JPS58105819A - Controller of cooler for vehicle - Google Patents

Controller of cooler for vehicle

Info

Publication number
JPS58105819A
JPS58105819A JP56206625A JP20662581A JPS58105819A JP S58105819 A JPS58105819 A JP S58105819A JP 56206625 A JP56206625 A JP 56206625A JP 20662581 A JP20662581 A JP 20662581A JP S58105819 A JPS58105819 A JP S58105819A
Authority
JP
Japan
Prior art keywords
cooling capacity
limit value
temperature
cooling
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56206625A
Other languages
Japanese (ja)
Other versions
JPS627002B2 (en
Inventor
Taiji Tamura
泰司 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sankyo Denki Co Ltd
Sanden Corp
Original Assignee
Sankyo Denki Co Ltd
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sankyo Denki Co Ltd, Sanden Corp filed Critical Sankyo Denki Co Ltd
Priority to JP56206625A priority Critical patent/JPS58105819A/en
Publication of JPS58105819A publication Critical patent/JPS58105819A/en
Publication of JPS627002B2 publication Critical patent/JPS627002B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3205Control means therefor

Abstract

PURPOSE:To contrive an improvement of cooling capacity at the time of a low speed and control of overcooling at the time of a high speed, by so constituting that a blowoff temperature is controlled at a setting temperature automatically under the minimum cooling capacity by a compressor having variable compression capacity in a step by step state. CONSTITUTION:A driving circuit 64 of a solenoid valve VSV1 for changing compression capacity, a driving circuit 65 of a solenoid valve VSV2 and a driving circuit 66 of a solenoid clutch for driving and suspension of a compressor are controlled by a microcomputer MC storing a control program by receiving a signal from a blowoff air temperature detecting part 61 and a temperature setting part 62 through an A-D converter 63. A variable compression capacity type coolant compressor varies to CC=1, that is, capacity 100% by closing the solenoid valves VSV1 and VSV2, varies to CC=2, that is, capacity 70% by closing the solenoid valve VSV1 and opening the solenoid valve VSV2 and varies to CC=3, that is, capacity 40% by opening the solenoid valves VSV1 and VSV2. The coolant compressor is driven when a blowoff temperature Te is higher than a setting value T1 and is changed to deescalated compression capacity by one stage automatically when the compression capacity is not minimum. On the other hand, when a temperature does not drop, it is changed on the contrary to escalated capacity by one stage.

Description

【発明の詳細な説明】 一般に,車輛用冷房装置にあっては,自動車エンジンに
よって冷媒圧縮機を駆動するようになっており,一般走
行速度(例えば40km/h)での圧縮機回転数(例え
ば18QOrpm)で最適な冷房能力が得られるように
設計されている。このためアイドリンク時や低速走行時
には圧縮機回転数が低くて冷房負荷に対し冷房能力不足
となシ,逆に高速走行時は冷房能力過剰となる。このよ
うな冷房能力過剰状態に対し,従来は,冷媒蒸発器で冷
却された空気の一部を暖房装置における加熱器を通して
加熱したうえで残シの冷却空気と混合させるいわゆるエ
アミックス方式をとったり,エンジンと圧縮機との動力
伝達を掛は外しする電磁クラ。
[Detailed Description of the Invention] Generally, in a vehicle cooling system, a refrigerant compressor is driven by an automobile engine, and the number of revolutions of the compressor (for example, It is designed to provide optimal cooling capacity at 18Q Orpm). For this reason, when the engine is idling or running at low speeds, the compressor rotational speed is low, resulting in insufficient cooling capacity for the cooling load, and conversely, when driving at high speeds, there is excess cooling capacity. Conventionally, to deal with such excessive cooling capacity, a so-called air mix method was used, in which a portion of the air cooled by the refrigerant evaporator is heated through a heater in the heating system, and then mixed with the remaining cooling air. An electromagnetic crank that disconnects power transmission between the engine and compressor.

チをオン,オフして,圧縮機の駆動,停止を繰シ返す,
いわゆるクラッチサイクリング方式をとることにより,
高速走行時の冷え過ぎを解消するようにしている。
Turn the switch on and off, repeatedly driving and stopping the compressor.
By adopting the so-called clutch cycling method,
This is to eliminate the problem of excessive cooling when driving at high speeds.

しかしエアミックス方式は,エンジンの動力の一部を消
費して冷却した空気を再加熱することになるためエネル
ギーロスが大きいという欠点がある。またクラッチサイ
クリング方式では,高速走行時における能力過剰分が太
きいため電磁クラッチのオン,オフ回数が多く,シかも
最大の冷房能力を発揮し得る状態で圧縮機の駆動,停止
を行なうことによる圧縮機駆動系へのショックが犬きぐ
もので,低速走行,アイドリング時等の冷房能力を向上
させると共に,高速走行時の冷房能力を抑制して適正化
を図ることができる車輛用冷房装置の制御装置を提供し
ようとするものである。
However, the air mix method has the disadvantage of a large energy loss because it consumes a portion of the engine's power to reheat the cooled air. In addition, with the clutch cycling method, the excess capacity during high-speed driving is large, so the electromagnetic clutch is turned on and off many times. A control device for a vehicle cooling system that reduces the shock to the mechanical drive system and improves the cooling capacity during low-speed driving and idling, as well as suppressing and optimizing the cooling capacity during high-speed driving. This is what we are trying to provide.

