JPH116816A - Detecting and driving method for carbon monoxide gas - Google Patents

Detecting and driving method for carbon monoxide gas

Info

Publication number
JPH116816A
JPH116816A JP9161523A JP16152397A JPH116816A JP H116816 A JPH116816 A JP H116816A JP 9161523 A JP9161523 A JP 9161523A JP 16152397 A JP16152397 A JP 16152397A JP H116816 A JPH116816 A JP H116816A
Authority
JP
Japan
Prior art keywords
sensor
carbon monoxide
temperature
low
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9161523A
Other languages
Japanese (ja)
Other versions
JP3463848B2 (en
Inventor
Takashi Kono
隆志 河野
Riyouji Tanda
亮史 反田
Kazu Mochizuki
計 望月
Hiromasa Takashima
裕正 高島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Yazaki Corp
Original Assignee
Tokyo Gas Co Ltd
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd, Yazaki Corp filed Critical Tokyo Gas Co Ltd
Priority to JP16152397A priority Critical patent/JP3463848B2/en
Publication of JPH116816A publication Critical patent/JPH116816A/en
Application granted granted Critical
Publication of JP3463848B2 publication Critical patent/JP3463848B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a detecting and driving method in which carbon monoxide gas can be detected with high accuracy irrespective of its concentration by a method wherein the temperature of a sensor is set to be low in a measurement for a low-concentration region and to be high in a measurement for a high-concentration region. SOLUTION: The temperature of a sensor is set at a temperature (usually about 300 deg.C) at which an ionic conductivity is generated in stabilized zirconia. When it is set at about 800 deg.C or higher, the stabilized zirconia is damaged, and the life of the sensor becomes short. As a result, the sensor is usually used at about 500 deg.C or lower. The temperature of the sensor is set at least at two stages, i.e., a high-temperature stage and a low-temperature stage. For example, about 400 to 500 deg.C is used as the high-temperature stage, and about 300 to 400 deg.C is used as the lower-temperature stage. Then, carbon monoxide gas in a low- concentration region is measured at the low-temperature stage, and the carbon monoxide gas in a high-concentration region is measured at the high-temperature stage. The interval of a temperature changeover is set at a time or higher in which the output of the sensor is stabilized, and it is usually set at about 5 to 10 seconds. When an especially quick changeover is required, an estimation logic means or the like is installed. By this method, the carbon monoxide gas can be measured with good accuracy even in a concentration of 500 ppm or higher.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体電解質型一酸
化炭素センサを検出部として用いる一酸化炭素ガス検出
駆動方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon monoxide gas detection driving method using a solid electrolyte type carbon monoxide sensor as a detection unit.

【0002】[0002]

【従来の技術】一酸化炭素ガス濃度測定装置としては現
在様々なものが実用化されており、それらは工程管理、
安全管理等の分野で幅広く使われている。これらのう
ち、内燃機関あるいは給湯器などの燃焼機器の燃焼排ガ
スの不完全燃焼を検知する一酸化炭素ガス濃度測定装置
のセンサとして用いることができるものとしては半導体
式センサ及び接触燃焼式センサが挙げられる。その中で
も、半導体式センサは試料ガス中の酸素濃度や水分率が
変化すると正確に測定できないと云う欠点を有するた
め、通常、接触燃焼式センサが用いられている。しか
し、一般に燃焼排ガス温度は70〜200℃の間で変動
する。このような試料ガスの温度変化に対応するため接
触燃焼式センサにおいても、極めて厳密な温度補正を行
う必要があった。
2. Description of the Related Art Various types of carbon monoxide gas concentration measuring devices are currently in practical use.
It is widely used in fields such as safety management. Among these, a semiconductor sensor and a contact combustion sensor can be used as sensors of a carbon monoxide gas concentration measurement device that detects incomplete combustion of combustion exhaust gas of a combustion device such as an internal combustion engine or a water heater. Can be Among them, the contact sensor is usually used because the semiconductor sensor has a drawback that accurate measurement cannot be performed if the oxygen concentration or the moisture content in the sample gas changes. However, the flue gas temperature generally fluctuates between 70 and 200 ° C. In order to cope with such a change in the temperature of the sample gas, it is necessary to perform extremely strict temperature correction even in the contact combustion type sensor.

