JP2001241779A - Refrigerant flow rate controller for air conditioner - Google Patents

Refrigerant flow rate controller for air conditioner

Info

Publication number
JP2001241779A
JP2001241779A JP2000057394A JP2000057394A JP2001241779A JP 2001241779 A JP2001241779 A JP 2001241779A JP 2000057394 A JP2000057394 A JP 2000057394A JP 2000057394 A JP2000057394 A JP 2000057394A JP 2001241779 A JP2001241779 A JP 2001241779A
Authority
JP
Japan
Prior art keywords
evaporator
temperature
heat exchanger
superheat
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000057394A
Other languages
Japanese (ja)
Other versions
JP4252184B2 (en
Inventor
Akira Terasaki
明 寺崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2000057394A priority Critical patent/JP4252184B2/en
Publication of JP2001241779A publication Critical patent/JP2001241779A/en
Application granted granted Critical
Publication of JP4252184B2 publication Critical patent/JP4252184B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To stabilize a refrigerating cycle by preventing or reducing an overheat of an intermediate part of an indoor heat exchanger when cooled and to control to an optimum refrigerant flow rate under the stabilized control of a valve travel of an expansion valve. SOLUTION: A refrigerant flow rate controller 11 controls a valve lift of an electronic expansion valve 4 so that a superheat degree becomes a predetermined target value. In this case, the superheat degree is obtained by a difference between a lower temperature by comparing a temperature of an intermediate part of an evaporator detected by an evaporator intermediate part temperature sensor 10 at the time of cooling in the refrigerating cycle with an evaporator inlet temperature detected by an evaporator inlet temperature sensor 9 and a compressor suction temperature detected by a compressor suction temperature sensor 7.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ヒートポンプ式空
気調和機の冷凍サイクルの過熱度制御方法を改良した空
気調和機の冷媒流量制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerant flow control device for an air conditioner, which has an improved superheat control method for a refrigeration cycle of a heat pump type air conditioner.

【0002】[0002]

【従来の技術】従来、この種のヒートポンプ式空気調和
機では、冷房運転時において蒸発器として作用する室内
熱交換器の冷媒入口と出口の中間部が過絞りや室内熱交
換器の分流の悪化等により過熱した場合、その過熱を防
止するために、室内空気吸込温度Tsと、室内熱交換器
(蒸発器)の冷媒入口から冷媒出口に至る迄の中間部の
温度Tcとの温度差ΔT(ΔT=Ts−Tc)を求め、
この温度差ΔTが所定の温度差ΔT未満の場合は、電
子制御弁よりなる膨張弁を所定時間に所定開度ずつ開い
て行き、冷凍サイクルの冷媒循環流量を増大させて室内
熱交換器の中間部の過熱の防止を図っている。そして、
この温度差ΔT(Ts−Tc)が所定の温度差ΔT
上に達したときに、圧縮機吸込温度と室内熱交換器(蒸
発器)の入口温度との差により得られる過熱度に基づい
て電子膨張弁の開度を制御する通常の過熱度制御に戻し
ている。
2. Description of the Related Art Conventionally, in a heat pump type air conditioner of this type, an intermediate portion between a refrigerant inlet and an outlet of an indoor heat exchanger acting as an evaporator during a cooling operation is excessively throttled, and the branch flow of the indoor heat exchanger is deteriorated. In order to prevent the overheating, the temperature difference ΔT between the indoor air suction temperature Ts and the temperature Tc of the intermediate portion from the refrigerant inlet to the refrigerant outlet of the indoor heat exchanger (evaporator) is used to prevent the overheating. ΔT = Ts−Tc), and
If the temperature difference [Delta] T is less than the predetermined temperature difference [Delta] T 1, the expansion valve consisting of an electronic control valve in a predetermined time go open by a predetermined opening degree, the indoor heat exchanger to increase the refrigerant circulation flow rate of the refrigeration cycle Prevents overheating of the middle part. And
When the temperature difference [Delta] T (Ts-Tc) reaches 1 or more predetermined temperature difference [Delta] T, the compressor suction temperature and the indoor heat exchanger based on the degree of superheat resulting from the difference between the inlet temperature of (evaporator) The control is returned to the normal superheat control for controlling the opening of the electronic expansion valve.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の過熱度制御方法では、通常の過熱度制御に戻
しても再び室内熱交換器(蒸発器)中間部が過熱してし
まうことがある。この場合、電子膨張弁が開閉動作を頻
繁に繰り返すので、冷凍サイクルが不安定になるという
課題がある。
However, in such a conventional method of controlling the degree of superheat, the intermediate portion of the indoor heat exchanger (evaporator) may be overheated again even when the control is returned to the normal degree of superheat control. . In this case, there is a problem that the refrigeration cycle becomes unstable because the electronic expansion valve repeatedly opens and closes.

