JPS627002B2 - - Google Patents
Info
- Publication number
- JPS627002B2 JPS627002B2 JP56206625A JP20662581A JPS627002B2 JP S627002 B2 JPS627002 B2 JP S627002B2 JP 56206625 A JP56206625 A JP 56206625A JP 20662581 A JP20662581 A JP 20662581A JP S627002 B2 JPS627002 B2 JP S627002B2
- Authority
- JP
- Japan
- Prior art keywords
- cooling capacity
- limit value
- temperature
- compressor
- refrigerant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000001816 cooling Methods 0.000 claims description 69
- 230000006835 compression Effects 0.000 claims description 36
- 238000007906 compression Methods 0.000 claims description 36
- 239000003507 refrigerant Substances 0.000 claims description 16
- 230000007423 decrease Effects 0.000 claims description 6
- 238000001704 evaporation Methods 0.000 claims description 3
- 230000008020 evaporation Effects 0.000 claims description 3
- 238000000034 method Methods 0.000 description 26
- 238000010586 diagram Methods 0.000 description 7
- 230000003247 decreasing effect Effects 0.000 description 4
- 238000007664 blowing Methods 0.000 description 3
- 230000001351 cycling effect Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 230000035939 shock Effects 0.000 description 3
- 230000007812 deficiency Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 238000011038 discontinuous diafiltration by volume reduction Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 231100000989 no adverse effect Toxicity 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/32—Cooling devices
- B60H1/3204—Cooling devices using compression
- B60H1/3205—Control means therefor
Landscapes
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Air Conditioning Control Device (AREA)
Description
本発明は車輛用冷房装置の制御装置に関する。
一般に、車輛用冷房装置にあつては、自動車エ
ンジンによつて冷媒圧縮機を駆動するようになつ
ており、一般走行速度(例えば40Km/h)での圧
縮機回転数(例えば1800rpm)で最適な冷房能力
が得られるように設計されている。このためアイ
ドリング時や低速度走行時には圧縮機回転数が低
くて冷房負荷に対し冷房能力不足となり、逆に高
速走行時は冷房能力過剰となる。このような冷房
能力過剰状態に対し、従来は、冷媒蒸発器で冷却
された空気の一部を暖房装置における加熱器を通
して加熱したうえで残りの冷却空気と混合させ
る、いわゆるエアミツクス方式をとつたり、エン
ジンと圧縮機との動力伝達を掛け外しする電磁ク
ラツチをオン、オフして、圧縮機の駆動、停止を
繰り返す、いわゆるクラツチサイクリング方式を
とることにより、高速走行時の冷え過ぎを解消す
るようにしている。
しかしエアミツクス方式は、エンジンの動力の
一部を消費して冷却した空気を再加熱することに
なるためエネルギーロスが大きいという欠点があ
る。またクラツチサイクリング方式では、高速走
行時における能力過剰分が大きいため電磁クラツ
チのオン、オフ回数が多く、しかも最大の冷房能
力を発揮し得る状態で圧縮機の駆動、停止を行な
うことによる圧縮機駆動系へのシヨツクが大き
く、ドライバに不快感を与える欠点がある。
本発明は以上のような欠点を解消しようとする
もので、低速走行、アイドリング時等の冷房能力
を向上させると共に、高速走行時の冷房能力を抑
制して適正化を図ることができる車輛用冷房装置
の制御装置を提供しようとするものである。
本発明はまた、駆動系へのクラツチシヨツクを
大幅に軽減することができる制御装置を提供しよ
うとするものである。
本発明は、冷房能力を段階的に切り替え可能と
した車輛用冷房装置の制御装置であつて、冷媒蒸
発器における冷媒蒸発圧力または吹出し空気温度
の検出手段と、設定値を下限値、上限値について
設定する手段と、前記検出手段、設定手段からの
信号にもとづいて冷房能力を切り替える制御手段
とを含み、検出値が下限値まで低下した時は冷房
能力減少方向へ、上限値に達した時は冷房能力増
加方向への切り替えをそれぞれ1段行い、これら
の冷房能力切り替えが行われた後になお検出値が
前記下限値と上限値との範囲外にある時は、減少
方向、増加方向それぞれの冷房能力切り替えを更
に1段続けて行うことを特徴とする。
本発明は冷房装置の冷房能力を段階的に可変と
し、この冷房能力を冷媒蒸発器の吹出し空気温度
と設定温度との比較により、常に冷房負荷に対し
て最適となるよう設定できるようにしたものであ
る。
以下に本発明の実施例を説明する。
第1図は本発明に使用される圧縮容積可変型の
冷媒圧縮機の回転数に対する冷房能力特性の一例
を示し、ここでは圧縮容積を大容積と中容積と小
容積の3段階に可変とした場合の冷房能力をそれ
ぞれ、曲線CC=1、CC=2、CC=3で示す。
そして中容積による冷房能力が従来の定容積圧縮
機による冷房能力と対応するように設定される。
この種の圧縮機としては、本出願人がすでに提
案した(特開昭57−148089号公報)スクロール型
圧縮機を利用する。この圧縮機は、簡単に言え
ば、一対のうず巻体を角度をずらせてかみ合せ、
一方のうず巻体に相対的な旋回運動を与えて、両
うず巻体間に形成した密閉空間を中心方向へ容積
の減少を伴なわせながら移動させ、中心部から圧
縮流体を吐出させるようにしたものである。そし
て二つのうず巻体間に形成させる密閉空間の最初
の吸入ガスを電磁弁によつて逃がすように構成す
ることにより、圧縮容積を減少できるようにし、
このように電磁弁で開閉される吸入ガス逃がし穴
を2箇所に設けて圧縮容積を2段階に減少できる
ようにしている。
第1表は2つの電磁弁VSV1,VSV2と圧縮容積
との関係を示す。
The present invention relates to a control device for a vehicle cooling system. Generally, in vehicle cooling systems, the refrigerant compressor is driven by the car engine, and the compressor rotational speed (for example, 1800 rpm) at the normal driving speed (for example, 40 km/h) is set to the optimum speed. Designed to provide cooling capacity. For this reason, when the vehicle is idling or traveling at low speeds, the compressor rotational speed is low and the cooling capacity is insufficient for the cooling load, whereas when the vehicle is traveling at high speeds, the cooling capacity is excessive. Conventionally, to deal with such excessive cooling capacity, a so-called air mix