JP2000171433A - Combustible gas concentration measuring device - Google Patents

Combustible gas concentration measuring device

Info

Publication number
JP2000171433A
JP2000171433A JP10343076A JP34307698A JP2000171433A JP 2000171433 A JP2000171433 A JP 2000171433A JP 10343076 A JP10343076 A JP 10343076A JP 34307698 A JP34307698 A JP 34307698A JP 2000171433 A JP2000171433 A JP 2000171433A
Authority
JP
Japan
Prior art keywords
electrode
oxygen
concentration
flammable gas
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10343076A
Other languages
Japanese (ja)
Inventor
Koretomo Ko
云智 高
Akira Kunimoto
晃 国元
Yukio Nakanouchi
幸雄 中野内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Original Assignee
Riken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp filed Critical Riken Corp
Priority to JP10343076A priority Critical patent/JP2000171433A/en
Publication of JP2000171433A publication Critical patent/JP2000171433A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a device capable of measuring combustible gas even in gas to be inspected containing oxygen in high concentration. SOLUTION: An oxygen detecting electrode 2 inactive to HC, an oxygen detecting electrode 3 active to HC and an oxygen pump 6 are arranged to solid electrolyte substrates 1, 5 opposed to each other in a form exposed to gas to be inspected and a reference electrode 4 is arranged to the back surface of the substrate 1. The electrodes 2, 3 and the oxygen pump 6 are connected by electric circuits 9, 11 and the potential difference between the reference electrode 4 and one electrode 3 is measured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、可燃性ガスの濃度
を測定するデバイスに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for measuring the concentration of a combustible gas.

【0002】[0002]

【従来の技術】自動車に搭載した内燃機関の排ガスの中
には、HC,COなどの可燃性ガスが含まれている。こ
れらの可燃性ガスが排出されると、車の燃費の問題に加
えて、人間に対する有害性が問題となる。その一つが発
ガンを誘発する危険を有することである。さらに、この
種のガスが大気中に排出されると、環境汚染の原因の一
つにもなる。このため、排ガス中のHC,COなどの可
燃性ガスの検知は排ガスの制御の前提となり、非常に重
要な課題とされている。従って、可燃性ガス測定機器の
小型化、低コスト化、さらに、各種使用環境に対応でき
る検知器は必要である。
2. Description of the Related Art Combustible gases such as HC and CO are contained in exhaust gas of an internal combustion engine mounted on an automobile. When these flammable gases are emitted, harm to humans becomes a problem in addition to the problem of fuel efficiency of vehicles. One of them is the risk of triggering cancer. Furthermore, the emission of such gases into the atmosphere is one of the causes of environmental pollution. For this reason, detection of flammable gas such as HC and CO in exhaust gas is a prerequisite for exhaust gas control and is a very important issue. Therefore, there is a need for a detector that can reduce the size and cost of combustible gas measuring devices and that can respond to various use environments.

【0003】従来のHCなどの可燃性ガス濃度を測定す
る装置は、電気化学的な方法、或いは金属酸化物半導体
を用いて導電率変化により検知する方式、或いは触媒燃
焼による発熱量を抵抗変化により検出する方法等が研究
され、部分的には計測機器として実用化されている。し
かし、半導体方式では素子作動温度が低く、内燃機関の
高温排ガス用、あるいは車載用に適していない。また、
触媒燃焼方式では温度制御が非常に厳しく、半導体式と
同様に内燃機関の高温排ガス用、あるいは車載用に使用
できない。従って、内燃機関の排ガス測定について可能
性のある検知方式は、ほとんどが電気化学的な方法を用
いるものとなる。
A conventional apparatus for measuring the concentration of combustible gas such as HC is an electrochemical method, a method of detecting a change in conductivity using a metal oxide semiconductor, or a method of detecting a calorific value due to catalytic combustion by a change in resistance. The detection method and the like have been studied and partially put into practical use as measuring instruments. However, the semiconductor method has a low element operating temperature, and is not suitable for high-temperature exhaust gas of an internal combustion engine or for in-vehicle use. Also,
In the catalytic combustion system, the temperature control is very strict, and cannot be used for high-temperature exhaust gas of an internal combustion engine or for in-vehicle use like the semiconductor type. Therefore, most of the possible detection methods for measuring the exhaust gas of the internal combustion engine use an electrochemical method.