【0004】特に、圧縮機がインバータにより駆動され
る能力可変方式の場合や、スプリット型の室内,外機接
続配管長さが長い場合には、上記冷凍サイクルの不安定
現象等の課題が多く発生していた。
[0004] In particular, when the compressor is of a variable capacity type driven by an inverter, or when a split type indoor / outdoor unit connection pipe is long, many problems such as the above-mentioned refrigeration cycle instability occur. Was.

【0005】本発明はこのような事情を考慮してなされ
たもので、その目的は、冷房運転時に室内熱交換器の中
間部が過熱するのを防止ないし低減して、冷凍サイクル
を安定させることができ、ひいては安定した膨張弁の開
度制御により最適な冷媒流量に制御することができる空
気調和機の冷媒流量制御装置を提供することにある。
The present invention has been made in view of such circumstances, and an object of the present invention is to prevent or reduce overheating of an intermediate portion of an indoor heat exchanger during a cooling operation, thereby stabilizing a refrigeration cycle. Accordingly, it is an object of the present invention to provide a refrigerant flow control device for an air conditioner that can control the refrigerant flow to an optimum flow by controlling the opening of the expansion valve stably.

【課題を解決するための手段】請求項1に係る発明は、
少なくとも圧縮機、室外熱交換器、冷媒流量制御自在の
膨張弁、室内熱交換器とを冷媒配管により接続して冷媒
を循環させる冷凍サイクルと、上記室内熱交換器の入口
温度を検出する蒸発器入口温度センサと、上記室内熱交
換器の入口から出口の中間部の温度を検出する蒸発器中
間部温度センサと、上記圧縮機の吸込み温度を検出する
圧縮機吸込温度センサと、上記冷凍サイクルの冷房運転
時、上記蒸発器中間部温度センサにより検出された蒸発
器中間部温度と上記蒸発器入口温度センサにより検出さ
れた蒸発器入口温度とを比較して温度の低い方と、上記
圧縮機吸込み温度センサにより検出された圧縮機吸込み
温度との差の過熱度を求め、この過熱度が所定の目標値
になるように上記膨張弁の開度を制御する制御手段と、
を具備していることを特徴とする空気調和機の冷媒流量
制御装置である。
The invention according to claim 1 is
A refrigeration cycle for circulating the refrigerant by connecting at least a compressor, an outdoor heat exchanger, an expansion valve capable of controlling the flow rate of a refrigerant, and an indoor heat exchanger by a refrigerant pipe, and an evaporator for detecting an inlet temperature of the indoor heat exchanger An inlet temperature sensor, an evaporator intermediate portion temperature sensor for detecting an intermediate temperature between an inlet and an outlet of the indoor heat exchanger, a compressor suction temperature sensor for detecting a suction temperature of the compressor, and During the cooling operation, the evaporator intermediate temperature detected by the evaporator intermediate temperature sensor is compared with the evaporator inlet temperature detected by the evaporator inlet temperature sensor. Control means for determining the degree of superheat of the difference from the compressor suction temperature detected by the temperature sensor, and controlling the degree of opening of the expansion valve so that the degree of superheat becomes a predetermined target value;
A refrigerant flow control device for an air conditioner, comprising:

【0006】この発明によれば、冷房運転時に蒸発器と
して作用する室内熱交換器の中間部温度Tcとその入口
温度Tcjとの低い方と圧縮機吸込側温度Tsとの温度
差(Ts−TcまたはTcj)の過熱度に基づいて膨張
弁の開度制御を行なうので、膨張弁の過絞りや冷房運転
時の室内熱交換器の分流の悪化等により室内熱交換器の
中間部が過熱して正確な蒸発温度を検出できない場合で
も、室内熱交換器の入口温度Tcjに基づいて過熱度制
御を行なうことができる。
According to the present invention, the temperature difference (Ts-Tc) between the lower one of the intermediate temperature Tc and the inlet temperature Tcj of the indoor heat exchanger acting as an evaporator during the cooling operation and the compressor suction side temperature Ts. Alternatively, since the opening degree control of the expansion valve is performed based on the degree of superheat of Tcj), the intermediate portion of the indoor heat exchanger is overheated due to over-throttlement of the expansion valve or deterioration of the branch flow of the indoor heat exchanger during cooling operation. Even when the accurate evaporation temperature cannot be detected, the superheat control can be performed based on the inlet temperature Tcj of the indoor heat exchanger.