method was used, in which a portion of the air cooled by the refrigerant evaporator is heated through a heater in the heating system, and then mixed with the remaining cooling air. By using the so-called clutch cycling method, which repeatedly drives and stops the compressor by turning on and off the electromagnetic clutch that connects and disconnects the power transmission between the engine and the compressor, it is possible to eliminate excessive cooling during high-speed driving. I have to. However, the air mix method has the disadvantage of a large energy loss because it consumes part of the engine's power to reheat the cooled air. In addition, in the clutch cycling method, the electromagnetic clutch is turned on and off many times due to the large excess capacity during high-speed driving, and the compressor is driven by driving and stopping the compressor in a state where maximum cooling capacity can be exerted. This has the drawback of causing a large shock to the system and causing discomfort to the driver. The present invention aims to eliminate the above-mentioned drawbacks, and provides a vehicle air conditioner that improves the cooling capacity during low-speed driving, idling, etc., and can suppress and optimize the cooling capacity during high-speed driving. The present invention aims to provide a control device for the device. The present invention also seeks to provide a control device that can significantly reduce clutch shock to the drive system. The present invention is a control device for a vehicle cooling system that is capable of changing cooling capacity in stages, and includes means for detecting refrigerant evaporation pressure or outlet air temperature in a refrigerant evaporator, and setting values for lower and upper limits. and a control means for switching the cooling capacity based on the signals from the detection means and the setting means. If the detected value is still outside the range between the lower limit value and the upper limit value after these cooling capacity switches are performed, the cooling capacity is switched one step each in the direction of increasing cooling capacity, and the cooling capacity is switched in the direction of decreasing direction and increasing direction, respectively. It is characterized by performing one more step of ability switching. The present invention allows the cooling capacity of the air conditioner to be varied in stages, and the cooling capacity can always be set to be optimal for the cooling load by comparing the temperature of the air blown from the refrigerant evaporator with the set temperature. It is. Examples of the present invention will be described below. Figure 1 shows an example of the cooling capacity characteristics of the variable compression volume type refrigerant compressor used in the present invention with respect to the rotational speed. The cooling capacities in these cases are shown by curves CC=1, CC=2, and CC=3, respectively.
The cooling capacity of the medium volume is set to correspond to the cooling capacity of a conventional constant volume compressor. As this type of compressor, a scroll type compressor which has already been proposed by the present applicant (Japanese Patent Application Laid-Open No. 148089/1989) is used. Simply put, this compressor consists of a pair of spiral bodies that engage at different angles.
By applying a relative rotational motion to one of the spiral bodies, the sealed space formed between the two spiral bodies is moved toward the center while the volume decreases, and the compressed fluid is discharged from the center. This is what I did. The compressed volume can be reduced by configuring the first intake gas in the sealed space formed between the two spiral bodies to escape by means of a solenoid valve.
In this way, the suction gas escape holes, which are opened and closed by electromagnetic valves, are provided at two locations so that the compressed volume can be reduced in two stages. Table 1 shows the relationship between the two solenoid valves VSV 1 and VSV 2 and the compression volume.