【0003】ここで、給湯器においてはより安全性を求
めるため、低濃度検知(500ppm以下)できるセン
サが必要となっているが、接触燃焼式センサではこのよ
うな低濃度での検知には特性上困難がある。そこでこの
ような問題点を改善すべく固体電解質(酸素イオン伝導
体)を用いた排ガス用不完全燃焼検知センサの開発が検
討され、実用化されはじめている(特公昭58−498
5号公報等)。図1にこのような固体電解質型一酸化炭
素センサの断面図を示す。なお図1において中央にはセ
ンサの断面図、その両側の図はセンサ電極付近の反応を
解説する原理説明図である。
Here, in order to obtain more safety in a water heater, a sensor capable of detecting a low concentration (500 ppm or less) is required. However, a contact combustion type sensor has a characteristic in detecting at such a low concentration. There are difficulties. Therefore, in order to solve such a problem, the development of an incomplete combustion detection sensor for exhaust gas using a solid electrolyte (oxygen ion conductor) has been studied and put into practical use (Japanese Patent Publication No. 58-498).
No. 5 publication). FIG. 1 shows a sectional view of such a solid electrolyte type carbon monoxide sensor. In FIG. 1, the center is a cross-sectional view of the sensor, and the diagrams on both sides are principle explanatory diagrams for explaining the reaction near the sensor electrode.

【0004】図中符号1a及び1bは多孔質白金電極、
2は可燃性ガス酸化触媒層、3は酸素イオン導電性を有
する安定化ジルコニア(以下「YSZ」とも云う)で、
アルミナ層4を介してヒーター5によってその導電性に
最適な温度(300〜500℃)に加温されている。
In the figures, reference numerals 1a and 1b denote porous platinum electrodes,
2 is a combustible gas oxidation catalyst layer, 3 is stabilized zirconia having oxygen ion conductivity (hereinafter also referred to as “YSZ”),
Heated to a temperature (300 to 500 ° C.) optimum for the conductivity by a heater 5 via an alumina layer 4.

【0005】ここで、このようなセンサを一酸化炭素ガ
スを含む雰囲気においた場合、電極1aに接した一酸化
炭素は電極1aに吸着されている酸素と結合して二酸化
炭素となる。一方電極1bの周囲には可燃性ガス酸化触
媒層2が存在するため、雰囲気中の一酸化炭素はその触
媒層2によって酸化されて二酸化炭素となってしまい電
極1bに達することはない。このような電極表面におけ
る酸化反応の有無により、これら電極1a及び1bの間
に、センサの置かれた雰囲気の一酸化炭素濃度に応じた
起電力が生じる。この起電力を測定することにより雰囲
気中の一酸化炭素濃度を検知することができる。
When such a sensor is placed in an atmosphere containing carbon monoxide gas, carbon monoxide in contact with the electrode 1a combines with oxygen adsorbed on the electrode 1a to form carbon dioxide. On the other hand, since the combustible gas oxidation catalyst layer 2 exists around the electrode 1b, carbon monoxide in the atmosphere is oxidized by the catalyst layer 2 to carbon dioxide and does not reach the electrode 1b. Depending on the presence or absence of such an oxidation reaction on the electrode surface, an electromotive force is generated between the electrodes 1a and 1b in accordance with the concentration of carbon monoxide in the atmosphere where the sensor is placed. By measuring this electromotive force, the concentration of carbon monoxide in the atmosphere can be detected.