【0007】このために、室内熱交換器の中間部が再び
過熱するのを防止することができるので、この中間部の
再過熱による膨張弁の開閉の繰返しや、そのための冷凍
サイクルの不安定を防止ないし低減することができる。
[0007] For this reason, it is possible to prevent the intermediate portion of the indoor heat exchanger from being overheated again, so that repeated opening and closing of the expansion valve due to reheating of the intermediate portion and the instability of the refrigeration cycle due to the repeated overheating can be prevented. It can be prevented or reduced.

【0008】請求項2に係る発明は、上記制御手段は、
その過熱度目標値を、蒸発器中間部温度または蒸発器入
口温度を使用して過熱度を求める場合によりそれぞれ変
えていることを特徴とする請求項1記載の空気調和機の
冷媒流量制御装置である。
According to a second aspect of the present invention, the control means includes:
2. The refrigerant flow control device for an air conditioner according to claim 1, wherein the superheat degree target value is changed depending on a case where the superheat degree is obtained by using the evaporator intermediate temperature or the evaporator inlet temperature. is there.

【0009】この発明によれば、冷房運転時に蒸発器と
して作用する室内熱交換器は、一般に、その形状や冷媒
流量によって圧力損失が、その入口部と中間部でかなり
大きいので、入口部の温度Tcjよりも中間部温度Tc
の方がかなり低くなる。
According to the present invention, an indoor heat exchanger which acts as an evaporator during cooling operation generally has a considerably large pressure loss between the inlet and the middle thereof due to its shape and the flow rate of the refrigerant. Intermediate temperature Tc rather than Tcj
Is much lower.

【0010】したがって、過熱度を算出するために蒸発
器中間部温度Tcを使用したときの目標過熱度と、蒸発
器入口部温度Tcjを使用するときの目標過熱度とを共
に同じ目標過熱度αとすると、蒸発器入口部温度Tcを
使用して算出した過熱度の方が大きくなってしまい、膨
張弁の開度は絞り気味になってしまう。
Therefore, the target superheat degree when the evaporator intermediate temperature Tc is used to calculate the superheat degree and the target superheat degree when the evaporator inlet temperature Tcj is used are the same target superheat degree α. Then, the degree of superheat calculated using the evaporator inlet temperature Tc becomes larger, and the opening of the expansion valve tends to be narrowed.

【0011】そこで、蒸発器入口温度Tcjを使用して
過熱度を算出するときは、蒸発器中間部温度Tcを使用
して過熱度を算出したときの目標過熱度αから、これよ
りも小値の目標過熱度β(α>β)に変更することによ
り最適の過熱度制御を行なうことができる。
Therefore, when the superheat degree is calculated using the evaporator inlet temperature Tcj, a value smaller than the target superheat degree α when the superheat degree is calculated using the evaporator intermediate temperature Tc is calculated. The optimum superheat control can be performed by changing the target superheat degree β (α> β).

【0012】[0012]

【発明の実施の形態】以下、本発明の一実施形態を図1
に基づいて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to FIG.
It will be described based on.

【0013】図1は本発明の一実施形態に係る空気調和
機1の冷凍サイクル図である。この図1において、空気
調和機1は圧縮機2、室外熱交換器3、パルスモータ駆
動バルブ(PMV)等よりなる冷媒流量制御自在の電子
膨張弁4、室内熱交換器5をこの順に冷媒配管6により
順次接続して冷媒を循環させる閉じた冷凍サイクルを構
成しており、図中矢印方向に冷媒を循環させることによ
り冷房運転するようになっている。
FIG. 1 is a refrigeration cycle diagram of an air conditioner 1 according to one embodiment of the present invention. In FIG. 1, an air conditioner 1 includes a compressor 2, an outdoor heat exchanger 3, an electronic expansion valve 4 including a pulse motor drive valve (PMV) and the like, which can control the flow of a refrigerant, and an indoor heat exchanger 5 in this order. 6 constitute a closed refrigeration cycle in which the refrigerant is circulated in order and the refrigerant is circulated in the direction of the arrow in the drawing to perform the cooling operation.

【0014】そして、圧縮機2の冷媒吸込側には、この
圧縮機2の吸込側の温度Tsを検出する圧縮機吸込温度
センサ7を設け、室外熱交換器3には、これに外気を送
風して熱交換を促進させる、例えばプロペラファン等の
室外ファン8を設けている。
On the refrigerant suction side of the compressor 2, a compressor suction temperature sensor 7 for detecting the temperature Ts on the suction side of the compressor 2 is provided, and outside air is blown to the outdoor heat exchanger 3. An outdoor fan 8 such as a propeller fan is provided to promote heat exchange.