【表】
なお図中の斜線部分は、冷房負荷の範囲を示
し、基本的には外気温度、車内設定温度により決
定される。本発明はこのような範囲の冷房負荷に
対し、常に必要最小限の圧縮容積を設定したうえ
で圧縮容積の切替えにより必要な冷房能力を得る
ようにしている。
第2図は本発明の一実施例の動作フローチヤー
トであり、冷媒蒸発器の吹出し空気温度を検出し
て圧縮機の駆動、停止を行なう車内温度制御に、
3段階の圧縮容積切替え制御を加えた制御装置の
動作について説明する。なお説明は便宜上、各ス
テツプに付した番号を参照して行なう。
ステツプ1は冷房装置始動時の圧縮容積の初期
設定であり、ステツプ2で第3図に示したような
電磁弁VSV1,VSV2開閉制御のためのサブルーチ
ンが実行され、第1表にもとづいて最大圧縮容積
が設定される。ステツプ3は、圧縮機を停止する
吹出し空気温度T1=Tdと駆動する吹出し空気温
度T2=Tuの設定である。ステツプ4は吹出し空
気温度Teが設定値T1より高いかどうかを判定
し、高ければステツプ5に進みステツプ6で圧縮
機が駆動される。圧縮機の駆動後、吹出し空気温
度は降下するが、設定値T1以上である間はステ
ツプ4−5−6−4を循環する。
吹出し空気温度が設定温度T1(=Td)に等し
くなると、ステツプ11に進む。ステツプ11は設定
温度上限値T2=(Tu)のリセツトであるが、ここ
ではステツプ3でセツトが完了しているので特に
意味は無い。ステツプ12は圧縮容積が最小かどう
かを判定するものであり、現時点ではCC=1で
あるのでステツプ13に進みCC=2に変更されて
第3図に示すサブルーチンが実行され、圧縮容積
は1段階減少される。
通常の圧縮機駆動、停止による温度制御では、
この時点で圧縮機は停止し、吹出し空気温度が上
昇を開始するが、本発明ではステツプ15以降で設
定温度下限値Tdにすることが可能な圧縮機最小
容積を設定する動作を短時間で行なう。すなわち
ステツプ14でCC=2となると、ステツプ15でタ
イマ機構がセツトされステツプ16に進む。圧縮容
積が減少されても吹出し空気温度は急変しないか
ら、吹出し空気温度Te<設定温度上限値Tuでス
テツプ23、24と進み、ステツプ15でセツトされた
タイマ機構の設定時間(例えば5秒)が経過する
までは、ステツプ25−16−23−24−25と循環す
る。この間に吹出し空気温度Teが設定温度上限
値Tuよりも高くなれば、ステツプ16−17−18−
19−20と進んでステツプ21でCC=1に戻され、
圧縮機は最大圧縮容積となつてステツプ4に戻
る。
このループは圧縮容積とCC=1とCC=2との
間で切り替えることにより温度制御が行なわれる
ループであるが、ステツプ25−16−23−24−25の
ループ循環中にタイマ機構による設定時間が経過
した場合は、ステツプ26に進む。ステツプ26は吹
出し空気温度Teが設定温度下限値Tdより低いか
どうかを判定するものであり、低ければCC=2
すなわち、圧縮容積が一段階減少されても冷房能
力がまだ過剰であることを意味しているから、ス
テツプ27、12と進みステツプ13でCC=3とな
り、ステツプ14により圧縮容積が更に1段階減少
される。また吹出し空気温度が設定温度下限値
Tdより高ければステツプ16に戻り、圧縮容積は
そのままで運転が継続される。この状態は吹出空
気温度が設定値TdとTuとの間に維持されること
を意味するが、ステツプ16−23−24−25−26−16
のループ循環中にステツプ16あるいはステツプ26
により圧縮容積増加(CC=1)か容積減少(CC
=3)かのいずれかに移行することになる。
なおステツプ15、24、25のタイマ制御動作は、
圧縮容積切替え動作を不必要に実行させないため
に用いられ、設定温度下限値Tdに対して吹出し
空気温度Teが一時的なオーバシユートで低くな
つても圧縮容積の切替えを行なわないようにして
いる。これは後述のステツプ21、7、8のタイマ
制御動作においても同様である。
次に、CC=3となつて最小圧縮容積になる
と、再びステツプ15でタイマ機構がセツトされ、
ステツプ16−23−24−25−16のループ循環でタイ
マ機構による設定時間tset内に吹出し空気温度が
設定温度下限値Tdより高くなるかどうかを判定
する。設定時間内に高くすれば冷房能力不足であ
るためステツプ17−18−19−20と進み、圧縮容積
はCC=2に戻され更にステツプ4に戻る。
このループは圧縮容積をCC=2とCC=3との
間で切り替えることにより温度制御が行なわれる
ループであるが、ステツプ16−23−24−25−16の
ループ循環中に設定時間tsetが経過するとステツ
プ26に進む。CC=3でも冷房能力が過剰であれ
ばステツプ27−12−22と進み、電磁クラツチへの
通電が断たれて圧縮機は停止する。またステツプ
26において吹出し空気温度が設定値T1(この場
合必ずしもTdと一致しない)より高ければCC=
3のまま動作が継続され、その後の制御動作は
CC=2の場合で説明した動作と変わらない。
なおステツプ27は、設定温度下限値の一時的な
置き換えであり、意図するところは次の点にあ
る。すなわち圧縮容積の減少切替えが始めて行な
われるのは吹出し空気温度が下限値Tdになつた
時であるが、切り替えられても冷房能力が過剰で
あつた場合、吹出し空気温度は下限値Tdよりや
や低い(Td−α)で2度目の圧縮容積減少方向
への切替えが行なわれる。この圧縮容積最小で冷
房能力が過剰であるかどうかは下限値Tdとの比
較でなく(Td−α)との比較で判定されなけれ
ばならない。そこで冷房能力過剰であることをス
テツプ26において判定した時、次の冷房能力を判
定する基準値としてその時の吹出し空気温度を新
たな設定値として設定する。勿論、この一時的な
設定は必要最小圧縮容積が設定されればステツプ
17において必ず本来の設定値Tdへの設定変更が
なされる。
さてステツプ22で圧縮機が停止すると、吹出し
空気温度は必ず上昇し、ステツプ16−23−16のル
ープ循環を経て、ステツプ16−17−18−6と進
み、CC=3の最小圧縮容積での圧縮機の駆動、
停止制御が実現される。
以上説明した制御動作により、冷房装置はCC
=1〜CC=2、CC=2〜CC=3、CC=3〜圧
縮機停止のいずれかの運転モードのうち、必要な
最小の圧縮機容積を設定して作動する。
次に、ステツプ7以降の制御動作について説明
する。
第4図は上述した制御動作による吹出し空気温