【0004】これまで、電気化学的な可燃性ガスの濃度
測定では、酸素センサを利用して、HCの触媒燃焼する
際の酸素濃度の低下を測定する方法、或いは酸素濃度を
一定になるように、酸素センサの出力を用いて電気化学
的な酸素ポンプを制御し、この時のHCの濃度に比例す
るフィードバック電流を測定する方法、或いはHCなど
を電気化学的に酸化させ、この時の限界電流を測定する
方法が提案されている。例えば、電気化学協会の第26
回化学センサ研究会proceeding(vol.14,p69
-72,1998)に報告されているプロピレンセンサがある。
これはHCの触媒燃焼する際の酸素濃度の低下分を、酸
素センサの出力を用いて電気化学的な酸素ポンプで制御
し、この時のHCの濃度に比例するフィードバック電流
を測定する方法である。
Heretofore, in the electrochemical measurement of the concentration of combustible gas, a method of measuring a decrease in oxygen concentration during catalytic combustion of HC using an oxygen sensor, or a method of keeping the oxygen concentration constant. A method of controlling an electrochemical oxygen pump using the output of an oxygen sensor and measuring a feedback current proportional to the concentration of HC at this time, or electrochemically oxidizing HC and the like, and limiting current at this time. Has been proposed. For example, No. 26 of the Electrochemical Society
Annual Meeting of the Chemical Sensors Society, proceeding (vol.14, p69)
-72, 1998).
In this method, the amount of decrease in the oxygen concentration during catalytic combustion of HC is controlled by an electrochemical oxygen pump using the output of an oxygen sensor, and a feedback current proportional to the concentration of HC at this time is measured. .

【0005】しかしながら、前述の原理から分かるよう
に何れの方法でも低酸素濃度のガス中でしか測定できな
い。すなわち、酸素濃度が高いと、HCの酸化による酸
素濃度の変化は非常に小さくなり、測定精度が大幅に低
下する。特に、酸素濃度の増加に伴って、燃焼ガス中の
HC濃度が燃焼によって低下し、この時の低濃度HCを
検出するには前述の方法では非常に困難である。
[0005] However, as can be seen from the above-mentioned principle, any method can only be used for measurement in a gas having a low oxygen concentration. That is, when the oxygen concentration is high, the change in the oxygen concentration due to the oxidation of HC becomes very small, and the measurement accuracy is greatly reduced. Particularly, as the oxygen concentration increases, the HC concentration in the combustion gas decreases due to combustion, and it is very difficult to detect the low concentration HC at this time by the above-described method.

【0006】[0006]

【発明が解決しようとする課題】上記従来のHCセンサ
及び測定法は低酸素濃度、或いは酸素濃度とHC濃度が
同程度の場合でしか適用できない。本発明は従来に比べ
てより高酸素濃度の排ガス、或いは酸素濃度に比べて、
HC濃度が低い場合の排ガス中でも測定できるHCセン
サ及びその測定方法を提供することを目的とする。
The above-mentioned conventional HC sensor and measuring method can be applied only when the oxygen concentration is low, or when the oxygen concentration and the HC concentration are almost the same. The present invention, compared to conventional exhaust gas with a higher oxygen concentration, or compared to the oxygen concentration,
It is an object of the present invention to provide an HC sensor capable of measuring even exhaust gas when the HC concentration is low, and a method for measuring the HC sensor.

【0007】[0007]

【課題を解決するための手段】従来のHC濃度測定法は
起電力測定と限界電流測定の二種類に分類できる。この
二種類の方法は被検ガス中のHCを全部燃焼させてか
ら、酸素濃度をそのまま処理せずに測定する方法と、被
検ガス中の酸素を出来るだけ除いてからHC濃度を測定
する方法であり、何れの方法でも酸素の影響を大きく受
けることとなる。本発明は被検ガス中の酸素濃度を被検
ガス中に存在するHC濃度に応じて変化させた酸素濃度
の測定結果と両者の濃度比(即ちPO2/PO2-HC)から
HC濃度を測定することを検出原理とするので、酸素共
存下でHCを測定する事が可能である。
The conventional methods for measuring the concentration of HC can be classified into two types: measurement of electromotive force and measurement of limit current. These two methods are a method in which the HC in the test gas is completely burned and then the oxygen concentration is measured without treatment, and a method in which the oxygen in the test gas is removed as much as possible before measuring the HC concentration. Therefore, any of the methods is greatly affected by oxygen. According to the present invention, the HC concentration is determined from the measurement result of the oxygen concentration in which the oxygen concentration in the test gas is changed in accordance with the HC concentration present in the test gas and the concentration ratio between the two (that is, P O2 / P O2-HC ). Since measurement is based on the detection principle, it is possible to measure HC in the presence of oxygen.