【0015】一方、室内熱交換器5は、冷房運転時には
蒸発器として作用するものであって、その冷媒入口側に
は冷房運転時に蒸発器入口温度Tcjを検出する蒸発器
入口温度センサ9を設けると共に、その冷媒入口と出口
の中間部に設置されて、その中間部の温度Tcを検出す
る蒸発器中間部温度センサ10を設ける一方、室内熱交
換器5に室内空気を送風して熱交換を促進させる、例え
ば横流ファン等からなる室内ファン11を設けている。
On the other hand, the indoor heat exchanger 5 functions as an evaporator during the cooling operation, and an evaporator inlet temperature sensor 9 for detecting the evaporator inlet temperature Tcj during the cooling operation is provided on the refrigerant inlet side. At the same time, an evaporator intermediate temperature sensor 10 installed at an intermediate portion between the refrigerant inlet and the outlet and detecting the temperature Tc of the intermediate portion is provided, and indoor air is blown to the indoor heat exchanger 5 to exchange heat. An indoor fan 11 made up of, for example, a cross flow fan or the like is provided.

【0016】そして、これら電子膨張弁4、圧縮機吸込
温度センサ7、蒸発器入口温度センサ9および蒸発器中
間部温度センサ10を図中破線で示す信号線を介して例
えばマイクロプロセッサー等よりなる制御手段である冷
媒流量制御装置11に電気的に接続している。
The electronic expansion valve 4, the compressor suction temperature sensor 7, the evaporator inlet temperature sensor 9, and the evaporator intermediate temperature sensor 10 are controlled by a microprocessor or the like via signal lines shown by broken lines in the figure. It is electrically connected to the refrigerant flow control device 11 as a means.

【0017】冷媒流量制御装置11は、冷房運転時、圧
縮機吸込温度センサ7により検出された圧縮機吸込温度
Ts、蒸発器入口温度センサ9により検出された蒸発器
入口温度Tcj、蒸発器中間部温度センサ10により検
出された蒸発器中間部温度Tcをそれぞれ読み込み、さ
らに蒸発器入口温度Tcjと蒸発器中間部温度Tcとを
常時比較して低い方、例えば蒸発器中間部温度Tcと圧
縮機吸込温度Tsとの差(Ts−Tc)、すなわち過熱
度を求め、この過熱度が所定の目標過熱度αになるよう
に電子膨張弁4に与える制御パルスのパルス数を制御し
て、その開度を所定開度ずつ開いて行く制御を行なうも
のである。
During the cooling operation, the refrigerant flow controller 11 controls the compressor suction temperature Ts detected by the compressor suction temperature sensor 7, the evaporator inlet temperature Tcj detected by the evaporator inlet temperature sensor 9, and the evaporator intermediate portion. The evaporator intermediate temperature Tc detected by the temperature sensor 10 is read, and the evaporator inlet temperature Tcj and the evaporator intermediate temperature Tc are constantly compared to be lower, for example, the evaporator intermediate temperature Tc and the compressor suction. The difference (Ts-Tc) from the temperature Ts, that is, the degree of superheat is obtained, and the number of control pulses applied to the electronic expansion valve 4 is controlled so that the degree of superheat becomes a predetermined target degree of superheat α. Are controlled to be opened by predetermined degrees.

【0018】また、冷媒流量制御装置11は、蒸発器中
間部温度Tcよりも蒸発器入口温度Tcjの方が低い
(Tc>Tcj)と判断したときは、この蒸発器入口温
度Tcjと圧縮機吸込温度Tsとの差(Ts−Tcj)
により過熱度を求め、その過熱度が目標過熱度βになる
ように電子膨張弁4の開度を制御する。
When the refrigerant flow controller 11 determines that the evaporator inlet temperature Tcj is lower than the evaporator intermediate temperature Tc (Tc> Tcj), the evaporator inlet temperature Tcj and the compressor suction pressure are used. Difference from temperature Ts (Ts-Tcj)
The degree of superheat is determined by the following formula, and the opening degree of the electronic expansion valve 4 is controlled so that the degree of superheat reaches the target degree of superheat β.