度の時間変化を表わした図である。
第4図中、例えばP点においてCC=2あるい
はCC=3が設定されてから一時的な低速走行に
より冷房能力が不足して破線で示すような温度制
御の乱れが発生する場合がある。そこでステツプ
20が実行された後、ステツプ21でタイマ機構をセ
ツトし、設定温度上限値における一時的な吹出し
空気温度のオーバシユートでは不必要に圧縮容積
の切替えを行なわないようにし、ステツプ4に戻
してステツプ4−5−7−8−4のループ循環を
行なわせる。なおステツプ5において圧縮容積の
判定をしているのは、ステツプ7以降が圧縮容積
を増加させるための動作であり、CC=1であれ
ばこれ以上の容積増加はあり得ないのでステツプ
7以降を実行させないためのステツプである。
さてステツプ4−5−7−8−4のループ循環
中にタイマ機構による設定時間Cset(例えば5
秒)が経過すると、ステツプ8からステツプ9に
進み、吹出し空気温度が設定温度上限値Tuより
高ければ圧縮容積不足であり、ステツプ10−19−
20と進んで圧縮容積が1段階増加され、再びステ
ツプ21でタイマ機構がセツトされてステツプ4−
5−7−8−4のループ循環が行なわれる。なお
ステツプ10は上述の圧縮容積減少制御動作で説明
した基準設定値の一時的な置換え動作であり、圧
縮容積不足が解消されステツプ4で吹出し空気温
度が設定温度下限値になればステツプ11において
本来の設定温度上限値Tuに設定変更される。
このステツプ10あるいは27で行なわれる設定値
の一時的な置換えは、極めて短時間の吹出し空気
温度の設定値との偏差を制御に用いるものであ
り、この処理が行なわれるのは圧縮容積切替えが
連続して増加あるいは減少方向に実施される時の
みであるから、温度制御に悪影響を及ぼすことは
無い。
またこの設定値の一時的な置換えは、別の方法
に容易に置き換えることができる。すなわち上述
した処理が設定温度上限値、下限値に対する冷房
能力の過不足を検出するためのものであることか
ら、設定過度上限値に対してやや高い別の設定値
を、設定温度下限値に対してやや低い別の設定値
を圧縮容積切替え段数に応じてそれぞれ設定する
方法、あるいは上限値、下限値付近における圧縮
容積切替え毎の吹出し空気温度の変化勾配を検出
して冷房能力の過不足を決定する方法も同じ目的
で使用できる。第5図は更に他の方法による吹出
し空気温度の経時変化を示した図である。
この方法は、設定温度下限値よりやや低い最下
限値を設定してこの設定温度で1段階ずつ冷房能
力を減少してゆく方法であり、最下限値では必ず
圧縮機を停止することにより、1サイクル毎の過
剰冷房能力チエツクが可能となる。図中、圧縮機
の駆動、停止と圧縮容積の切替え状況を示す。最
下限値において過剰冷房能力検出が1度行なわれ
ると次の設定温度上限値では前回よりも1段階減
少された圧縮容積が設定される。P点における圧
縮容積切替え後、冷房能力が過剰でなければ吹出
し空気温度は破線の如く上昇し、CC=1、CC=
2の切替えによる運転が行なわれる。
第6図は以上のような制御を可能にする装置の
概略ブロツク構成図である。
MCは第2図、第3図に示した制御プログラム
を記憶しているマイクロコンピユータであり、吹
出し空気温度検出部61、温度設定部62からの
信号をA−D変換器63を介して受け、圧縮容積
切替え用の電磁弁VSV1の駆動回路64、電磁弁
VSV2の駆動回路65、圧縮機駆動、停止用の電
磁クラツチ駆動回路66を制御する。
以上説明してきたように、本発明は冷房能力が
段階的に可変の冷房装置の冷房能力を温度制御用
の設定値を基準にして速やかに必要最小冷房能力
に設定し、これによつて効率的な冷房装置の運転
を実現することができる。また特に冷房負荷の小
さい時を除き、温度制御は冷房能力の切替え制御
で行なわれるため、従来のクラツチサイクリング
方式における圧縮機の駆動、停止によつて駆動系
に与えるシヨツクの問題を解消し、エアミツクス
方式温度制御にみられる冷却空気の再加熱による
エネルギーロスもなくなるなどすぐれた効果を有
する。
なお実施例では圧縮容積可変型の圧縮機を使用
する場合について説明したが、冷房能力を段階的
に可変とする他の手段例えば、圧縮機の出入口間
にバイパス路を設けてこのバイパス量を制御する
手段、あるいは圧縮機の入口に絞り弁を設けて供
給量を制御する手段等を本発明に適用して同様な
効果を得ることができるのは言うまでも無い。
また実施例では冷房能力の切替えを冷媒蒸発器
の吹出し空気温度を検出して行なう場合について
説明したが、冷媒蒸発器における吹出し空気温度
と冷媒蒸発圧力とは対応関係にあり、このことか
ら冷媒蒸発圧力に上限値、下限値を設定しこの冷
媒蒸発圧力を検出して冷房能力の切替えを行なう
こともできる。[Table] The shaded area in the figure indicates the cooling load range, which is basically determined by the outside air temperature and the set temperature inside the vehicle. In the present invention, for cooling loads in such a range, the necessary minimum compression volume is always set, and the necessary cooling capacity is obtained by switching the compression volume. FIG. 2 is an operational flowchart of an embodiment of the present invention, which includes internal temperature control that detects the temperature of the air blown from the refrigerant evaporator to drive and stop the compressor.