【0006】なお、一般に燃焼排ガス中には水素ガスな
どの可燃性ガスが微量残存することが多いが、上記の固
体電解質型一酸化炭素センサは水素ガスに対しても感度
を有する。このような固体電解質型一酸化炭素センサに
おいて、その出力は半導体式センサ同様、対数関数的な
応答であるため、低濃度ガスでは精度良く濃度測定が可
能であるが、高度ガスに対しては測定精度が低くなると
云う問題点を有していた。
In general, a very small amount of flammable gas such as hydrogen gas remains in the combustion exhaust gas, but the above-mentioned solid electrolyte type carbon monoxide sensor has sensitivity to hydrogen gas. Since the output of such a solid electrolyte type carbon monoxide sensor is a logarithmic function like a semiconductor sensor, the concentration can be measured accurately with a low concentration gas, but can be measured with a high concentration gas. There was a problem that the accuracy was low.

【0007】[0007]

【発明が解決しようとする課題】本発明は、低濃度ガス
のみならず、高濃度ガスに対しても精度良く濃度検出を
行うことができる固体電解質型一酸化炭素センサを検出
部として用いる一酸化炭素ガス検出駆動方法を提供する
ことを目的とする。
DISCLOSURE OF THE INVENTION The present invention provides a solid oxide carbon monoxide sensor capable of accurately detecting not only a low concentration gas but also a high concentration gas as a detection unit. It is an object of the present invention to provide a carbon gas detection driving method.

【0008】[0008]

【課題を解決するための手段】本発明の一酸化炭素ガス
検出駆動方法は、請求項1に記載の通り、固体電解質型
一酸化炭素センサを検出部として用いる一酸化炭素ガス
検出駆動方法において、該センサの温度を、低濃度領域
測定時に低く、高濃度領域測定時に高く設定する構成を
有する。また、本発明の一酸化炭素ガス検出駆動方法
は、請求項2に記載の通り、固体電解質型一酸化炭素セ
ンサを検出部として用いる一酸化炭素ガス検出駆動方法
において、該センサの温度を高低少なくとも2段切り替
え、低温時に低濃度領域の測定を行い、高温時に高濃度
領域の測定を行う構成を有する。
According to a first aspect of the present invention, there is provided a carbon monoxide gas detecting and driving method using a solid electrolyte type carbon monoxide sensor as a detecting unit. The temperature of the sensor is set to be low when measuring the low-density region and to be high when measuring the high-density region. According to a second aspect of the present invention, there is provided a carbon monoxide gas detection driving method using a solid electrolyte type carbon monoxide sensor as a detection unit. It has a configuration in which two-stage switching is performed, the low-concentration region is measured at a low temperature, and the high-concentration region is measured at a high temperature.

【0009】[0009]

【発明の実施の形態】本発明において、センサ温度は安
定化ジルコニアにイオン伝導性が生じる温度以上である
ことが必要である。一般に300℃以上で充分なイオン
伝導性が得られる。また、最高でも800℃以下である
ことが望ましい。800℃超では安定化ジルコニアが損
傷することがあり、センサ寿命を著しく短くする。通常
500℃以下であれば安定化ジルコニアへの影響は殆ど
ないとされている。本発明において、センサ温度を少な
くとも高低2段に設定する必要がある。通常は高低2段
であれば充分ではあるが、必要に応じ、高中低3段など
3段以上に細かく切り替えるようにしても良い。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, it is necessary that the sensor temperature is equal to or higher than the temperature at which ionic conductivity occurs in stabilized zirconia. Generally, sufficient ion conductivity is obtained at 300 ° C. or higher. Further, it is desirable that the temperature is at most 800 ° C. or less. If the temperature exceeds 800 ° C., the stabilized zirconia may be damaged, and the life of the sensor is significantly shortened. It is generally said that if the temperature is 500 ° C. or less, there is almost no effect on stabilized zirconia. In the present invention, it is necessary to set the sensor temperature to at least two levels. Normally, two levels of high and low are sufficient, but if necessary, three or more steps such as three steps of high, medium and low may be finely switched.