【0008】請求項1〜3によれば、イオン伝導性(例
えば安定化ジルコニア)固体電解質基板1の片面に、少
なくとも可燃性ガスに不活性、酸素に活性な電極2と、
可燃性ガスの酸素との酸化反応を生じさせ、且つ酸素に
活性な電極3と、この固体電解質基板の反対面に大気に
曝された酸素に活性な基準電極、或いは酸化物、塩化物
で形成した電位安定な基準電極、あるいは被検ガスと隔
離された電位安定な電極4を形成し、別の固体電解質基
板5の両面に酸素に活性な電極6と電極7からなる酸素
ポンプを形成し、これを固体電解質基板1の電極2と電
極3の面に相対した位置に空間にできるように配置し、
HCセンサを構成する。
According to the first to third aspects, an electrode 2 which is inert to at least a combustible gas and active to oxygen is provided on one surface of an ion-conductive (for example, stabilized zirconia) solid electrolyte substrate 1.
Oxidation reaction of flammable gas with oxygen is caused and formed by an electrode 3 active on oxygen and a reference electrode active on oxygen on the opposite surface of the solid electrolyte substrate, or an oxide or chloride. Forming a potential-stable reference electrode or a potential-stable electrode 4 isolated from the test gas, and forming an oxygen pump comprising an oxygen-active electrode 6 and an electrode 7 on both surfaces of another solid electrolyte substrate 5, This is arranged at a position facing the surfaces of the electrodes 2 and 3 of the solid electrolyte substrate 1 so as to form a space,
Construct an HC sensor.

【0009】さらに、電子回路によって電極2と電極3
の間の起電力差を測定し、この電位差を所定値になるよ
うに検知電極の対向に位置する酸素ポンプを用いて酸素
濃度を制御し、この時の電極2と電極4の起電力を検出
して測定空間の酸素濃度を測定し、電極2と電極3の間
の起電力差の所定値から、可燃性ガス濃度を算出する方
法を特徴とする可燃性ガス濃度を測定できるHCセンサ
を提供する。
Further, the electrodes 2 and 3 are formed by an electronic circuit.
The oxygen concentration is controlled using an oxygen pump located opposite the detection electrode so that the potential difference becomes a predetermined value, and the electromotive force between the electrodes 2 and 4 at this time is detected. A HC sensor capable of measuring a flammable gas concentration characterized by a method of measuring an oxygen concentration in a measurement space and calculating a flammable gas concentration from a predetermined value of an electromotive force difference between the electrodes 2 and 3. I do.

【0010】本発明のポイントとなるのは本発明のHC
センサの作動原理である。請求項3によれば、HCガス
に不活性で、且つ酸素に活性な電極2とHCと酸素両方
に活性な電極3が電極表面の酸素濃度に対応して、ネル
ンスト式に従って起電力を発生する。ここで、電極2で
発生した電位は被検ガス中の酸素濃度に対応する値で、
電極3で発生した電位はHCなどの可燃ガスが燃焼によ
って酸素濃度が低下した後の酸素濃度に対応する電位で
ある。従って、その電位差は式1に示す式で表すことが
出来る。
The point of the present invention is that the HC of the present invention is used.
This is the principle of operation of the sensor. According to the third aspect, the electrode 2 that is inert to the HC gas and active to oxygen and the electrode 3 that is active to both HC and oxygen generate an electromotive force according to the Nernst equation according to the oxygen concentration on the electrode surface. . Here, the potential generated at the electrode 2 is a value corresponding to the oxygen concentration in the test gas,
The potential generated at the electrode 3 is a potential corresponding to the oxygen concentration after the combustible gas such as HC has decreased in oxygen concentration by combustion. Therefore, the potential difference can be expressed by the equation shown in Equation 1.

【0011】[0011]

【数1】 (Equation 1)

【0012】ここで、N=PO2/PO2-HC=定数、ΔE
は電極2と電極3の電位差、Rは気体定数(8.314
J.mol-1,K-1)、FはFaraday定数(964
84C.mol-1)、PO2は電極2表面の酸素分圧、P
O2-HCは電極3表面の酸素分圧(可燃性ガスが燃焼後の
酸素分圧)を示す。
Where N = P O2 / P O2-HC = constant, ΔE
Is the potential difference between electrode 2 and electrode 3, and R is the gas constant (8.314
J. mol −1 , K −1 ) and F are Faraday constants (964)
84 C.mol -1 ), P O2 is the oxygen partial pressure on the surface of the electrode 2,
O2-HC indicates the oxygen partial pressure on the surface of the electrode 3 (the oxygen partial pressure after the combustible gas is burned).

【0013】請求項2で述べたように、この電位差を電
子回路によって所定値に保持すると、この時の電極2表
面の酸素濃度を測定すれば、HCなどの可燃ガスの濃度
が分かる。さらに、この所定値を変化させることによっ
て、本発明のHCセンサの感度を任意に設定することが
できる。
As described in claim 2, when this potential difference is held at a predetermined value by an electronic circuit, the concentration of combustible gas such as HC can be determined by measuring the oxygen concentration on the surface of the electrode 2 at this time. Further, by changing the predetermined value, the sensitivity of the HC sensor of the present invention can be arbitrarily set.