本発明はまた,駆動系へのクラッチンヨックを(5) 大幅に軽減することができる制御装置を提供しようとす
るものである。
Another object of the present invention is to provide a control device that can significantly reduce (5) clutching to the drive system.

本発明は冷房装置の冷房能力を段階的に可変とし,この
冷房能力を冷媒蒸発器の吹出し空気温度と設定温度との
比較によシ,常に冷房負荷に対して最適となるよう設定
できるようにしたものである。
The present invention allows the cooling capacity of the cooling device to be varied in stages, and by comparing the air temperature blown from the refrigerant evaporator with the set temperature, the cooling capacity can always be set to be optimal for the cooling load. This is what I did.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

第1図は本発明に使用される圧縮容積可変型の冷媒圧縮
機の回転数に対する冷房能力特性の一例を示し,ここで
は圧縮容積を大容積と中容積と小容積の3段階に可変と
した場合の冷房能力をそれぞれ,曲線CC=1,CC=
2,CC=3で示す。そして中容積による冷房能力が従
来の定容積圧縮機による冷房能力と対応するように設定
される。
Figure 1 shows an example of the cooling capacity characteristics of the variable compression volume type refrigerant compressor used in the present invention with respect to the rotational speed. The cooling capacity in case of curve CC=1, CC=
2, CC=3. The cooling capacity of the medium volume is set to correspond to the cooling capacity of a conventional constant volume compressor.

この種の圧縮機としては,本出願人がすでに提案した(
特願昭56−33646号公報)スクロール型圧縮機を
利用する。この圧縮機は,簡単に言えば,一対のうず巻
体を角度をずらせてかみ合せ。
This type of compressor has already been proposed by the applicant (
(Japanese Patent Application No. 56-33646) A scroll type compressor is used. Simply put, this compressor consists of a pair of spiral bodies that are interlocked at different angles.

一方のうず巻体に相対的な旋回運動を寿えて,両(6) うず巻体間に形成した密閉空間を中心方向へ容積の減少
を伴なわせながら移動させ、中心部から圧縮流体を吐出
させるようにしたものである。そして二つのうず巻体間
に形成される密閉空間の最初の吸入ガスを電磁弁によっ
て逃がすように構成することにより、圧縮容積を減少で
きるようにし。
One of the spiral bodies undergoes a relative rotational motion, and the sealed space formed between both (6) spiral bodies is moved toward the center with a decrease in volume, and compressed fluid is discharged from the center. It was designed to let you do so. The compressed volume can be reduced by configuring the first intake gas in the sealed space formed between the two spiral bodies to escape by means of a solenoid valve.

このように電磁弁で開閉される吸入ガス逃がし穴を2箇
所に設けて圧縮容積を2段階に減少できるようにしてい
る。
In this way, the suction gas escape holes, which are opened and closed by electromagnetic valves, are provided at two locations so that the compressed volume can be reduced in two stages.

第1表は2つの電磁弁VSVl、■S■2と圧縮容積と
の関係を示す。
Table 1 shows the relationship between the two solenoid valves VSVl and ■S■2 and the compression volume.

第  1  表 なお図中の斜線部分は、冷房負荷の範囲を示し。Table 1 Note that the shaded area in the figure indicates the range of cooling load.

基本的には外気温度、車内設定温度によシ決定される。Basically, it is determined by the outside temperature and the set temperature inside the car.

本発明はこのような範囲の冷房負荷に対し。The present invention is applicable to cooling loads in this range.

常に必要最小限の圧縮容積を設定したうえで圧縮容積の
切替えにより必要な冷房能力を得るようにしている。
The required minimum compression volume is always set and the required cooling capacity is obtained by switching the compression volume.

第2図は本発明の一実施例の動作フローチャートであり
、冷媒蒸発器の吹出し空気温度を検出して圧縮機の駆動
、停止を行なう車内温度制御に。
FIG. 2 is an operational flowchart of an embodiment of the present invention, which is used to control the interior temperature of a vehicle by detecting the temperature of the air blown from the refrigerant evaporator and driving and stopping the compressor.

3段階の圧縮容積切替え制御を加えた制御装置の動作に
ついて説明する。なお説明は便宜上、各ステップに付し
た番号を参照して行なう。
The operation of the control device including three-stage compression volume switching control will be described. For convenience, the description will be made with reference to the numbers assigned to each step.

ステップ1は冷房装置始動時の圧縮容積の初期設定であ
シカステツノ2で第3図に示したような電磁弁vsv1
. vsv2開閉制御のためのサブルーチンが実行され
、第1表にもとづいて最大圧縮容積が設定される。ステ
ラf3は、圧縮機を停止する吹出し空気温度T1−Td
と駆動する吹出し空気温度T2==Tuの設定である。
Step 1 is the initial setting of the compression volume at the time of starting the air conditioner.
.. A subroutine for vsv2 opening/closing control is executed, and the maximum compression volume is set based on Table 1. Stella f3 is the blowing air temperature T1-Td at which the compressor is stopped.
This is the setting of the blowing air temperature T2==Tu.

ステップ4は吹出し空気温度Teが設定値Tlよシ高い
かどうかを判定し。
In step 4, it is determined whether the blowing air temperature Te is higher than the set value Tl.