【0010】センサ温度を高低2段にする場合、たとえ
ば400℃以上500℃以下を高温、300℃以上40
0℃未満を低温としてよい。なお、充分な効果を得るた
めには、これら温度の差を100℃以上とすることが望
ましい。また、良好な測定を可能とするためにセンサ温
度は、再現性良く、かつ安定していることが求められ
る。本発明において、高濃度領域の一酸化炭素ガスを測
定するためにセンサ温度を高温に、低濃度領域の一酸化
炭素ガスを測定するためにセンサ温度を低温に設定して
それぞれ測定しても良い。しかし、例えばセンサ温度を
高温低温と交互に設定し、センサ出力を調べて、測定対
象ガス中の一酸化炭素ガス濃度が高濃度領域にあると判
断されるときに高温設定時に濃度を測定し、また、低濃
度領域にあると判断されるときに低温設定時に濃度を測
定してもよい。
When the temperature of the sensor is set at two levels, for example, a temperature between 400 ° C. and 500 ° C. is set to a high temperature,
A temperature lower than 0 ° C. may be a low temperature. In order to obtain a sufficient effect, it is desirable that the difference between these temperatures be 100 ° C. or more. Further, in order to enable good measurement, the sensor temperature is required to be stable with good reproducibility. In the present invention, the sensor temperature may be set to a high temperature in order to measure carbon monoxide gas in a high concentration region, and the sensor temperature may be set to a low temperature in order to measure carbon monoxide gas in a low concentration region. . However, for example, the sensor temperature is set alternately with high and low temperatures, the sensor output is examined, and when the concentration of carbon monoxide gas in the measurement target gas is determined to be in the high concentration region, the concentration is measured at the high temperature setting, Further, when it is determined that the density is in the low density area, the density may be measured at a low temperature setting.

【0011】後者の場合、温度切り替えの間隔は、セン
サ出力が実質安定する時間以上に設定することが必要で
あり、センサ個体差によっても変わるが通常5秒以上1
0秒以下であるが、特に迅速な切り替えが必要な場合、
推測論理手段などを設けた場合、あるいは特に正確な値
が求められる場合などはこの限りではない。なお、上記
のようなセンサ温度の切り替えや測定領域の判断はマイ
クロコンピューターを用いれば容易に行うことができ
る。
In the latter case, it is necessary to set the temperature switching interval to a time longer than the time when the sensor output is substantially stabilized.
Less than 0 seconds, but especially when a quick switch is needed,
This is not the case when a guessing logic means is provided, or when particularly accurate values are required. Note that switching of the sensor temperature and determination of the measurement area as described above can be easily performed by using a microcomputer.

【0012】[0012]

【実施例】以下、本発明の実施例について説明する。な
お、検出部として用いたセンサは図1に示した固体電解
質型一酸化炭素センサであり、その上面図を図2に示
す。センサの電極1a及び1bとセンサの隅に設けられ
た接続用端子部6とがそれぞれ白金からなるリード線部
7によって接続されている。このセンサは取り扱いしや
すいように図3に示すようにフェノール樹脂製の台座8
に固定されている。なお、図3中4本の導電性のピン9
が図示されているが、このうち2本が上記センサ電極1
a及び1bに接続されているもので、残りの2本はセン
サ内部のヒータに接続されているものである。
Embodiments of the present invention will be described below. The sensor used as the detection unit is the solid electrolyte type carbon monoxide sensor shown in FIG. 1, and a top view thereof is shown in FIG. The electrodes 1a and 1b of the sensor and the connection terminals 6 provided at the corners of the sensor are connected by lead wires 7 made of platinum, respectively. This sensor is made of a phenolic base 8 as shown in FIG.
It is fixed to. Note that four conductive pins 9 in FIG.
Are shown, two of which are the sensor electrodes 1
a and 1b, and the other two are connected to a heater inside the sensor.