【0014】請求項4によれば、請求項1〜3に述べた
構造と原理のHCセンサにおいて、酸素のみ活性な電極
2をAu、あるいはPtとAuとからなる合金、あるい
は当該電極中に金属酸化物を混合添加した合金材料を用
いて作製することができる。PtとAuとからなる合金
電極について、特に耐焼結性の観点から1〜20%のA
uを添加することが望ましい。
According to a fourth aspect of the present invention, in the HC sensor having the structure and principle described in the first to third aspects, the electrode 2 which is active only in oxygen is made of Au, an alloy of Pt and Au, or a metal in the electrode. It can be manufactured using an alloy material to which an oxide is mixed and added. Regarding an alloy electrode composed of Pt and Au, from the viewpoint of sintering resistance in particular, 1 to 20% of A
It is desirable to add u.

【0015】請求項5によれば、請求項1〜3に述べた
構造と原理のHCセンサにおいて、可燃性ガスの酸素と
の酸化反応を生じさせ、且つ酸素に活性な電極3を請求
項1〜4中に記載された構成の可燃性ガス濃度測定デバ
イスであって、電極3がPt,Pd,Rh,Ru,R
e,Irのうち少なくとも1種以上からなる電極、ある
いは当該電極中に金属酸化物を混合添加した材料を用い
て作製することができる。例えば、電極3をPtのみを
用いても良いが、HCを充分酸化させるために、Ptと
Ruの合金、あるいはPtとPdの合金、あるいはPt
とReの合金を用いて作製することが望ましい。さら
に、金属酸化物の触媒作用と電極の耐焼結性の観点から
金属酸化物を添加すれば、電極3の性能は更に向上する
ことができる。
According to a fifth aspect of the present invention, in the HC sensor having the structure and principle described in the first to third aspects, the oxidation reaction of the combustible gas with oxygen is caused, and the electrode 3 active on oxygen is provided. 4. The flammable gas concentration measuring device having the configuration described in any one of (1) to (4) above,
The electrode can be manufactured using an electrode made of at least one of e and Ir, or a material in which a metal oxide is mixed and added into the electrode. For example, the electrode 3 may be made of only Pt, but in order to sufficiently oxidize HC, an alloy of Pt and Ru, an alloy of Pt and Pd, or Pt is used.
It is desirable to use an alloy of Re and Re. Furthermore, if a metal oxide is added from the viewpoint of the catalytic action of the metal oxide and the sintering resistance of the electrode, the performance of the electrode 3 can be further improved.

【0016】[0016]

【発明の実施の形態】図1に本発明の最も基本的な実施
形態の一例の断面図を示す。イオン伝導性固体電解質基
板1の片面(被検ガス側)に、少なくとも可燃性ガスに
不活性、酸素に活性な電極2(例えばAu電極)と、可
燃性ガスの燃焼反応(酸素との酸化反応)に活性な電極
3(例えばPt電極)と、この固定電解質基板の反対面
に大気に曝された酸素に活性な基準電極(例えばPt電
極)、或いは酸化物、塩化物で形成した、大気に曝され
ていなくても電位安定な基準電極、あるいは被検ガスと
隔離された電位安定な電極4を形成し、別の固体電解質
基板5の両面に酸素に活性な電極6と電極7からなる酸
素ポンプ(例えばPt−Pt電極)を形成し、これを固
体電解質基板1の電極2と電極3の面に対向した位置に
空間にできるように配置する。
FIG. 1 is a sectional view showing an example of the most basic embodiment of the present invention. At least one electrode 2 (for example, an Au electrode) that is inert to flammable gas and active to oxygen and a combustion reaction of flammable gas (oxidation reaction with oxygen) are provided on one surface (test gas side) of the ion conductive solid electrolyte substrate 1. ), An active electrode 3 (for example, a Pt electrode) and a reference electrode (for example, a Pt electrode) that is active on oxygen exposed to the atmosphere on the opposite surface of the fixed electrolyte substrate, or an oxide or chloride formed on the atmosphere. A potential stable reference electrode or a potential stable electrode 4 isolated from the test gas is formed without exposure, and an oxygen active electrode 6 and an electrode 7 are formed on both surfaces of another solid electrolyte substrate 5. A pump (for example, a Pt-Pt electrode) is formed, and the pump is arranged at a position facing the surfaces of the electrodes 2 and 3 of the solid electrolyte substrate 1 so as to form a space.