高ければステツノ5に進みステラf6で圧縮機が駆動さ
れる。圧縮機の駆動後、吹出し空気温度は降下するが、
設定値T1以上である間はステップ4−5−6−4を循
環する。
If the value is higher, the process proceeds to Stella 5 and the compressor is driven by Stella f6. After the compressor is activated, the temperature of the blown air decreases,
While the value is equal to or greater than the set value T1, steps 4-5-6-4 are repeated.

吹出し空気温度が設定温度T、(=Td)に等しくなる
と、ステラ7611に進む。ステップ11は設定温度上
限値T2(=Tu)のリセットであるが。
When the blown air temperature becomes equal to the set temperature T, (=Td), the process proceeds to Stella 7611. Step 11 is to reset the set temperature upper limit value T2 (=Tu).

ここではステップ3でセットが完了しているので特に意
味は無い。ステップ12は圧縮容積が最小かどうかを判
定するものであり、現時点ではCC=1であるのでステ
ラ7’13に進みCC=2に変更されて第3図に示すサ
ブルーチンが実行され。
There is no particular meaning here since the setting is completed in step 3. In step 12, it is determined whether the compressed volume is the minimum, and since CC=1 at present, the program proceeds to Stella 7'13, where CC=2 is changed, and the subroutine shown in FIG. 3 is executed.

圧縮容積は1段階減少される。The compression volume is reduced by one step.

通常の圧縮機駆動、停止による温度制御では。In normal temperature control by driving and stopping the compressor.

この時点で圧縮機は停止し、吹出し空気温度が上昇を開
始するが1本発明ではステップ15以降で設定温度下限
値TdVcすることが可能な圧縮機最小容積を設定する
動作を短時間で行なう。すなわちステップ14でCC=
2となると、ステップ15でタイマ機構がセットされス
テップ16に進む。圧縮容積が減少されても吹出し空気
温度は急変しないから、吹出し空気温度Te (設定温
度上限値Tuでステップ23.24と進み、ステ、ゾ1
5でセ(9) ツトされたタイマ機構の設定時間(例えば5秒)が経過
するまでは、ステップ’25−16−23−24、−2
5と循環する。この間に吹出し空気温度Teが設定温度
上限値Tuよシも高くなれば、ステップ1.6−17−
18−1.9−20と進んでステップ21でCC=IK
戻され、圧縮機は最大圧縮容積となってステップ4に戻
る。
At this point, the compressor stops and the temperature of the blown air starts to rise; however, in the present invention, from step 15 onwards, the operation of setting the minimum compressor volume that can achieve the set temperature lower limit value TdVc is performed in a short time. That is, in step 14 CC=
2, the timer mechanism is set in step 15 and the process proceeds to step 16. Even if the compression volume is reduced, the blowout air temperature does not suddenly change, so proceed to steps 23 and 24 with the blowout air temperature Te (set temperature upper limit Tu), and step 1.
Steps '25-16-23-24, -2 are executed until the set time of the timer mechanism (for example, 5 seconds) elapses.
Cycles with 5. During this period, if the blowing air temperature Te becomes higher than the set temperature upper limit Tu, step 1.6-17-
Proceed as 18-1.9-20 and CC=IK in step 21
The compressor returns to the maximum compressed capacity and returns to step 4.

このループは圧縮容積をCC=1とCC=2との間で切
シ替えることにより温度制御が行なわれるループである
が、ステップ25−16−23−24−25のループ循
環中にタイマ機構による設定時間が経過した場合は、ス
テ、ゾ26に進む。
This loop is a loop in which temperature control is performed by switching the compression volume between CC=1 and CC=2. If the set time has elapsed, proceed to Step 26.

ステップ26は吹出し空気温度Teが設定温度下限値T
dより低いかどうかを判定するものであシ。
In step 26, the blowing air temperature Te is set to the lower limit of the set temperature T.
This is to determine whether the value is lower than d.

低ければCC=2すなわち、圧縮容積が一段階減少され
ても冷房能力がまだ過剰であることを意味しているから
、ステップ27.12と進みステップ13でCC=3と
なシ、ステッ7°14によシ圧縮容積が更に1段階減少
される。また吹出し空気温度が設定温度下限値Tdよp
高ければステラ7’16に(10) 戻り、圧縮容積はそのままで運転が継続される。
If it is lower, CC=2, which means that even if the compression volume is reduced by one step, the cooling capacity is still excessive, so the process advances to step 27.12 and CC=3 in step 13. 14, the compressed volume is further reduced by one step. Also, the blowing air temperature is higher than the set temperature lower limit Td.
If it is higher, it returns to Stella 7'16 (10), and operation continues with the compressed volume unchanged.

この状態は吹出空気温度が設定値TdとTuとの間に維
持されることを意味するが、ステップ16−23−24
−25−26−16のループ循環中にステップ016あ
るいはステップ26により圧縮容積増加か圧縮機停止か
のいずれかに移行することになる。
This state means that the blowing air temperature is maintained between the set value Td and Tu, but in step 16-23-24
During the loop circulation of -25-26-16, either step 016 or step 26 causes a transition to either increase the compression volume or stop the compressor.

なおステップ15,24.25のタイマ制御動作は、圧
縮容積切替え動作を不必要に実行させないために用いら
れ、設定温度下限値Tdに対して吹出し空気温度Teが
一時的なオーバシュートで低くなっても圧縮容積の切替
えを行なわないようにしている。これは後述のステラ:
7’21,7.8のタイマ制御動作においても同様であ
る。
Note that the timer control operations in steps 15, 24, and 25 are used to prevent unnecessary execution of the compression volume switching operation, and are used to prevent the blowout air temperature Te from becoming lower than the set temperature lower limit value Td due to temporary overshoot. Also, the compression volume is not switched. This is Stella mentioned below:
The same applies to the timer control operations of 7'21 and 7.8.