【0013】このセンサを検出部として一酸化炭素を含
む試料ガスに対する応答を調べた。センサのヒータに印
加するヒータ電圧を低く(Lo)設定してセンサ温度を
350℃としたとき、0〜1000ppmの一酸化炭素
を含む試料ガスに対するセンサ出力を図4に示した。な
お、この測定において水素を一酸化炭素濃度の半分にな
るよう添加してある。これは、燃料として炭化水素を用
いるときの排気ガス中の一酸化炭素濃度を測定すること
を想定し、この場合に不完全燃焼時に発生する一酸化炭
素及び水素のモデルとしてこの比率を選択したものであ
り、以下に示す測定においても同様の比率で行ってい
る。図4よりこのヒータ電圧をLoとしたとき、一酸化
炭素ガス濃度が0ppm以上500以下ppmの範囲で
は感度が高い測定が可能であるが、500ppm超10
00ppmの濃度範囲では感度が低いことが判る。
The response to a sample gas containing carbon monoxide was examined using this sensor as a detection unit. When the heater voltage applied to the sensor heater is set low (Lo) and the sensor temperature is set to 350 ° C., the sensor output for a sample gas containing 0 to 1000 ppm of carbon monoxide is shown in FIG. In this measurement, hydrogen was added so as to be half of the carbon monoxide concentration. This assumes that the concentration of carbon monoxide in the exhaust gas when using hydrocarbons as fuel is measured, and this ratio is selected as a model of carbon monoxide and hydrogen generated during incomplete combustion in this case. The same ratio is used in the measurement described below. As shown in FIG. 4, when the heater voltage is Lo, a highly sensitive measurement is possible when the concentration of carbon monoxide gas is in the range of 0 ppm to 500 ppm.
It can be seen that the sensitivity is low in the concentration range of 00 ppm.

【0014】一方、ヒータ電圧を高く(Hi)設定して
センサ温度を450℃としたとき、0〜3000ppm
の一酸化炭素を含む試料ガスに対するセンサ出力を図5
に示した。図5より、ヒータ電圧をHiに設定したとき
には500ppm超の範囲でも高い精度を有する測定が
行えることが判る。
On the other hand, when the heater voltage is set high (Hi) and the sensor temperature is set to 450 ° C., 0 to 3000 ppm
Fig. 5 shows the sensor output for the sample gas containing carbon monoxide.
It was shown to. FIG. 5 shows that when the heater voltage is set to Hi, measurement with high accuracy can be performed even in the range of more than 500 ppm.

【0015】次にこのセンサの応答性について示す。図
6はヒータ電圧をLoとしたときの200ppmの一酸
化炭素を含む試料ガスに対する応答性を示す図である。
図中経過時間30秒の時にこのセンサを試料ガスに露出
したときの結果である。図6より露出後15秒でセンサ
出力は実質安定し、25秒で安定することが判る。
Next, the response of this sensor will be described. FIG. 6 is a diagram showing the response to a sample gas containing 200 ppm of carbon monoxide when the heater voltage is Lo.
The result is obtained when the sensor is exposed to the sample gas when the elapsed time is 30 seconds in the figure. It can be seen from FIG. 6 that the sensor output is substantially stabilized 15 seconds after exposure, and stabilized 25 seconds after exposure.

【0016】一方、図7はヒータ電圧をHiとしたとき
の1000ppmの一酸化炭素を含む試料ガスに対する
応答性を同様に調べた結果を示す図である。図より、ヒ
ータ電圧をLoとしたときと同様、露出後15秒でセン
サ出力は実質安定し、25秒で安定することが判る。
On the other hand, FIG. 7 is a diagram showing the results of a similar study of the response to a sample gas containing 1000 ppm of carbon monoxide when the heater voltage is Hi. From the figure, it is understood that the sensor output is substantially stabilized 15 seconds after exposure and stabilized 25 seconds after exposure, as in the case where the heater voltage is set to Lo.