【0017】さらに、電子回路によって電極2と電極3
の間の起電力差は所定値になるように酸素ポンプを用い
て酸素濃度を制御し、この時の電極2と電極4の起電力
を検出して測定空間の酸素濃度を測定し、可燃性ガス濃
度を測定する。また、電極2と3の面と電極6の面の間
において、可燃性ガスが電極3の表面で酸化することに
よって、電極2と電極3の間の電位差は前述の式に従
い、その際、酸素の濃度と可燃性ガスの濃度の比をある
一定な値に制御し、この時の酸素濃度による電極電位を
基準電極に対して測定し、酸素の濃度と可燃性ガスの濃
度の比値から可燃性ガスの濃度を検出することができ
る。
Further, the electrodes 2 and 3 are formed by an electronic circuit.
The oxygen concentration is controlled using an oxygen pump so that the difference in electromotive force between the electrodes becomes a predetermined value. The electromotive force of the electrodes 2 and 4 at this time is detected, and the oxygen concentration in the measurement space is measured. Measure the gas concentration. Further, the flammable gas is oxidized on the surface of the electrode 3 between the surfaces of the electrodes 2 and 3 and the surface of the electrode 6, so that the potential difference between the electrodes 2 and 3 follows the above-mentioned equation. The ratio of the concentration of flammable gas to the concentration of flammable gas is controlled to a certain value, and the electrode potential based on the oxygen concentration at this time is measured with respect to the reference electrode. The concentration of the neutral gas can be detected.

【0018】図1に示す構造のHCセンサと電子回路の
作動は次のようになっている。たとえば、測定空間で酸
素濃度が制御できるように、拡散律速になるように絞っ
たガス導入口から被検ガスが導入される。導入されたガ
スは電極2の表面を通過し、電極3の表面に到達する。
この際、電極2はガス中の酸素濃度に対応して起電力が
発生する。一方、電極3上でHCが電極3の触媒作用に
よって燃焼し、酸素濃度が低下することになる。この時
の電極2と電極3の電位差を検出すれば、HCの濃度を
検出する事が可能であるが、酸素濃度がHC濃度より高
い時、この電位差が小さすぎて、HC濃度を検出するこ
とは出来ない。
The operation of the HC sensor and the electronic circuit having the structure shown in FIG. 1 is as follows. For example, a test gas is introduced from a gas inlet narrowed so as to be diffusion-controlled so that the oxygen concentration can be controlled in the measurement space. The introduced gas passes through the surface of the electrode 2 and reaches the surface of the electrode 3.
At this time, the electrode 2 generates an electromotive force corresponding to the oxygen concentration in the gas. On the other hand, HC is burned on the electrode 3 by the catalytic action of the electrode 3, and the oxygen concentration decreases. If the potential difference between the electrode 2 and the electrode 3 at this time is detected, the concentration of HC can be detected. However, when the oxygen concentration is higher than the HC concentration, the potential difference is too small to detect the HC concentration. Can not.

【0019】ここで、本発明では、この電位差が小さけ
れば、酸素ポンプを用いて測定空間中の酸素を排出し、
酸素濃度をこの電位差が所定値になるように下げる。つ
まり、電気回路上で電位差の値を設定し、電極2と電極
3の電位差と所定値の偏差を信号として酸素ポンプを制
御し、測定空間中の酸素濃度をHC濃度の変化に追従さ
せ、所定のN値になるようにする。例えば、Nの設定値
を2とした場合、HCの濃度が200ppmであれば酸素
の濃度が400ppmに制御されることになる。従って、
電極2の起電力を既知の参照電極に対して測定して、酸
素濃度を検知し、さらにNを用いて換算すれば、HCの
濃度を得ることが出来る。このように測定すれば、セン
サの出力はHC濃度の対数に比例し、広範囲、高感度的
に測定することが出来る特長がある。図1中、9は演算
増幅器、10は高抵抗電圧、11は電圧設定部(Nの設
定)を示す。
Here, in the present invention, if this potential difference is small, oxygen in the measurement space is discharged using an oxygen pump,
The oxygen concentration is reduced so that this potential difference becomes a predetermined value. That is, the value of the potential difference is set on the electric circuit, the oxygen pump is controlled by using the difference between the potential difference between the electrode 2 and the electrode 3 and the predetermined value as a signal, and the oxygen concentration in the measurement space follows the change in the HC concentration. N value. For example, when the set value of N is 2, if the concentration of HC is 200 ppm, the concentration of oxygen is controlled to 400 ppm. Therefore,
The concentration of HC can be obtained by measuring the electromotive force of the electrode 2 with respect to a known reference electrode, detecting the oxygen concentration, and converting it using N. With this measurement, the output of the sensor is proportional to the logarithm of the HC concentration, and has the advantage that it can be measured in a wide range and with high sensitivity. In FIG. 1, 9 denotes an operational amplifier, 10 denotes a high resistance voltage, and 11 denotes a voltage setting unit (setting of N).