次に、CC=3となって最小圧縮容積になると。Next, when CC=3 and the minimum compression volume is reached.

再びステップ15でタイマ機構がセットされ、ステラ7
’16−23−24−25−16のルーツ循環でタイマ
機構による設定時間tset内に吹出し空気温度が設定
温度下限値Tdより高くなるかどうかを判定する。設定
時間内に高くなれば冷房能力不足であるためステップ1
7−18−19−20と進み、圧縮容積はCC=2に戻
され更にステップ4に戻る。
The timer mechanism is set again in step 15, and Stella 7
In the roots circulation of '16-23-24-25-16, it is determined whether the blown air temperature becomes higher than the set temperature lower limit value Td within the set time tset by the timer mechanism. If the temperature rises within the set time, the cooling capacity is insufficient, so step 1.
7-18-19-20, the compression volume is returned to CC=2, and the process returns to step 4.

このループは圧縮容積をCC=2とCC=3との間で切
り替えることにより温度制御が行なわれるループである
が、ステラ7°16−23−24−25−16のルーフ
0循環中に設定時間tsetが経過するとステップ26
に進む。CC=3でも冷房能力が過剰であればステップ
27−12−22と進み、電磁クラッチへの通電が断た
れて圧縮機は停止する。またステップ26において吹出
し空気温度が設定値Tl(この場合必ずしもTdと一致
しない)より高ければCC=3のまま動作が継続され。
This loop is a loop in which temperature control is performed by switching the compression volume between CC = 2 and CC = 3. When tset has elapsed, step 26
Proceed to. If the cooling capacity is excessive even when CC=3, the process proceeds to step 27-12-22, where the electromagnetic clutch is de-energized and the compressor is stopped. Further, if the blowing air temperature is higher than the set value Tl (which does not necessarily match Td in this case) in step 26, the operation is continued with CC=3.

その後の制御動作はCC=2の場合で説明した動作と変
らない。
The subsequent control operation is the same as the operation described in the case of CC=2.

なおステラf27は、設定温度下限値の一時的な置き換
えであシ、意図するところは次の点にある。すなわち圧
縮容積の減少切替えが始めて行なわれるのは吹出し空気
温度が下限値Tdになった時であるが、切シ替えられて
も冷房能力が過剰であった場合、吹出し空気温度は下限
値Tdよりやや低い(Td−α)で2度目の圧縮容積減
少方向への切替えが行なわれる。この圧縮容積最小で冷
房能力が過剰であるかどうかは下限値Tdとの比較でな
く(Td−α)との比較で判定されなければならない。
The Stella f27 is only a temporary replacement for the lower limit of the set temperature, and its intended purpose is as follows. In other words, the compression volume is first switched to decrease when the outlet air temperature reaches the lower limit value Td, but if the cooling capacity remains excessive even after the switch is made, the outlet air temperature becomes lower than the lower limit value Td. At a slightly lower value (Td-α), a second switch to the compression volume decreasing direction is performed. Whether or not the cooling capacity is excessive at this minimum compression volume must be determined not by comparison with the lower limit value Td but by comparison with (Td-α).

そこで冷房能力過剰であることをステップ26において
判定した時9次の冷房能力を判定する基準値としてその
時の吹出し空気温度を新たな設定値として設定する。勿
論、この一時的な設定は必要最小圧縮容積が設定されれ
ばステップ17において必ず本来の設定値Tdへの設定
変更がなされる。
Therefore, when it is determined in step 26 that the cooling capacity is excessive, the outlet air temperature at that time is set as a new set value as a reference value for determining the ninth cooling capacity. Of course, this temporary setting is always changed to the original setting value Td in step 17 once the required minimum compression volume is set.

さてステップ22で圧縮機が停止すると、吹出し空気温
度は必ず上昇し、ステップ16−23−16のループ循
環を経て、ステップ16−17−18−6と進み、CC
=3の最小圧縮容積での圧縮機の駆動。
Now, when the compressor is stopped in step 22, the temperature of the blown air always rises, and the flow goes through the loop circulation of steps 16-23-16, then steps 16-17-18-6, and the CC
Driving the compressor with a minimum compression volume of =3.

停止制御が実現される。Stop control is realized.

以上説明した制御動作によシ、冷房装置はCC=]〜C
C=2 、 CC=2〜CC=3.CC二3〜圧縮機停
止のいずれかの運転モードのうち、必要な最小の圧縮機
容積を設定して作動する。
According to the control operation explained above, the cooling device is CC=]~C
C=2, CC=2 to CC=3. The minimum required compressor volume is set and operated in any of the operating modes from CC23 to compressor stop.

(13) 次に、ステップ7以降の制御動作について説明する。(13) Next, the control operations after step 7 will be explained.

第4図は上述した制御動作による吹出し空気温度の時間
変化を表わした図である。
FIG. 4 is a diagram showing temporal changes in the temperature of the blown air due to the above-mentioned control operation.