【0017】さらに、センサ温度を、高低2段交互に切
り替えた時の結果について説明する。図8はヒータ電圧
をHi、Loと切り替えたときの結果を示す図である。
なお、用いた試料ガスは1000ppmの一酸化炭素を
含むもので、図中経過時間が30秒のときにセンサをこ
のガスに露出した。図8より、センサ温度を高低2段交
互に切り替えたとき、センサ出力の応答性は良好で、セ
ンサ温度の切り替えに良好に追随できることが判る。な
お、この結果から、センサ温度を高低交互に切り替えた
とき、図4及び図5のガス濃度−センサ出力の関係を検
量線とすることにより、一酸化炭素の測定が高濃度領域
まで高精度で測定できることが判る
Further, a result when the sensor temperature is alternately switched between high and low two stages will be described. FIG. 8 is a diagram showing the result when the heater voltage is switched between Hi and Lo.
The sample gas used contained 1000 ppm of carbon monoxide, and the sensor was exposed to this gas when the elapsed time in the figure was 30 seconds. From FIG. 8, it can be seen that when the sensor temperature is alternately switched between high and low, the response of the sensor output is good, and the sensor temperature can be favorably followed by switching. From this result, when the sensor temperature is switched alternately between high and low, the relationship between the gas concentration and the sensor output in FIGS. 4 and 5 is used as a calibration curve, so that the measurement of carbon monoxide can be performed with high accuracy up to the high concentration region. Understand that it can be measured

【0018】なお、図9にセンサ温度を高低交互に連続
的に切り替えるときのヒータ電圧のタイミングチャート
を示す。この図に示されたようにヒータ電圧をHi、L
oに交互に設定することで、広い範囲で一酸化炭素濃度
の測定を精度良く、連続的に測定することが可能とな
る。
FIG. 9 is a timing chart of the heater voltage when the sensor temperature is continuously switched between high and low. As shown in FIG.
By alternately setting o, the measurement of the concentration of carbon monoxide can be continuously performed with high accuracy over a wide range.

【0019】[0019]

【発明の効果】本発明により、固体電解質型一酸化炭素
センサを用いた一酸化炭素ガス濃度測定において、従来
困難であった500ppm以上の濃度領域での測定を精
度良く測定することができる。またセンサ温度を少なく
とも高低2段階に連続的に切り替えることにより、上記
利点を生かしながら、連続的な測定を可能とすることが
できる。
According to the present invention, in the carbon monoxide gas concentration measurement using the solid electrolyte type carbon monoxide sensor, the measurement in the concentration region of 500 ppm or more, which has been conventionally difficult, can be accurately performed. In addition, by continuously switching the sensor temperature to at least two levels of high and low, continuous measurement can be performed while taking advantage of the above advantages.

【図面の簡単な説明】[Brief description of the drawings]

【図1】固体電解質型一酸化炭素センサの断面図及びそ
の原理説明図である。
FIG. 1 is a cross-sectional view of a solid electrolyte type carbon monoxide sensor and an explanatory diagram of its principle.

【図2】固体電解質型一酸化炭素センサの上面図であ
る。
FIG. 2 is a top view of a solid electrolyte type carbon monoxide sensor.

【図3】センサの台座への固定状態を示す図(斜視図)
である。
FIG. 3 is a diagram (perspective view) showing a state where the sensor is fixed to a base.
It is.

【図4】ヒータ電圧Lo(センサ温度:低)時の一酸化
炭素200ppm及び水素100ppmを含む混合ガス
に対するガス濃度特性を示す図である。
FIG. 4 is a diagram showing gas concentration characteristics for a mixed gas containing 200 ppm of carbon monoxide and 100 ppm of hydrogen when a heater voltage Lo (sensor temperature: low).