【0020】[0020]

【実施例】〔実施例1〕公知のジルコニア基板1,5の
上に印刷法でAu電極2、Pt電極3,4,6,7を形
成し焼き付けた。これらのものを用いて積層して図1に
示すような構造のセンサ素子を作製した。また、アルミ
ナ基板13にPtヒータ8を公知の方法で作製し、基板
1に接着し、自己加熱機能を持たせた。この素子を45
0℃の温度にヒータ8によって加熱し、式1中のNを2
になるように電子回路11によって酸素ポンプを制御
し、4%酸素、あるいは1%酸素中、C36の濃度を変
えて電極2の起電力を大気側の参照電極4を基準にして
測定した。測定された起電力のC36の濃度依存性を図
2に示す。本来、電極2は酸素のみに活性であるが、電
極3の起電力の変化によって、酸素ポンプを制御し、測
定空間中の酸素濃度をHC濃度に応じて変化させている
ので、この時得られた起電力は酸素によるものである
が、HCの濃度の対数に比例して、被検ガス中の酸素濃
度にほとんど影響を受けずにHC濃度を検出することが
可能となった。
EXAMPLES Example 1 Au electrodes 2 and Pt electrodes 3, 4, 6, and 7 were formed on known zirconia substrates 1 and 5 by a printing method and baked. These were laminated to produce a sensor element having a structure as shown in FIG. Further, a Pt heater 8 was formed on the alumina substrate 13 by a known method, and was adhered to the substrate 1 to have a self-heating function. This element is 45
Heated to a temperature of 0 ° C. by the heater 8, and N in the equation 1 is changed to 2
The oxygen pump is controlled by the electronic circuit 11 to change the concentration of C 3 H 6 in 4% oxygen or 1% oxygen, and the electromotive force of the electrode 2 is measured with reference to the reference electrode 4 on the atmosphere side. did. FIG. 2 shows the dependency of the measured electromotive force on the concentration of C 3 H 6 . Although the electrode 2 is originally active only on oxygen, the oxygen pump is controlled by changing the electromotive force of the electrode 3 to change the oxygen concentration in the measurement space according to the HC concentration. Although the generated electromotive force is due to oxygen, it has become possible to detect the HC concentration in proportion to the logarithm of the HC concentration without being substantially affected by the oxygen concentration in the test gas.

【0021】〔比較例1〕実施例1と同様な素子を45
0℃の温度にヒータ8によって加熱し、酸素濃度を制御
せず、4%酸素、あるいは1%酸素中、C36の濃度を
変えて電極2と3の起電力を大気側の参照電極4を基準
にして測定した。電極2はHCに対して不活性、酸素の
みに活性を示すので、起電力が変化しなかった。これと
同時に酸素とHC両方に活性な電極3の起電力を参照電
極に対して測定した。これのC36の濃度依存性を図3
に示す。この時得られた起電力は測定空間中の酸素濃度
によるものであるが、HCの導入と酸化反応によって酸
素濃度が低下し、このときの酸素濃度変化は検出され
た。しかし、この酸素濃度の変化は被検ガス中の酸素濃
度に依存し、酸素濃度が高いと、センサの出力が大幅に
低下する。図3にこのような結果を示している。
[Comparative Example 1] An element similar to that of Example 1 was replaced with 45 elements.
Heated to a temperature of 0 ° C. by the heater 8, without changing the oxygen concentration, changing the concentration of C 3 H 6 in 4% oxygen or 1% oxygen and changing the electromotive force of the electrodes 2 and 3 to the reference electrode on the atmosphere side. 4 was used as a reference. Since the electrode 2 was inactive against HC and active only on oxygen, the electromotive force did not change. At the same time, the electromotive force of the electrode 3 active on both oxygen and HC was measured with respect to the reference electrode. FIG. 3 shows the dependence of the concentration on C 3 H 6 .
Shown in The electromotive force obtained at this time depends on the oxygen concentration in the measurement space. However, the oxygen concentration was reduced by the introduction of HC and the oxidation reaction, and the change in oxygen concentration at this time was detected. However, this change in oxygen concentration depends on the oxygen concentration in the test gas, and when the oxygen concentration is high, the output of the sensor is greatly reduced. FIG. 3 shows such a result.

【0022】[0022]

【発明の効果】本発明は新しい測定原理のHCセンサを
提供した。このセンサは酸素濃度の変化による影響をほ
とんど受けずに、広い酸素濃度の範囲に測定できる。さ
らに、このセンサの出力はHC濃度の倍数の対数に比例
し、従来のHCセンサの感度に比べると、高い感度を得
ることができる。
The present invention provides an HC sensor having a new measurement principle. This sensor can measure over a wide range of oxygen concentration with little effect from changes in oxygen concentration. Further, the output of this sensor is proportional to the logarithm of a multiple of the HC concentration, and higher sensitivity can be obtained as compared with the sensitivity of the conventional HC sensor.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明の一例の素子断面模式図であ
る。
FIG. 1 is a schematic cross-sectional view of an element according to an example of the present invention.

