layer 14 can be used continuously without being replaced, and maintenance is free.

なお、前述の実施例においては、接触燃焼式のガスセン
サを用いて可燃ガスを測定する場合について説明したが
、この発明においては、半導体式のガスセンサを用いて
測定するようにしてもよい。
In the above-mentioned embodiment, a case has been described in which combustible gas is measured using a catalytic combustion type gas sensor, but in the present invention, a semiconductor type gas sensor may be used for measurement.

介」LQj「釆 以」二説明したように、この発明によれば、硫化水素ガ
スをガスセンサの直前で除去できるので、金属部分の腐
食、触媒機能の消失を防止できるとともに可燃ガスのみ
を検出することができる。
As explained above, according to the present invention, hydrogen sulfide gas can be removed immediately before the gas sensor, thereby preventing corrosion of metal parts and loss of catalytic function, and detecting only combustible gas. be able to.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明を実施するための装置の一実施例を示
す一部破断側面図、第2図はその回路図である。 2・・・ボディ     lO・・・ガスセンサ11・
・・内カバー    12・・・外力へ−14・・・除
去層
FIG. 1 is a partially cutaway side view showing an embodiment of an apparatus for carrying out the present invention, and FIG. 2 is a circuit diagram thereof. 2...Body lO...Gas sensor 11.
... Inner cover 12 ... To external force -14 ... Removal layer

Claims (1)

【特許請求の範囲】[Claims] 可燃ガスと硫化水素ガスとが共存する被検ガス中に可燃
ガスを検出するガスセンサを放置することにより、自然
拡散した被検ガスとガスセンサとを接触させて可燃ガス
を測定するようにした拡散式可燃ガス測定方法であって
、前記被検ガスを、ガスセンサの周囲を囲むよう配置さ
れ水酸化第2鉄を含む除去層を通過させて硫化水素ガス
を除去した後、ガスセンサに接触させるようにしたこと
を特徴とする拡散式可燃ガス測定方法。
A diffusion method that measures combustible gas by leaving a gas sensor that detects combustible gas in a test gas where combustible gas and hydrogen sulfide gas coexist, and then bringing the naturally diffused test gas into contact with the gas sensor. In the combustible gas measuring method, the test gas is passed through a removal layer containing ferric hydroxide and placed around a gas sensor to remove hydrogen sulfide gas, and then brought into contact with the gas sensor. A diffusion-type combustible gas measurement method characterized by the following.
JP13449784A 1984-06-29 1984-06-29 Diffusion-type combustible gas measuring method Granted JPS6113147A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13449784A JPS6113147A (en) 1984-06-29 1984-06-29 Diffusion-type combustible gas measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13449784A JPS6113147A (en) 1984-06-29 1984-06-29 Diffusion-type combustible gas measuring method

Publications (2)

Publication Number Publication Date
JPS6113147A true JPS6113147A (en) 1986-01-21
JPH0360385B2 JPH0360385B2 (en) 1991-09-13

Family

ID=15129699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13449784A Granted JPS6113147A (en) 1984-06-29 1984-06-29 Diffusion-type combustible gas measuring method

Country Status (1)

Country Link
JP (1) JPS6113147A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0432962A2 (en) * 1989-12-13 1991-06-19 The Governor And Company Of The Bank Of Scotland Flammable gas detection
EP0656538A1 (en) * 1993-11-22 1995-06-07 Siemens Aktiengesellschaft Gas sensor
EP0837324A2 (en) * 1996-10-17 1998-04-22 Denso Corporation Gas concentration detecting device
CN105675660A (en) * 2016-04-29 2016-06-15 国网上海市电力公司 Bridge compensating circuit of insulating gas feature sensor
JP2019015687A (en) * 2017-07-10 2019-01-31 新コスモス電機株式会社 Contact combustion-type gas sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5871448A (en) * 1981-10-23 1983-04-28 Fuigaro Giken Kk Gas detecting element for combustion apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5871448A (en) * 1981-10-23 1983-04-28 Fuigaro Giken Kk Gas detecting element for combustion apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0432962A2 (en) * 1989-12-13 1991-06-19 The Governor And Company Of The Bank Of Scotland Flammable gas detection
EP0656538A1 (en) * 1993-11-22 1995-06-07 Siemens Aktiengesellschaft Gas sensor
EP0837324A2 (en) * 1996-10-17 1998-04-22 Denso Corporation Gas concentration detecting device
EP0837324A3 (en) * 1996-10-17 2000-08-16 Denso Corporation Gas concentration detecting device
US6202469B1 (en) 1996-10-17 2001-03-20 Denso Corporation Gas concentration detecting device
CN105675660A (en) * 2016-04-29 2016-06-15 国网上海市电力公司 Bridge compensating circuit of insulating gas feature sensor
JP2019015687A (en) * 2017-07-10 2019-01-31 新コスモス電機株式会社 Contact combustion-type gas sensor

Also Published As

Publication number Publication date
JPH0360385B2 (en) 1991-09-13

Similar Documents

Publication Publication Date Title
US3866460A (en) Gas detector for fluid-filled electrical apparatus
US4478704A (en) Gas detection device
CA2426420C (en) Catalytic sensor
JP2009507225A (en) Nitrogen oxide gas sensor and method
CN102483388A (en) Air-fuel ratio sensor
KR101325267B1 (en) Catalytic combustion type gas sensor for portable
US4134818A (en) Solid electrolyte sensor for monitoring combustibles in an oxygen containing environment
US5772965A (en) Method and system for detecting deterioration of exhaust gas control catalyst
JPS6113147A (en) Diffusion-type combustible gas measuring method
WO1998018001A2 (en) Combustibility monitor and monitoring method
RU2132551C1 (en) Gas sensor operating process
JP2000065783A (en) Explosion-proof type gas sensor
JPH0414302B2 (en)
JP2512548B2 (en) Inspection method of porous protective layer of oxygen sensor
JP3371358B2 (en) Oxygen / carbon monoxide gas sensor, oxygen / carbon monoxide measuring device and oxygen / carbon monoxide measuring method
Guillet et al. The influence of the electrode size on the electrical response of a potentiometric gas sensor to the action of oxygen
JPS6161343B2 (en)
Shuk et al. Oxygen Gas Sensing Technologies New Features in Combustion Process
JP3098785B2 (en) Oxygen analyzer
SU364886A1 (en) ELECTROCHEMICAL CELL FOR GAS ANALYSIS
JPH116816A (en) Detecting and driving method for carbon monoxide gas
KR20000062964A (en) Porous electrode structure for a gas sensor and sensor arrangement
JPH04290955A (en) Combustible gas concentration analyzing device
JP2000304720A (en) Carbon monoxide sensor
RU2102735C1 (en) Solid gas sensor