【図5】ヒータ電圧Hi(センサ温度:高)時の一酸化
炭素1000ppm及び水素500ppmを含む混合ガ
スに対するガス濃度特性を示す図である。
FIG. 5 is a diagram showing gas concentration characteristics for a mixed gas containing 1000 ppm of carbon monoxide and 500 ppm of hydrogen when a heater voltage Hi (sensor temperature: high).

【図6】ヒータ電圧Lo(センサ温度:低)時の一酸化
炭素200ppm及び水素100ppmを含む混合ガス
に対するセンサ出力の応答性を示す図である。
FIG. 6 is a diagram showing the response of the sensor output to a mixed gas containing 200 ppm of carbon monoxide and 100 ppm of hydrogen when the heater voltage is Lo (sensor temperature: low).

【図7】ヒータ電圧Hi(センサ温度:高)時の一酸化
炭素1000ppm及び水素500ppmを含む混合ガ
スに対するセンサ出力の応答性を示す図である。
FIG. 7 is a diagram showing the response of the sensor output to a mixed gas containing 1000 ppm of carbon monoxide and 500 ppm of hydrogen when the heater voltage is Hi (sensor temperature: high).

【図8】ヒータ電圧をHi、Loと交互に切り替えたと
きの1000ppmのCOガスに対するセンサ出力の応
答性を示す図である。
FIG. 8 is a diagram showing the response of the sensor output to 1000 ppm CO gas when the heater voltage is alternately switched between Hi and Lo.

【図9】センサ温度を高低交互に連続的に切り替えると
きのヒータ電圧のタイミングチャートを示す図である。
FIG. 9 is a diagram showing a timing chart of a heater voltage when the sensor temperature is continuously switched between high and low.

【符号の説明】[Explanation of symbols]

1a、1b 多孔質白金電極 2 可燃性ガス酸化触媒層 3 安定化ジルコニア 4 アルミナ層 5 ヒーター 6 接続用端子部 7 リード線部 8 台座 9 ピン 1a, 1b Porous platinum electrode 2 Flammable gas oxidation catalyst layer 3 Stabilized zirconia 4 Alumina layer 5 Heater 6 Connection terminal part 7 Lead wire part 8 Base 9 Pin

───────────────────────────────────────────────────── フロントページの続き (72)発明者 望月 計 静岡県天竜市二俣町南鹿島23 矢崎計器株 式会社内 (72)発明者 高島 裕正 静岡県天竜市二俣町南鹿島23 矢崎計器株 式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Total Mochizuki 23 Minamikashima, Futama-machi, Tenryu-shi, Shizuoka Prefecture Inside Yazaki Keiki Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 固体電解質型一酸化炭素センサを検出部
として用いる一酸化炭素ガス検出駆動方法において、該
センサの温度を、低濃度領域測定時に低く、高濃度領域
測定時に高く設定することを特徴とする一酸化炭素ガス
検出駆動方法。
1. A carbon monoxide gas detection driving method using a solid electrolyte type carbon monoxide sensor as a detection unit, wherein the temperature of the sensor is set low when measuring a low concentration region and high when measuring a high concentration region. Driving method for detecting carbon monoxide gas.
【請求項2】 固体電解質型一酸化炭素センサを検出部
として用いる一酸化炭素ガス検出駆動方法において、該
センサの温度を高低少なくとも2段切り替え、低温時に
低濃度領域の測定を行い、高温時に高濃度領域の測定を
行うことを特徴とする一酸化炭素ガス検出駆動方法。
2. A method for detecting and driving carbon monoxide gas using a solid electrolyte type carbon monoxide sensor as a detection unit, wherein the temperature of the sensor is switched between high and low at least two stages, a low concentration region is measured at a low temperature, and a high concentration is measured at a high temperature. A method for detecting and driving carbon monoxide gas, comprising measuring a concentration region.
JP16152397A 1997-06-18 1997-06-18 Carbon monoxide gas detection drive method Expired - Fee Related JP3463848B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16152397A JP3463848B2 (en) 1997-06-18 1997-06-18 Carbon monoxide gas detection drive method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16152397A JP3463848B2 (en) 1997-06-18 1997-06-18 Carbon monoxide gas detection drive method