【図2】図2は、本発明の実施形態とする出力電圧のC
36の濃度依存性を示すグラフ図である。
FIG. 2 is a graph showing an output voltage C according to an embodiment of the present invention;
FIG. 4 is a graph showing the concentration dependency of 3 H 6 .

【図3】図3は、従来の方法で測定したセンサ出力電圧
のC36の濃度依存性を示すグラフ図である。
FIG. 3 is a graph showing the dependency of the sensor output voltage measured by a conventional method on the concentration of C 3 H 6 .

【符号の説明】[Explanation of symbols]

1 イオン伝導性固体電解質基板 2 酸素検出電極 3 酸素とHCに活性な電極 4 参照電極 5 酸素ポンプ電解質基板 6,7 酸素ポンプ電極 8 自己加熱用白金ヒーター 9 演算増幅器 10 高抵抗電圧計 11 電圧設定部(N値の設定) DESCRIPTION OF SYMBOLS 1 Ion conductive solid electrolyte substrate 2 Oxygen detecting electrode 3 Electrode active for oxygen and HC 4 Reference electrode 5 Oxygen pump electrolyte substrate 6,7 Oxygen pump electrode 8 Self-heating platinum heater 9 Operational amplifier 10 High resistance voltmeter 11 Voltage setting Part (setting of N value)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中野内 幸雄 埼玉県熊谷市末広4丁目14番1号 株式会 社リケン熊谷事業所内 Fターム(参考) 2G004 BB07 BD14 BE22 BE23 BE25 BJ02 BK04 BL09  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Yukio Nakanouchi 4-14-1, Suehiro, Kumagaya-shi, Saitama F-term in Riken Kumagaya Office (reference) 2G004 BB07 BD14 BE22 BE23 BE25 BJ02 BK04 BL09

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 イオン伝導性固体電解質基板(1)の片
面に、少なくとも可燃性ガスに不活性であり、且つ酸素
に活性な電極(2)と、可燃性ガスの酸素との酸化反応
を生じさせ、且つ酸素に活性な電極(3)と、前記固体
電解質基板(1)の反対面に大気に曝された酸素に活性
な基準電極、或いは酸化物、塩化物で形成された電位安
定な基準電極、あるいは被検ガスと隔離された電位安定
な電極(4)を形成し、別の固体電解質基板(5)の両
面に酸素に活性な電極(6)と電極(7)からなる酸素
ポンプを形成し、これを固体電解質基板(1)の電極
(2)と電極(3)の面に相対した位置で被検ガス用空
間を形成するように配置された構成を特徴とする可燃性
ガス濃度測定デバイス。
1. An oxidation reaction between an electrode (2) which is inert to at least a flammable gas and is active on oxygen and an oxygen of a flammable gas occurs on one surface of an ion-conductive solid electrolyte substrate (1). And an oxygen-active electrode (3) and an oxygen-active reference electrode exposed to the atmosphere on the opposite surface of the solid electrolyte substrate (1), or a potential stable reference formed of an oxide or chloride. An electrode or an electrode (4) having a stable electric potential separated from the test gas is formed, and an oxygen pump comprising an electrode (6) and an electrode (7) active on oxygen is provided on both surfaces of another solid electrolyte substrate (5). A flammable gas concentration characterized by being arranged so as to form a space for a test gas at a position facing the surfaces of the electrodes (2) and (3) of the solid electrolyte substrate (1). Measuring device.
【請求項2】 請求項1中に記載された構成の可燃性ガ
ス濃度測定デバイスであって、電子回路によって電極
(2)と電極(3)の間の起電力差が所定値になるよう
に前記酸素ポンプを用いて、この時の電極(2)と電極
(4)間の起電力を検出して測定空間の酸素濃度を測定
し、可燃性ガス濃度を測定する構成を特徴とする可燃性
ガス濃度測定デバイス。
2. A flammable gas concentration measuring device having a configuration according to claim 1, wherein an electromotive force difference between the electrode (2) and the electrode (3) is set to a predetermined value by an electronic circuit. The flammable gas is characterized by detecting the electromotive force between the electrode (2) and the electrode (4) at this time by using the oxygen pump, measuring the oxygen concentration in the measurement space, and measuring the flammable gas concentration. Gas concentration measurement device.
【請求項3】 請求項1〜2中に記載された構成の可燃
性ガス濃度測定デバイスであって、可燃性ガスが電極
(3)の表面で酸化することにより生じる酸素濃度変化
を、電極(2)と電極(3)の間に生じる電位差で測定
し、その際、酸素の濃度と可燃性ガスの濃度の比をある
一定な値に制御し、この時の酸素濃度による電極電位を
基準電極に対して測定し、被検ガス中の酸素濃度と電極
(3)における酸素濃度の比から可燃性ガスの濃度を検
出することを特徴とする可燃性ガス濃度測定デバイス。
3. A flammable gas concentration measuring device according to claim 1, wherein a change in oxygen concentration caused by oxidization of the flammable gas on the surface of the electrode (3) is detected by the electrode (3). 2) and the potential difference between the electrode (3) is measured. At this time, the ratio of the concentration of oxygen to the concentration of flammable gas is controlled to a certain value. A device for measuring the concentration of flammable gas from the ratio of the oxygen concentration in the test gas to the oxygen concentration in the electrode (3).
【請求項4】 請求項1〜3中に記載された構成の可燃
性ガス濃度測定デバイスであって、電極(2)がAu電
極、またはPtとAuとからなる合金電極、あるいは当
該電極中に金属酸化物を混合添加したことを特徴とする
可燃性ガス濃度測定デバイス。
4. The flammable gas concentration measuring device according to claim 1, wherein the electrode (2) is an Au electrode, an alloy electrode composed of Pt and Au, or the electrode. A combustible gas concentration measuring device characterized by mixing and adding a metal oxide.
【請求項5】 請求項1〜4中に記載された構成の可燃
性ガス濃度測定デバイスであって、電極(3)がPt,
Pd,Rh,Ru,Re,Irのうち少なくとも1種以
上からなる電極、あるいは当該電極中に金属酸化物を混
合添加したことを特徴とする可燃性ガス温度測定デバイ
ス。
5. A flammable gas concentration measuring device according to claim 1, wherein the electrode (3) is Pt,
An electrode comprising at least one of Pd, Rh, Ru, Re, and Ir, or a device for measuring a flammable gas temperature, wherein a metal oxide is mixed and added to the electrode.
JP10343076A 1998-12-02 1998-12-02 Combustible gas concentration measuring device Pending JP2000171433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10343076A JP2000171433A (en) 1998-12-02 1998-12-02 Combustible gas concentration measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10343076A JP2000171433A (en) 1998-12-02 1998-12-02 Combustible gas concentration measuring device