The operation of the control device including three-stage compression volume switching control will be described. For convenience, the description will be made with reference to the numbers assigned to each step. Step 1 is the initial setting of the compression volume when starting the cooling system, and step 2 is a subroutine for opening/closing control of the solenoid valves VSV 1 and VSV 2 as shown in Fig. 3, and the subroutine is executed based on Table 1. A maximum compression volume is set. Step 3 is to set the blowout air temperature T 1 =Td at which the compressor is stopped and the blowout air temperature T 2 =Tu at which the compressor is driven. In step 4, it is determined whether the blown air temperature Te is higher than the set value T1 . If it is higher, the process proceeds to step 5, and in step 6, the compressor is driven. After the compressor is driven, the temperature of the blown air decreases, but as long as it remains above the set value T1 , steps 4-5-6-4 are repeated. When the temperature of the blown air becomes equal to the set temperature T 1 (=Td), the process proceeds to step 11. Step 11 is to reset the set temperature upper limit value T 2 =(Tu), but it has no particular meaning here since the setting has been completed in step 3. Step 12 is to determine whether the compressed volume is the minimum. Since CC = 1 at present, the process advances to step 13, where CC = 2 is changed, the subroutine shown in Figure 3 is executed, and the compressed volume is reduced to one level. reduced. In normal temperature control by driving and stopping the compressor,
At this point, the compressor stops and the temperature of the blown air starts to rise, but in the present invention, from step 15 onwards, the operation of setting the minimum compressor volume that can achieve the set temperature lower limit value Td is performed in a short time. . That is, when CC=2 in step 14, the timer mechanism is set in step 15, and the process proceeds to step 16. Even if the compression volume is reduced, the blowout air temperature does not suddenly change, so if the blowout air temperature Te<the set temperature upper limit Tu, the process proceeds to steps 23 and 24, and the set time (for example, 5 seconds) of the timer mechanism set in step 15 is determined. Until the time elapses, steps 25-16-23-24-25 are repeated. If the blowing air temperature Te becomes higher than the set temperature upper limit Tu during this period, step 16-17-18-
Proceeds to 19-20 and returns to CC=1 at step 21,
The compressor reaches maximum compression volume and returns to step 4. This loop is a loop in which temperature control is performed by switching between the compressed volume and CC=1 and CC=2. If the period has elapsed, proceed to step 26. Step 26 is to judge whether the blowing air temperature Te is lower than the set temperature lower limit Td, and if it is lower, CC=2.