第4図中1例えばP点においてCC=2あるいは@う CC=3が設定されてから一時7fな低速走行により冷
房能力が不足して破線で示すような温度制御の主 乱れが発メする場合がある。そこでステップ20が実行
された後、ステップ21でタイマ機構をセットし、設定
温度上限値における一時的な吹出し空気温度のオーバシ
ュートでは不必要に圧縮容積の切替えを行なわないよう
にし・ステップ4に戻してステップ4−5−7−8−4
のループ循環を行なわせる。なおステップ5において圧
縮容積の判定をしているのは、ステップ7以降が圧縮容
積を増加させるための動作であり、CC=1であればこ
れ以上の容積増加はあり得ないのでステップ7以降を実
行させないためのステップである。
1 in Figure 4 For example, when CC = 2 or CC = 3 is set at point P, the cooling capacity is insufficient due to temporary low-speed running of 7f, and a main disturbance in temperature control as shown by the broken line occurs. There is. Therefore, after step 20 is executed, a timer mechanism is set in step 21 to prevent unnecessary switching of the compression volume in the event of a temporary overshoot of the blown air temperature at the set temperature upper limit value, and the process returns to step 4. Step 4-5-7-8-4
A loop circulation is performed. Note that the reason why the compressed volume is determined in step 5 is that the steps after step 7 are operations for increasing the compressed volume, and if CC=1, no further increase in volume is possible, so the steps after step 7 are performed. This is a step to prevent it from being executed.

さてステップ4−5−7−8−4のループ循環中にタイ
マ機構による設定時間C3et(例えば5秒)(14) が経過すると、ステップ8からステラf9に進み。
Now, when the set time C3et (for example, 5 seconds) (14) by the timer mechanism has elapsed during the loop circulation of step 4-5-7-8-4, the process advances from step 8 to Stella f9.

吹出し空気温度が設定温度上限値Tuより高ければ圧縮
容積不足であり、ステップ10−19−20と進んで圧
縮容積が1段階増加され、再びステップ21でタイマ機
構がセットされてステップ04−5−7−8−4のルー
プ循環が行なわれる。なおステップ10は上述の圧縮容
積減少制御動作で説明した基準設定値の一時的な置換え
動作であり。
If the blown air temperature is higher than the set temperature upper limit Tu, the compression volume is insufficient, and the process proceeds to step 10-19-20, where the compression volume is increased by one step, and the timer mechanism is set again in step 21, and step 04-5- A 7-8-4 loop circulation is performed. Note that step 10 is a temporary replacement operation for the reference setting value explained in the compression volume reduction control operation described above.

圧縮容積不足が解消されステップ4で吹出し空気温度が
設定温度下限値になればステップ11において本来の設
定温度上限値T に設定変更される。
When the compression volume shortage is resolved and the blown air temperature reaches the set temperature lower limit in step 4, the setting is changed to the original set temperature upper limit T in step 11.

このステップ10あるいは27で行なわれる設定値の一
時的な置換えは、極めて短時間の吹出し空気温度の設定
値との偏差を制御に用いるものであり、この処理が行な
われるのは圧縮容積切替えが連続して増加あるいは減少
方向に実施される時のみであるから、温度制御に悪影響
を及ぼすことは無い。
The temporary replacement of the set value performed in step 10 or 27 uses the extremely short-term deviation of the blown air temperature from the set value for control, and this process is performed when the compression volume is continuously switched. Since this is only carried out in the increasing or decreasing direction, there is no adverse effect on temperature control.

またこの設定値の一時的な置換えは、別の方法に容易に
置き換えることができる。すなわち上述した処理が設定
温度上限値、下限値に対する冷房能力の過不足を検出す
るためのものであることから、設定過度上限値に対して
やや高い別の設定値を、設定温度下限値に対してやや低
い別の設定値を圧縮容積切替え段数に応じてそれぞれ設
定する方法、あるいは上限値、下限値付近における圧縮
容積切替え毎の吹出し空気温度の変化勾配を検出して冷
房能力の過不足を決定する方法も同じ目的で使用できる
。第5図は更に他の方法による吹出し空気温度の経時変
化を示した図である。
Further, this temporary replacement of the setting value can be easily replaced with another method. In other words, since the process described above is to detect excess or deficiency of cooling capacity with respect to the set temperature upper limit value or lower limit value, another set value that is slightly higher than the set excessive upper limit value is set to the set temperature lower limit value. A method of setting a different set value that is slightly lower depending on the number of stages of compression volume switching, or detecting the gradient of change in outlet air temperature at each compression volume switching near the upper and lower limit values to determine excess or deficiency of cooling capacity. The method can also be used for the same purpose. FIG. 5 is a diagram showing the change over time in the temperature of the blown air according to still another method.

この方法は、設定温度下限値よりやや低い最下限値を設
定してこの設定温度で1段階ずつ冷房能力を減少してゆ
く方法であり、最下限値では必ず圧縮機を停止すること
により、■サイクル毎の過剰冷房能力チェックが可能と
なる。図中、圧縮機の駆動、停止と圧縮容積の切替え状
況を示す。最下限値において過剰冷房能力検出が1度行
なわれると次の設定温度上限値では前回よりも1段階減
少された圧縮容積が設定される。P点における圧縮容積
切替え後、冷房能力が過剰でなければ吹出し空気温度は
破線の如く上昇し、 CC,=1 、CC=2の切替え
による運転が行なわれる。
In this method, the lowest limit value is set slightly lower than the lower limit value of the set temperature, and the cooling capacity is decreased one step at a time at this set temperature.By always stopping the compressor at the lowest limit value, Excess cooling capacity can be checked for each cycle. The figure shows the driving and stopping of the compressor and the switching of compression volume. Once the excess cooling capacity is detected at the lowest limit value, the next set temperature upper limit value is set with a compression volume that is one step smaller than the previous one. After switching the compression volume at point P, if the cooling capacity is not excessive, the temperature of the blown air increases as shown by the broken line, and operation is performed by switching between CC,=1 and CC=2.