【0019】この目標過熱度βは上記目標過熱度αより
も小値(β<α)に設定されている。その理由は、冷房
運転時に蒸発器として作用する室内熱交換器5は、その
形状や冷媒循環流量によって室内熱交換器5内の圧力損
失はかなり大きく、正常な運転状態でも室内熱交換器5
の中間部の温度Tcは入口部の温度Tcjよりもかなり
低くなる。
The target superheat degree β is set to a smaller value (β <α) than the target superheat degree α. The reason is that the indoor heat exchanger 5 acting as an evaporator during the cooling operation has a considerably large pressure loss in the indoor heat exchanger 5 due to its shape and the circulation flow rate of the refrigerant.
Is significantly lower than the inlet temperature Tcj.

【0020】このために、仮に蒸発器中間部温度Tcを
使用して過熱度を算出しておきながら、その過熱度目標
値αを、蒸発器中間部温度Tcよりも温度の高い蒸発器
入口温度Tcjを使用して算出した過熱度の目標値とし
ても過熱制御すると、電子膨張弁4の開度を絞り過ぎて
しまうためである。そのために過熱度目標値βを同αよ
りも小値(β<α)に設定している。
For this purpose, while calculating the degree of superheat using the evaporator intermediate section temperature Tc, the superheat degree target value α is set to the evaporator inlet temperature higher than the evaporator intermediate section temperature Tc. This is because, if the superheat control is performed using the target value of the superheat calculated using Tcj, the opening of the electronic expansion valve 4 is excessively reduced. Therefore, the superheat degree target value β is set to a smaller value (β <α) than α.

【0021】したがって、この空気調和機1を冷房運転
すると、その冷凍サイクル内の冷媒が図1中矢印方向に
循環する。このために、圧縮機2で圧縮された高温高圧
のガス状冷媒が室外熱交換器3内に流入し、ここで放熱
する一方で凝縮して液化する。この液冷媒は電子膨張弁
4により減圧されると共に所要流量に制御されてから室
内熱交換器5内に流入し、ここで蒸発して気化し、外気
から吸熱して周囲の空気を冷却し、その冷却空気を室内
ファン11により室内へ送風することにより室内を冷房
する。
Therefore, when the air conditioner 1 is operated for cooling, the refrigerant in the refrigeration cycle circulates in the direction of the arrow in FIG. For this reason, the high-temperature and high-pressure gaseous refrigerant compressed by the compressor 2 flows into the outdoor heat exchanger 3 and radiates heat while condensing and liquefying. The liquid refrigerant is decompressed by the electronic expansion valve 4 and controlled to a required flow rate and then flows into the indoor heat exchanger 5, where it evaporates and vaporizes, absorbs heat from the outside air and cools the surrounding air, The room is cooled by blowing the cooling air into the room by the indoor fan 11.

【0022】室内熱交換器5内で気化したガス状冷媒は
図示しない気液分離器にて液分を分離させてから再び吸
込側から圧縮機2へ戻され、これの繰返しにより冷房運
転される。
The gaseous refrigerant vaporized in the indoor heat exchanger 5 is separated into liquid components by a gas-liquid separator (not shown), and then returned to the compressor 2 from the suction side again. .

【0023】この冷房運転時に万一、電子膨張弁4の開
度が絞られ過ぎて室内熱交換器5内に流入する液状冷媒
の流入量が少な過ぎると、その過少の冷媒により外気か
ら大量の熱量を吸熱するので、過熱する場合がある。
If the opening of the electronic expansion valve 4 is too narrow during the cooling operation and the inflow of the liquid refrigerant flowing into the indoor heat exchanger 5 is too small, a large amount of the refrigerant from the outside air is generated by the insufficient refrigerant. Because it absorbs heat, it may overheat.

【0024】そこで、その過熱を防止するために、冷媒
流量制御装置11は過熱度制御を行なう。すなわち、冷
媒流量制御装置11は圧縮機吸込温度センサ7により検
出された圧縮機吸込温度Ts、蒸発器入口温度センサ9
により検出された蒸発器入口温度Tcj、蒸発器中間部
温度センサ10により検出された蒸発器中間部温度Tc
をそれぞれ読み込み、この蒸発器入口温度Tcjと蒸発
器中間部温度Tcとを常時比較して、温度の低い方を求
め、さらに、その低い方の温度(TcjまたはTc)と
圧縮機吸込温度Tsとの温度差ΔT(Ts−Tcまたは
Tcj)を過熱度として算出する。
Therefore, in order to prevent the overheating, the refrigerant flow controller 11 controls the degree of superheating. That is, the refrigerant flow rate control device 11 controls the compressor suction temperature Ts detected by the compressor suction temperature sensor 7 and the evaporator inlet temperature sensor 9.
, The evaporator middle temperature Tc detected by the evaporator middle temperature sensor 10
And the evaporator inlet temperature Tcj is constantly compared with the evaporator intermediate temperature Tc to determine the lower temperature. Further, the lower temperature (Tcj or Tc) and the compressor suction temperature Ts are calculated. The temperature difference ΔT (Ts−Tc or Tcj) is calculated as the degree of superheat.