Publications (1)

Publication Number Publication Date
JP2000171433A true JP2000171433A (en) 2000-06-23

Family

ID=18358764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10343076A Pending JP2000171433A (en) 1998-12-02 1998-12-02 Combustible gas concentration measuring device

Country Status (1)

Country Link
JP (1) JP2000171433A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008151557A (en) * 2006-12-15 2008-07-03 Denso Corp Gas sensor element and gas sensor using the same
JP2016521855A (en) * 2013-06-11 2016-07-25 ヘレーウス ゼンゾール テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツングHeraeus Sensor Technology GmbH Gas sensor for measuring a plurality of different gases and associated manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008151557A (en) * 2006-12-15 2008-07-03 Denso Corp Gas sensor element and gas sensor using the same
JP2016521855A (en) * 2013-06-11 2016-07-25 ヘレーウス ゼンゾール テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツングHeraeus Sensor Technology GmbH Gas sensor for measuring a plurality of different gases and associated manufacturing method

Similar Documents

Publication Publication Date Title
JP3090479B2 (en) Gas sensor
KR100319010B1 (en) Gas sensor
JP3701114B2 (en) NOx decomposition electrode oxidation prevention method
EP0831322A2 (en) Gas sensor
US6638416B2 (en) Hydrogen sensing process
JP5085993B2 (en) Hybrid potential sensor for detecting various gases in a gas mixture and method for detecting various gases in a gas mixture by the sensor
JP2002139468A (en) Gas sensor
JP3195758B2 (en) Nitrogen oxide sensor
JP2000171433A (en) Combustible gas concentration measuring device
JP4625261B2 (en) Sensor element of gas sensor
JPH1048179A (en) Detecting apparatus for nox
JP4003879B2 (en) Method for manufacturing gas sensor element and gas sensor element
US20200150081A1 (en) Method for determining the temperature of a solid electrolyte gas sensor
JP2000028573A (en) Hydrocarbon gas sensor
JP2000121604A (en) Gas sensor
JP2002005883A (en) Nitrogen oxide gas sensor
JP3195757B2 (en) Nitrogen oxide sensor
JP3086211B2 (en) Nitrogen oxide sensor
JP3371358B2 (en) Oxygen / carbon monoxide gas sensor, oxygen / carbon monoxide measuring device and oxygen / carbon monoxide measuring method
JPH11132995A (en) Nitrogen oxide detector
JP3763430B2 (en) Method and apparatus for measuring NOx concentration in test gas
JP2881947B2 (en) Zirconia sensor
JP2000039419A (en) Nitrogen oxide sensor
JP3850518B2 (en) Nitrogen oxide sensor
JP2007256232A (en) Nox sensor

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050920