第6図は以上のような制御を可能にする装置の概略ブロ
ック構成図である。
FIG. 6 is a schematic block diagram of a device that enables the above-described control.

MCは第2図、第3図に示した制御プログラムを記憶し
ているマイクロコンピュータであり、吹出し空気温度検
出部61.温度設定部62からの信号をA−D変換器6
3を介して受け、圧縮容積切替え用の電磁弁VSV 、
の駆動回路64.電磁弁以上説明してきたように1本発
明は冷房能力が段階的に可変の冷房装置の冷房能力を温
度制御用の設定値を基準にして速やかに必要最小冷房能
力に設定し、これによって効率的な冷房装置の運転を実
現することができる。また特に冷房負荷の小さい時を除
き、温度制御は冷房能力の切替え制御で行なわれるため
、従来のクラッチサイクリング方式における圧縮機の駆
動、停止によって駆動系に与えるショックの問題を解消
し、エアミックス(17) 方式温度制御にみられる冷却空気の再加熱によるエネル
ギーロスもなくなるなどすぐれた効果を有する。
MC is a microcomputer that stores the control program shown in FIGS. 2 and 3, and includes a blowout air temperature detection section 61. The signal from the temperature setting section 62 is sent to the A-D converter 6.
3, a solenoid valve VSV for switching the compression volume,
The drive circuit 64. Solenoid Valve As explained above, the present invention quickly sets the cooling capacity of a cooling device whose cooling capacity is variable in stages to the required minimum cooling capacity based on a set value for temperature control, thereby achieving efficient cooling. It is possible to realize the operation of the cooling device. In addition, except when the cooling load is particularly low, temperature control is performed by switching the cooling capacity, which eliminates the problem of shock to the drive system caused by driving and stopping the compressor in the conventional clutch cycling system, and improves the air mix. 17) It has excellent effects, such as eliminating energy loss due to reheating of cooling air, which is seen in conventional temperature control.

なお実施例では圧縮容積可変型の圧縮機を使用する場合
について説明したが、冷房能力を段階的に可変とする他
の手段例えば、圧縮機の出入口間にバイパス路を設けて
このバイパス量を制御する手段、あるいは圧縮機の入口
に絞り弁を設けて供給量を制御する手段等を本発明に適
用して同様な効果を得ることができるのは言うまでも無
い。
In the embodiment, the case where a variable compression volume type compressor is used has been explained, but other means of varying the cooling capacity in stages, for example, by providing a bypass path between the inlet and outlet of the compressor to control the amount of bypass. It goes without saying that the same effect can be obtained by applying means for controlling the supply amount to the present invention, or means for controlling the supply amount by providing a throttle valve at the inlet of the compressor.

また実施例では冷房能力の切替えを冷媒蒸発器の吹出し
空気温度全検出して行々う場合について説明したが、冷
媒蒸発器における吹出し空気温度と冷媒蒸発圧力とは対
応関係にあり、このことから冷媒蒸発圧力に上限値、下
限値を設定しこの冷媒蒸発圧力を検出して冷房能力の切
替えを行なうこともできる。
Furthermore, in the embodiment, a case was explained in which the cooling capacity is switched by detecting the entire temperature of the air discharged from the refrigerant evaporator. It is also possible to set an upper limit value and a lower limit value to the refrigerant evaporation pressure, detect this refrigerant evaporation pressure, and switch the cooling capacity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に使用される圧縮容積可変型の圧縮機の
冷房能力特性を示した図、第2図は不発/IQ) 明の一実施例の動作フローチャート図、第3図はその中
の一部分の動作フローチャート図、第4図は本発明によ
る吹出し空気温度の制御例を示した図、第5図は本発明
の他の実施例による吹出し空気温度の制御例を示した図
、第6図は本発明の一実施例の概略ブロック構成図。図
中、61は温度検出部、62は温度設定部、63はA−
D変換器。 64.65は電磁弁の駆動回路、66は電磁クラッチ駆
動回路。 (19)
Fig. 1 is a diagram showing the cooling capacity characteristics of the variable compression volume compressor used in the present invention, Fig. 2 is an operation flowchart of one embodiment of the present invention, Fig. FIG. 4 is a diagram showing an example of controlling the temperature of the blown air according to the present invention. FIG. 5 is a diagram showing an example of controlling the temperature of the blown air according to another embodiment of the present invention. The figure is a schematic block diagram of an embodiment of the present invention. In the figure, 61 is a temperature detection section, 62 is a temperature setting section, and 63 is A-
D converter. Reference numerals 64 and 65 indicate a drive circuit for an electromagnetic valve, and reference numeral 66 indicates a drive circuit for an electromagnetic clutch. (19)

Claims (1)