【0025】そして、蒸発器中間部温度Tcの方が蒸発
器入口Tcjよりも低い場合(Tc<Tcj)は、上記
過熱度ΔTが過熱度目標値αになるように冷媒流量制御
装置11から電子膨張弁4に制御パルスを与えて所定開
度ずつ開いて行き、冷媒循環流量を増大させて冷媒の過
熱を防止する。
When the evaporator intermediate temperature Tc is lower than the evaporator inlet Tcj (Tc <Tcj), the refrigerant flow control device 11 sends the electronic control signal from the refrigerant flow control device 11 so that the superheat degree ΔT becomes the superheat degree target value α. A control pulse is applied to the expansion valve 4 to open it by a predetermined opening, and the refrigerant circulation flow rate is increased to prevent overheating of the refrigerant.

【0026】一方、電子膨張弁4の過絞りや室内熱交換
器5の分流の悪化等により室内熱交換器5の中間部が過
熱して正確な蒸発温度を検出できない場合には、蒸発器
入口温度Tcjの方が蒸発器中間部温度Tcよりも低く
なる(Tcj<Tc)ので、この蒸発器入口温度Tcと
圧縮機吸込温度Tsとの差(Ts−Tc)が過熱度とし
て求められ、さらに、この過熱度が過熱度目標値βにな
るように冷媒流量制御装置11により電子膨張弁4の開
度が所定開度ずつ開かれて、冷媒循環流量を増大させ、
冷媒の過熱を防止する。
On the other hand, if the middle portion of the indoor heat exchanger 5 is overheated due to over-throttling of the electronic expansion valve 4 or deterioration of the branch flow of the indoor heat exchanger 5, the accurate evaporating temperature cannot be detected. Since the temperature Tcj is lower than the evaporator intermediate temperature Tc (Tcj <Tc), the difference (Ts-Tc) between the evaporator inlet temperature Tc and the compressor suction temperature Ts is obtained as the degree of superheat. Then, the opening degree of the electronic expansion valve 4 is opened by a predetermined opening degree by the refrigerant flow control device 11 so that the superheat degree becomes the superheat degree target value β, thereby increasing the refrigerant circulation flow rate.
Prevent overheating of refrigerant.

【0027】したがって、この空気調和機1によれば、
冷房運転時、室内熱交換器5の中間部が過熱しても、そ
の過熱を防止することができる。したがって、その中間
部の再過熱も防止することができるので、その再過熱に
よる電子膨張弁4の開閉の繰返しによる冷凍サイクルの
不安定の発生を未然に防止することができる。
Therefore, according to this air conditioner 1,
During the cooling operation, even if the intermediate portion of the indoor heat exchanger 5 is overheated, the overheat can be prevented. Therefore, the reheating of the intermediate portion can be prevented, so that the occurrence of instability of the refrigeration cycle due to the repeated opening and closing of the electronic expansion valve 4 due to the reheating can be prevented.

【0028】また、冷媒過熱度を算出する場合には、室
内熱交換器5の中間部の蒸発器中間部温度Tcを使用す
る場合の過熱度目標値αを、この蒸発器中間部温度Tc
よりも高い蒸発器入口温度Tcjを使用する場合の過熱
度目標値βよりも大きい値(α>β)に設定しているの
で、最適な過熱度制御を行なうことができる。
When calculating the superheat degree of the refrigerant, the target superheat degree α in the case of using the evaporator intermediate temperature Tc in the intermediate part of the indoor heat exchanger 5 is calculated by using the evaporator intermediate temperature Tc.
Since the evaporator inlet temperature Tcj is set to a value (α> β) larger than the superheat target value β when the evaporator inlet temperature Tcj is used, optimal superheat control can be performed.

【0029】なお、本発明は、上記冷凍サイクルとほぼ
同様の冷凍サイクルを具備した冷凍装置や、上記空気調
和機1に四方弁を設けて冷暖房自在に構成された空気調
和機等の冷凍サイクル装置に適用してもよい。
The present invention relates to a refrigerating cycle apparatus such as a refrigerating apparatus having a refrigerating cycle substantially similar to the refrigerating cycle and an air conditioner having a four-way valve provided in the air conditioner 1 so as to be capable of cooling and heating. May be applied.