In other words, this means that even if the compression volume is reduced by one step, the cooling capacity is still excessive, so the process proceeds to steps 27 and 12, CC=3 in step 13, and the compression volume is further reduced by one step in step 14. be done. Also, the blowing air temperature is the lower limit of the set temperature.
If it is higher than Td, the process returns to step 16 and operation continues with the compressed volume unchanged. This condition means that the outlet air temperature is maintained between the set value Td and Tu, but in step 16-23-24-25-26-16
Step 16 or Step 26 during loop circulation
The compression volume increases (CC = 1) or the volume decreases (CC
=3). The timer control operations in steps 15, 24, and 25 are as follows:
It is used to prevent the compression volume switching operation from being performed unnecessarily, and prevents the compression volume from being switched even if the blown air temperature Te becomes lower than the set temperature lower limit Td due to a temporary overshoot. This also applies to the timer control operations in steps 21, 7, and 8, which will be described later. Next, when CC=3 and the minimum compression volume is reached, the timer mechanism is set again in step 15.
In the loop circulation of steps 16-23-24-25-16, it is determined whether the blown air temperature becomes higher than the set temperature lower limit value Td within the set time tset by the timer mechanism. If it is increased within the set time, the cooling capacity is insufficient, so the process proceeds to steps 17-18-19-20, the compression volume is returned to CC=2, and the process returns to step 4. This loop is a loop in which temperature control is performed by switching the compression volume between CC = 2 and CC = 3, but the set time tset has elapsed during the loop circulation of steps 16-23-24-25-16. Then proceed to step 26. Even if CC=3, if the cooling capacity is excessive, the process proceeds to step 27-12-22, where the power to the electromagnetic clutch is cut off and the compressor is stopped. Another step
26, if the outlet air temperature is higher than the set value T 1 (which does not necessarily match Td in this case), CC=
The operation continues as 3, and the subsequent control operation is
The operation is the same as explained in the case of CC=2. Note that step 27 is a temporary replacement of the lower limit set temperature, and the purpose is as follows. In other words, the compression volume is first switched to decrease when the outlet air temperature reaches the lower limit value Td, but if the cooling capacity is still excessive even after switching, the outlet air temperature is slightly lower than the lower limit value Td. At (Td-α), a second switch to the compression volume decreasing direction is performed. Whether or not the cooling capacity is excessive at this minimum compression volume must be determined not by comparison with the lower limit value Td but by comparison with (Td-α). Therefore, when it is determined in step 26 that the cooling capacity is excessive, the outlet air temperature at that time is set as a new set value as a reference value for determining the next cooling capacity. Of course, this temporary setting can be used as a step once the required minimum compression volume is set.
In step 17, the setting is always changed to the original setting value Td. Now, when the compressor is stopped in step 22, the temperature of the blown air will definitely rise, and the process will proceed to steps 16-17-18-6 through the loop circulation of steps 16-23-16, and the air will be recirculated at the minimum compression volume of CC=3. compressor drive,
Stop control is realized. With the control operation explained above, the cooling system
It operates by setting the minimum required compressor volume among the operation modes of =1 to CC=2, CC=2 to CC=3, and CC=3 to compressor stop. Next, the control operations after step 7 will be explained. FIG. 4 is a diagram showing temporal changes in the temperature of the blown air due to the above-mentioned control operation. In FIG. 4, for example, after CC=2 or CC=3 is set at point P, the cooling capacity may be insufficient due to temporary low-speed running, resulting in disturbances in temperature control as shown by the broken line. So step
After step 20 is executed, a timer mechanism is set in step 21 to prevent unnecessary switching of the compression volume due to a temporary overshoot of the blowout air temperature at the set temperature upper limit value, and the process returns to step 4. -5-7-8-4 loop circulation is performed. Note that the reason why the compressed volume is determined in step 5 is that steps 7 and later are operations for increasing the compressed volume.If CC=1, no further increase in volume is possible, so steps 7 and later are performed. This is a step to prevent it from being executed. Now, during the loop circulation in step 4-5-7-8-4, the timer mechanism sets the time Cset (for example, 5
When the time (seconds) has elapsed, the process advances from step 8 to step 9, and if the blown air temperature is higher than the set temperature upper limit Tu, the compressed volume is insufficient, and the process proceeds to step 10-19-
The compression volume is increased by one step in step 20, and the timer mechanism is set again in step 21, and the process proceeds to step 4-2.