【特許請求の範囲】 16  車輛用冷房装置の冷房能力を段階的に切り替え
可能にし、冷房負荷より高い冷房能力と冷房負荷よシ低
い冷房能力とを交互に切り替えて運転することによυ温
度制御を行なうことを特徴とする車輛用冷房装置の制御
装置。 2、 前記車輛用冷房装置における冷媒蒸発器の吹出し
空気温度に、制御範囲とされるべき上限値。 下限値を設定し、該下限値において行なわれる冷房能力
減少方向への冷房能力切替えを、該切替え後の吹出し空
気温度が上昇するようになるまで繰シ返し行なって冷房
負荷よシ低い方でしかも最高の冷房能力を決定し、該冷
房能力とこれより1段階高い冷房能力とを前記吹出し空
気温度の上限値と下限値との間で交互に切シ替えるよう
にした特許請求の範囲第1項記載の制御装置。 3 冷房能力減少方向への冷房能力切替えを繰り返し行
ない、最小冷房能力でも前記吹出し空気温度が上昇しな
いことを検出した時、前記吹出し空気温度の上限値と下
限値との間で前記最小冷房能力での運転と冷媒圧縮機の
停止とを交互に繰り返すようにした特許請求の範囲第2
項記載の制御装置。 4、 前記車輛用冷房装置における冷媒蒸発器の吹出し
空気温度に、制御範囲とされるべき上限値下限値を設定
し、該上限値において行なわれる冷房能力増加方向への
冷房能力切替えを、該切替え後の吹出し空気温度が降下
するようになるまで繰り返し行なって冷房負荷よシ高い
方でしかも最低の冷房能力を決定し、該冷房能力とこれ
よ!l11段階低い冷房能力とを前記吹出し空気温度の
上限値と下限値との間で交互に切り替えるようにした特
許請求の範囲第1項記載の制御装置。 5、前記車輛用冷房装置における冷媒蒸発器の吹出し空
気温度に、制御範囲とされるべき上限値1下限値を設定
すると共に、該下限値よシやや低い最下限値を設定し、
前記吹出し空気温度が前記下限値になった時冷房能力を
1段階減少方向に切シ替え、前記上限値になった時冷房
能力を1段階増加方向に切り替えることによシ必要とさ
れるべき冷房能力を得ると共+C、前記下限値における
冷房能力切替え後に更に吹出し空気温度が降下して前記
層下限値になった時冷房能力を減少方向に切り替え且つ
冷媒圧縮機を停止し、吹出し空気温度が前記上限値にな
った時冷房能力を1段階増加方向へ切り替えると同時に
前記冷媒圧縮機を再駆動するようにした特許請求の範囲
第1項記載の制御装置。 6、前記冷媒蒸発器の冷媒蒸発圧力に制御範囲とされる
べき上限値、下限値を設定するようにした特許請求の範
囲第2項〜第5項記載のいずれかの制御装置。 7 前記冷媒圧縮機の圧縮容積を段階的に可変とするこ
とによシ冷房能力を可変とした特許請求の範囲第1項〜
第5項記載のいずれかの制御装置。 8、 前記冷媒圧縮機の出入口を結ぶパイ・ぞス通路を
設け、バイパスする冷媒量を段階的に可変とすることに
よシ冷房能力を可変とした特許請求の範囲第1項〜第5
項記載のいずれかの制御装置。 9、 前記冷媒圧縮機の入口側冷媒回路に絞シ弁装置。
[Claims] 16. υ temperature control by making it possible to switch the cooling capacity of a vehicle cooling system in stages, and operating by alternately switching between a cooling capacity higher than the cooling load and a cooling capacity lower than the cooling load. A control device for a vehicle cooling system, characterized in that: 2. The upper limit of the control range for the air temperature blown from the refrigerant evaporator in the vehicle cooling system. A lower limit value is set, and the cooling capacity switching in the direction of decreasing cooling capacity performed at the lower limit value is repeatedly performed until the temperature of the blown air after the switching increases, so that the cooling load is lower than the cooling load. Claim 1, wherein the highest cooling capacity is determined, and the cooling capacity and the cooling capacity one step higher than the highest cooling capacity are alternately switched between an upper limit value and a lower limit value of the blown air temperature. Control device as described. 3. When the cooling capacity is repeatedly switched in the direction of decreasing the cooling capacity and it is detected that the blowout air temperature does not rise even with the minimum cooling capacity, the cooling capacity is changed between the upper limit and the lower limit of the blowout air temperature at the minimum cooling capacity. Claim 2 in which the operation of the refrigerant compressor and the stop of the refrigerant compressor are alternately repeated.
Control device as described in section. 4. Setting an upper limit value and a lower limit value to be a control range for the temperature of the air blown from the refrigerant evaporator in the vehicle cooling system, and changing the cooling capacity in the direction of increasing the cooling capacity to be performed at the upper limit value. Repeat this process until the temperature of the air being blown out later drops, and then determine the lowest cooling capacity that is higher than the cooling load. 2. The control device according to claim 1, wherein the cooling capacity is alternately switched between an upper limit value and a lower limit value of the blown air temperature. 5. Setting an upper limit value and a lower limit value that should be a control range for the temperature of the air blown from the refrigerant evaporator in the vehicle cooling system, and setting a lower limit value that is slightly lower than the lower limit value;
When the temperature of the blown air reaches the lower limit value, the cooling capacity is decreased by one step, and when the temperature reaches the upper limit value, the cooling capacity is increased by one step. When the cooling capacity is obtained +C, after switching the cooling capacity at the lower limit value, the blowout air temperature further decreases and reaches the layer lower limit value, the cooling capacity is switched to a decreasing direction, the refrigerant compressor is stopped, and the blowout air temperature is reduced. 2. The control device according to claim 1, wherein when the upper limit value is reached, the cooling capacity is switched to increase by one step and at the same time, the refrigerant compressor is re-driven. 6. The control device according to any one of claims 2 to 5, wherein an upper limit value and a lower limit value to be set as a control range are set for the refrigerant evaporation pressure of the refrigerant evaporator. 7 Claims 1 to 7, wherein the cooling capacity is varied by varying the compression volume of the refrigerant compressor in stages.
Any control device according to item 5. 8. Claims 1 to 5 in which the cooling capacity is variable by providing a piston passage connecting the inlet and outlet of the refrigerant compressor and varying the amount of refrigerant bypassed in stages.
Any of the control devices listed in Section 1. 9. A throttle valve device in the refrigerant circuit on the inlet side of the refrigerant compressor.
JP56206625A 1981-12-21 1981-12-21 Controller of cooler for vehicle Granted JPS58105819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56206625A JPS58105819A (en) 1981-12-21 1981-12-21 Controller of cooler for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56206625A JPS58105819A (en) 1981-12-21 1981-12-21 Controller of cooler for vehicle