【0030】[0030]

【発明の効果】以上説明したように本発明は、冷房運転
時に蒸発器として作用する室内熱交換器の中間部温度T
cとその入口温度Tcjとの低い方と圧縮機吸込側温度
Tsとの温度差(Ts−TcまたはTcj)の過熱度に
基づいて過熱度制御を行なうので、膨張弁の過絞りや冷
房運転時の室内熱交換器の分流の悪化等により室内熱交
換器の中間部が過熱して正確な蒸発温度を検出できない
場合においても、室内熱交換器の入口温度に基づいて過
熱度制御を行なうことができる。
As described above, according to the present invention, the intermediate temperature T of the indoor heat exchanger acting as an evaporator during the cooling operation is provided.
The superheat control is performed based on the superheat of the temperature difference (Ts-Tc or Tcj) between the lower one of the compressor c and its inlet temperature Tcj and the compressor suction side temperature Ts. Even if the middle part of the indoor heat exchanger is overheated due to deterioration of the branch flow of the indoor heat exchanger and the accurate evaporation temperature cannot be detected, the superheat degree control can be performed based on the inlet temperature of the indoor heat exchanger. it can.

【0031】このために、室内熱交換器の中間部が再び
過熱するのを防止することができるので、この中間部の
再過熱による膨張弁の開閉の繰返しや、そのための冷凍
サイクルの不安定を防止ないし低減することができる。
For this reason, it is possible to prevent the intermediate portion of the indoor heat exchanger from being overheated again, so that repeated opening and closing of the expansion valve due to reheating of the intermediate portion and the instability of the refrigeration cycle due to this are prevented. It can be prevented or reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態に係る空気調和機の冷凍サ
イクル図。
FIG. 1 is a refrigeration cycle diagram of an air conditioner according to one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 空気調和機 2 圧縮機 3 室外熱交換器 4 電子膨張弁 5 室内熱交換器 6 冷媒配管 7 圧縮機吸込温度センサ 9 蒸発器入口温度センサ 10 蒸発器中間部温度センサ DESCRIPTION OF SYMBOLS 1 Air conditioner 2 Compressor 3 Outdoor heat exchanger 4 Electronic expansion valve 5 Indoor heat exchanger 6 Refrigerant piping 7 Compressor suction temperature sensor 9 Evaporator inlet temperature sensor 10 Evaporator middle temperature sensor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも圧縮機、室外熱交換器、冷媒
流量制御自在の膨張弁、室内熱交換器とを冷媒配管によ
り接続して冷媒を循環させる冷凍サイクルと、 上記室内熱交換器の入口温度を検出する蒸発器入口温度
センサと、 上記室内熱交換器の入口から出口の中間部の温度を検出
する蒸発器中間部温度センサと、 上記圧縮機の吸込み温度を検出する圧縮機吸込温度セン
サと、 上記冷凍サイクルの冷房運転時、上記蒸発器中間部温度
センサにより検出された蒸発器中間部温度と上記蒸発器
入口温度センサにより検出された蒸発器入口温度とを比
較して温度の低い方と、上記圧縮機吸込み温度センサに
より検出された圧縮機吸込み温度との差の過熱度を求
め、この過熱度が所定の目標値になるように上記膨張弁
の開度を制御する制御手段と、を具備していることを特
徴とする空気調和機の冷媒流量制御装置。
1. A refrigeration cycle in which at least a compressor, an outdoor heat exchanger, an expansion valve capable of controlling the flow rate of a refrigerant, and an indoor heat exchanger are connected by a refrigerant pipe to circulate a refrigerant, and an inlet temperature of the indoor heat exchanger. An evaporator inlet temperature sensor for detecting the temperature of the evaporator, an evaporator intermediate temperature sensor for detecting a temperature of an intermediate portion between the inlet and the outlet of the indoor heat exchanger, and a compressor suction temperature sensor for detecting a suction temperature of the compressor. During the cooling operation of the refrigeration cycle, comparing the evaporator intermediate temperature detected by the evaporator intermediate temperature sensor with the evaporator inlet temperature detected by the evaporator inlet temperature sensor, Control means for determining the degree of superheat of the difference from the compressor suction temperature detected by the compressor suction temperature sensor, and controlling the degree of opening of the expansion valve so that the degree of superheat becomes a predetermined target value; Refrigerant flow control device for an air conditioner which is characterized in that it comprises.
【請求項2】 上記制御手段は、その過熱度目標値を、
蒸発器中間部温度または蒸発器入口温度を使用して過熱
度を求める場合によりそれぞれ変えていることを特徴と
する請求項1記載の空気調和機の冷媒流量制御装置。
2. The control means sets the superheat degree target value as follows:
2. The refrigerant flow control device for an air conditioner according to claim 1, wherein the degree of superheat is determined using the evaporator intermediate temperature or the evaporator inlet temperature.
JP2000057394A 2000-03-02 2000-03-02 Refrigerant flow control device for air conditioner Expired - Lifetime JP4252184B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000057394A JP4252184B2 (en) 2000-03-02 2000-03-02 Refrigerant flow control device for air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000057394A JP4252184B2 (en) 2000-03-02 2000-03-02 Refrigerant flow control device for air conditioner