A 5-7-8-4 loop circulation is performed. Note that step 10 is a temporary replacement operation for the standard set value explained in the above-mentioned compression volume reduction control operation, and if the compression volume shortage is resolved and the blowout air temperature reaches the set temperature lower limit value in step 4, the original setting value is replaced in step 11. The setting is changed to the set temperature upper limit T u . The temporary replacement of the set value performed in step 10 or 27 uses the very short-term deviation of the blowout air temperature from the set value for control, and this process is performed when the compression volume is continuously switched. Since this is only carried out in the increasing or decreasing direction, there is no adverse effect on temperature control. Further, this temporary replacement of the setting value can be easily replaced with another method. In other words, since the process described above is to detect excess or deficiency of cooling capacity with respect to the set temperature upper limit value or lower limit value, another set value that is slightly higher than the set excessive upper limit value is set to the set temperature lower limit value. A method of setting a different set value that is slightly lower depending on the number of stages of compression volume switching, or detecting the gradient of change in outlet air temperature at each compression volume switching near the upper and lower limit values to determine excess or deficiency of cooling capacity. The method can also be used for the same purpose. FIG. 5 is a diagram showing the change over time in the temperature of the blown air according to still another method. In this method, the lowest limit value is set slightly lower than the lower limit value of the set temperature, and the cooling capacity is decreased one step at a time at this set temperature.The compressor is always stopped at the lowest limit value. Excess cooling capacity can be checked for each cycle. The figure shows the driving and stopping of the compressor and the switching of compression volume. Once the excess cooling capacity is detected at the lowest limit value, the next set temperature upper limit value is set with a compression volume that is one step smaller than the previous one. After switching the compression volume at point P, if the cooling capacity is not excessive, the temperature of the blown air will rise as shown by the broken line, CC = 1, CC =
The operation is performed by switching 2. FIG. 6 is a schematic block diagram of a device that enables the above control. MC is a microcomputer that stores the control programs shown in FIGS. 2 and 3, and receives signals from the blown air temperature detection section 61 and temperature setting section 62 via the A-D converter 63. Drive circuit 64 of solenoid valve VSV 1 for switching compression volume, solenoid valve
It controls the drive circuit 65 of the VSV 2 and the electromagnetic clutch drive circuit 66 for driving and stopping the compressor. As explained above, the present invention promptly sets the cooling capacity of a cooling device whose cooling capacity is variable in stages to the required minimum cooling capacity based on a set value for temperature control, thereby achieving efficient cooling. It is possible to realize the operation of the cooling device. In addition, except when the cooling load is particularly small, temperature control is performed by switching the cooling capacity, which eliminates the problem of shock to the drive system caused by driving and stopping the compressor in the conventional clutch cycling system, and improves air mixing. It has excellent effects such as eliminating the energy loss caused by reheating the cooling air that occurs with conventional temperature control. In the embodiment, the case where a variable compression volume type compressor is used has been explained, but other means of varying the cooling capacity in stages, for example, by providing a bypass path between the inlet and outlet of the compressor to control the amount of bypass. It goes without saying that the same effect can be obtained by applying means for controlling the supply amount to the present invention, or means for controlling the supply amount by providing a throttle valve at the inlet of the compressor. Furthermore, in the embodiment, a case was explained in which the cooling capacity is switched by detecting the temperature of the air discharged from the refrigerant evaporator. It is also possible to set an upper limit value and a lower limit value for the pressure and detect the refrigerant evaporation pressure to switch the cooling capacity.
第1図は本発明に使用される圧縮容積可変型の
圧縮機の冷房能力特性を示した図、第2図は本発
明の一実施例の動作フローチヤート図、第3図は
その中の一部分の動作フローチヤート図、第4図
は本発明による吹出し空気温度の制御例を示した
図、第5図は本発明の他の実施例による吹出し空
気温度の制御例を示した図、第6図は本発明の一
実施例の概略ブロツク構成図。図中、61は温度
検出部、62は温度設定部、63はA−D変換
器、64,65は電磁弁の駆動回路、66は電磁
クラツチ駆動回路。
Fig. 1 is a diagram showing the cooling capacity characteristics of the variable compression volume compressor used in the present invention, Fig. 2 is an operational flowchart of an embodiment of the present invention, and Fig. 3 is a part thereof. 4 is a diagram showing an example of controlling the temperature of the blown air according to the present invention, FIG. 5 is a diagram showing an example of controlling the temperature of the blown air according to another embodiment of the present invention, and FIG. 1 is a schematic block configuration diagram of an embodiment of the present invention. In the figure, 61 is a temperature detection section, 62 is a temperature setting section, 63 is an A-D converter, 64 and 65 are electromagnetic valve drive circuits, and 66 is an electromagnetic clutch drive circuit.