Publications (2)

Publication Number Publication Date
JPS58105819A true JPS58105819A (en) 1983-06-23
JPS627002B2 JPS627002B2 (en) 1987-02-14

Family

ID=16526466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56206625A Granted JPS58105819A (en) 1981-12-21 1981-12-21 Controller of cooler for vehicle

Country Status (1)

Country Link
JP (1) JPS58105819A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6061330A (en) * 1983-09-14 1985-04-09 Diesel Kiki Co Ltd Air conditioner for automobile
US5022232A (en) * 1988-03-31 1991-06-11 Nissan Motor Company, Ltd. Automatic air conditioning system with variable displacement compressor for automotive vehicles

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5079048U (en) * 1973-11-19 1975-07-08
JPS5080056U (en) * 1973-11-20 1975-07-10
JPS51107754U (en) * 1975-02-26 1976-08-28
JPS5528569U (en) * 1978-08-17 1980-02-23
JPS567961A (en) * 1979-06-29 1981-01-27 Sanyo Electric Co Controller for refrigeration machine
JPS56132484A (en) * 1980-03-19 1981-10-16 Matsushita Electric Ind Co Ltd Compressor unit
JPS57160709A (en) * 1981-03-27 1982-10-04 Nippon Denso Co Ltd Air conditioning and refrigerating controller
JPS58105818A (en) * 1981-12-16 1983-06-23 Nippon Denso Co Ltd Control method for air conditioner of vehicle

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5079048U (en) * 1973-11-19 1975-07-08
JPS5080056U (en) * 1973-11-20 1975-07-10
JPS51107754U (en) * 1975-02-26 1976-08-28
JPS5528569U (en) * 1978-08-17 1980-02-23
JPS567961A (en) * 1979-06-29 1981-01-27 Sanyo Electric Co Controller for refrigeration machine
JPS56132484A (en) * 1980-03-19 1981-10-16 Matsushita Electric Ind Co Ltd Compressor unit
JPS57160709A (en) * 1981-03-27 1982-10-04 Nippon Denso Co Ltd Air conditioning and refrigerating controller
JPS58105818A (en) * 1981-12-16 1983-06-23 Nippon Denso Co Ltd Control method for air conditioner of vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6061330A (en) * 1983-09-14 1985-04-09 Diesel Kiki Co Ltd Air conditioner for automobile
US5022232A (en) * 1988-03-31 1991-06-11 Nissan Motor Company, Ltd. Automatic air conditioning system with variable displacement compressor for automotive vehicles

Also Published As

Publication number Publication date
JPS627002B2 (en) 1987-02-14

Similar Documents

Publication Publication Date Title
US4582124A (en) Automotive air conditioning system with automatic control of refrigerator compressor capacity and heater air mixing damper
US4753083A (en) Device for controlling the capacity of a variable capacity compressor
JPS58108361A (en) Controller for air conditioner for car
CN1015657B (en) Operation control method for air conditioner of heat pump type
US5483805A (en) Control apparatus for an air conditioning system for an electric vehicle
CN109890636A (en) Refrigerating circulatory device
US7043928B2 (en) Refrigeration cycle system
US20200208898A1 (en) Refrigerator and method for controlling the same
US5477700A (en) Air conditioning system which can be used in an electric car
CN108116183B (en) Control method of thermal management system
JPH05142294A (en) Thermal shock tester
JP6597713B2 (en) Air conditioner for vehicles
JPS58105819A (en) Controller of cooler for vehicle
KR20200082221A (en) Refrigerator and method for controlling the same
JPS6228016B2 (en)
JPH02290471A (en) Air-conditioner
JP2001241779A (en) Refrigerant flow rate controller for air conditioner
KR20210069360A (en) Refrigerator and method for controlling the same
KR20210069363A (en) Refrigerator and method for controlling the same
KR100400470B1 (en) Fan Control Method of Air Conditioner
JPH085172A (en) Cooler for refrigerator with deep freezer
JP3525501B2 (en) Vehicle fuel cooling system
JP2002168534A (en) Heat pump system of air conditioner
KR100917173B1 (en) Cooling and heating system for vehicle
US20220090834A1 (en) Method of controlling refrigerator