Publications (2)

Publication Number Publication Date
JP2001241779A true JP2001241779A (en) 2001-09-07
JP4252184B2 JP4252184B2 (en) 2009-04-08

Family

ID=18578195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000057394A Expired - Lifetime JP4252184B2 (en) 2000-03-02 2000-03-02 Refrigerant flow control device for air conditioner

Country Status (1)

Country Link
JP (1) JP4252184B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003207215A (en) * 2002-01-11 2003-07-25 Toshiba Kyaria Kk Air conditioner and control method of the same
CN100404973C (en) * 2004-11-02 2008-07-23 东芝开利株式会社 Refrigerator
JP2009168343A (en) * 2008-01-16 2009-07-30 Sanyo Electric Co Ltd Air conditioner
CN107655174A (en) * 2017-10-26 2018-02-02 重庆美的通用制冷设备有限公司 The anti-step-out control method and control device of air-conditioning system and its electric expansion valve
KR102080001B1 (en) * 2019-05-27 2020-02-21 동명대학교산학협력단 Pipe joints with built-in instruments for sensing refrigerant conditions in the heat pump
CN112902386A (en) * 2021-02-05 2021-06-04 宁波奥克斯电气股份有限公司 Control method and system for high-temperature protection of air conditioner and air conditioner

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003207215A (en) * 2002-01-11 2003-07-25 Toshiba Kyaria Kk Air conditioner and control method of the same
CN100404973C (en) * 2004-11-02 2008-07-23 东芝开利株式会社 Refrigerator
JP2009168343A (en) * 2008-01-16 2009-07-30 Sanyo Electric Co Ltd Air conditioner
CN107655174A (en) * 2017-10-26 2018-02-02 重庆美的通用制冷设备有限公司 The anti-step-out control method and control device of air-conditioning system and its electric expansion valve
CN107655174B (en) * 2017-10-26 2020-05-08 重庆美的通用制冷设备有限公司 Air conditioning system and anti-desynchronization control method and device for electronic expansion valve of air conditioning system
KR102080001B1 (en) * 2019-05-27 2020-02-21 동명대학교산학협력단 Pipe joints with built-in instruments for sensing refrigerant conditions in the heat pump
CN112902386A (en) * 2021-02-05 2021-06-04 宁波奥克斯电气股份有限公司 Control method and system for high-temperature protection of air conditioner and air conditioner

Also Published As

Publication number Publication date
JP4252184B2 (en) 2009-04-08

Similar Documents

Publication Publication Date Title
KR100756725B1 (en) Refrigerator
JP6004670B2 (en) Air conditioner control device, air conditioner control method, air conditioner program, and air conditioner equipped with the same
WO2017163296A1 (en) Refrigeration device
JP2001280669A (en) Refrigerating cycle device
KR19980076725A (en) Control method of HVAC and HVAC
JPH08110117A (en) Equipment and method of controlling air conditioner
JP2004170023A (en) Control method for multicellular air-conditioner
KR100355826B1 (en) Method Of Expansion Valve Control Of Airconditioner
JP3633997B2 (en) Refrigerated refrigerator and control method thereof
JP4252184B2 (en) Refrigerant flow control device for air conditioner
JP2003314854A (en) Air conditioner
JPH07310958A (en) Refrigerating cycle controller
JP3676327B2 (en) Air conditioner and indoor heat exchanger frost prevention method for air conditioner
JP4074422B2 (en) Air conditioner and its control method
JPH11281221A (en) Cooler of open show case
JP2007051839A (en) Air conditioning unit
JPH09303885A (en) Refrigerating and air conditioning device
JPH0989416A (en) Air conditioner
JP4012892B2 (en) Air conditioner
JP2009008346A (en) Refrigerating device
KR100400470B1 (en) Fan Control Method of Air Conditioner
JP2001201198A (en) Method for controlling air conditioner
JP2005214510A (en) Refrigerator
US20230131781A1 (en) Refrigeration cycle apparatus
JP2005214508A (en) Refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060724

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090121

R150 Certificate of patent or registration of utility model

Ref document number: 4252184

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140130

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term