Publications (2)

Publication Number Publication Date
JPH116816A true JPH116816A (en) 1999-01-12
JP3463848B2 JP3463848B2 (en) 2003-11-05

Family

ID=15736711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16152397A Expired - Fee Related JP3463848B2 (en) 1997-06-18 1997-06-18 Carbon monoxide gas detection drive method

Country Status (1)

Country Link
JP (1) JP3463848B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002048747A (en) * 2000-05-25 2002-02-15 Tokyo Gas Co Ltd Carbon monoxide sensor composite element, carbon monoxide concentration meter, and carbon monoxide sensor
JP2006047275A (en) * 2004-06-29 2006-02-16 Honda Motor Co Ltd Gas detector
JP2010091299A (en) * 2008-10-03 2010-04-22 Ngk Spark Plug Co Ltd Combustible gas detector

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002048747A (en) * 2000-05-25 2002-02-15 Tokyo Gas Co Ltd Carbon monoxide sensor composite element, carbon monoxide concentration meter, and carbon monoxide sensor
JP2006047275A (en) * 2004-06-29 2006-02-16 Honda Motor Co Ltd Gas detector
JP4602124B2 (en) * 2004-06-29 2010-12-22 本田技研工業株式会社 Gas detector
JP2010091299A (en) * 2008-10-03 2010-04-22 Ngk Spark Plug Co Ltd Combustible gas detector

Also Published As

Publication number Publication date
JP3463848B2 (en) 2003-11-05

Similar Documents

Publication Publication Date Title
JP3871497B2 (en) Gas sensor
US5643429A (en) Electrochemical cells and methods using perovskites
EP0194082B1 (en) Method of determining concentration of a component in gases and electrochemical device suitable for practicing the method
US4902400A (en) Gas sensing element
US4828673A (en) Apparatus for measuring combustible gas concentration in flue gas
CA2068131A1 (en) Apparatus for sensing oxides of nitrogen
US5562811A (en) Device for temperature measurement at an oxygen probe
CA1095989A (en) Solid electrolyte sensor for monitoring combustibles in an oxygen containing environment
JP3827721B2 (en) Electrochemical sensor for measuring nitrogen oxides in gas mixtures
US4428817A (en) Sensor cell structure for oxygen-combustibles gas mixture sensor
CA2031325A1 (en) Flammable gas detection
JPH116816A (en) Detecting and driving method for carbon monoxide gas
JP4625261B2 (en) Sensor element of gas sensor
JP3658285B2 (en) Carbon monoxide sensor and carbon monoxide concentration meter
JP2512548B2 (en) Inspection method of porous protective layer of oxygen sensor
JPH0638075B2 (en) A rapid method for detecting changes in the atmosphere of combustion exhaust gas.
JP3343883B2 (en) Cleaning method for carbon monoxide sensor and carbon monoxide detector
JP3275939B2 (en) Cleaning method for carbon monoxide sensor
RU2092828C1 (en) Gas measuring sensor
RU2053506C1 (en) Solid electrolyte sensor for gas analysis
JP3371358B2 (en) Oxygen / carbon monoxide gas sensor, oxygen / carbon monoxide measuring device and oxygen / carbon monoxide measuring method
JP2881947B2 (en) Zirconia sensor
KR20000062964A (en) Porous electrode structure for a gas sensor and sensor arrangement
JP2593545B2 (en) How to identify poisoned elements
JP2000171433A (en) Combustible gas concentration measuring device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030722

LAPS Cancellation because of no payment of annual fees