Claims (1)
用冷房装置の制御装置であつて、冷媒蒸発器にお
ける冷媒蒸発圧力または吹出し空気温度の検出手
段と、設定値を下限値、上限値について設定する
手段と、前記検出手段、設定手段からの信号にも
とづいて冷房能力を切り替える制御手段とを含
み、検出値が下限値まで低下した時は冷房能力減
少方向へ、上限値に達した時は冷房能力増加方向
への切り替えをそれぞれ1段行い、これらの冷房
能力切り替えが行われた後になお検出値が前記下
限値と上限値との範囲外にある時は、減少方向、
増加方向それぞれの冷房能力切り替えを更に1段
続けて行うことを特徴とする車輛用冷房装置の制
御装置。 2 冷媒圧縮機の圧縮容積を段階的に可変とする
ことにより冷房能力を可変とした特許請求の範囲
第1項記載の制御装置。 3 前記冷媒圧縮機の出入口を結ぶバイパス通路
を設け、バイパスする冷媒量を段階的に可変とす
ることにより冷房能力を可変とした特許請求の範
囲第1項記載の制御装置。 4 前記冷媒圧縮機の入口側冷媒回路に絞り弁を
設け、絞り量の調節で冷房能力を段階的に可変と
した特許請求の範囲第1項記載の制御装置。[Scope of Claims] 1. A control device for a vehicle cooling system capable of changing the cooling capacity in stages, comprising means for detecting refrigerant evaporation pressure or blowout air temperature in a refrigerant evaporator, and setting a set value to a lower limit value; It includes a means for setting an upper limit value, and a control means for switching the cooling capacity based on signals from the detecting means and the setting means, and when the detected value decreases to the lower limit value, the cooling capacity decreases until the upper limit value is reached. If the detected value is still outside the range between the lower limit value and the upper limit value, the cooling capacity is switched one step each in the direction of increasing cooling capacity.
A control device for a vehicle cooling system, characterized in that cooling capacity switching in each increasing direction is performed one more step in succession. 2. The control device according to claim 1, wherein the cooling capacity is varied by varying the compression volume of the refrigerant compressor in stages. 3. The control device according to claim 1, wherein a bypass passage connecting the inlet and outlet of the refrigerant compressor is provided, and the amount of refrigerant to be bypassed is varied in stages, thereby making the cooling capacity variable. 4. The control device according to claim 1, wherein a throttle valve is provided in the refrigerant circuit on the inlet side of the refrigerant compressor, and the cooling capacity is varied stepwise by adjusting the amount of throttle.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56206625A JPS58105819A (en) | 1981-12-21 | 1981-12-21 | Controller of cooler for vehicle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56206625A JPS58105819A (en) | 1981-12-21 | 1981-12-21 | Controller of cooler for vehicle |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58105819A JPS58105819A (en) | 1983-06-23 |
JPS627002B2 true JPS627002B2 (en) | 1987-02-14 |
Family
ID=16526466
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56206625A Granted JPS58105819A (en) | 1981-12-21 | 1981-12-21 | Controller of cooler for vehicle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58105819A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6061330A (en) * | 1983-09-14 | 1985-04-09 | Diesel Kiki Co Ltd | Air conditioner for automobile |
JPH01254420A (en) * | 1988-03-31 | 1989-10-11 | Nissan Motor Co Ltd | Air conditioner for vehicle |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5528569U (en) * | 1978-08-17 | 1980-02-23 | ||
JPS567961A (en) * | 1979-06-29 | 1981-01-27 | Sanyo Electric Co | Controller for refrigeration machine |
JPS56132484A (en) * | 1980-03-19 | 1981-10-16 | Matsushita Electric Ind Co Ltd | Compressor unit |
JPS57160709A (en) * | 1981-03-27 | 1982-10-04 | Nippon Denso Co Ltd | Air conditioning and refrigerating controller |
JPS58105818A (en) * | 1981-12-16 | 1983-06-23 | Nippon Denso Co Ltd | Control method for air conditioner of vehicle |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5079048U (en) * | 1973-11-19 | 1975-07-08 | ||
JPS5080056U (en) * | 1973-11-20 | 1975-07-10 | ||
JPS51107754U (en) * | 1975-02-26 | 1976-08-28 |
-
1981
- 1981-12-21 JP JP56206625A patent/JPS58105819A/en active Granted
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5528569U (en) * | 1978-08-17 | 1980-02-23 | ||
JPS567961A (en) * | 1979-06-29 | 1981-01-27 | Sanyo Electric Co | Controller for refrigeration machine |
JPS56132484A (en) * | 1980-03-19 | 1981-10-16 | Matsushita Electric Ind Co Ltd | Compressor unit |
JPS57160709A (en) * | 1981-03-27 | 1982-10-04 | Nippon Denso Co Ltd | Air conditioning and refrigerating controller |
JPS58105818A (en) * | 1981-12-16 | 1983-06-23 | Nippon Denso Co Ltd | Control method for air conditioner of vehicle |
Also Published As
Publication number | Publication date |
---|---|
JPS58105819A (en) | 1983-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5396779A (en) | Environmental control system | |
JP4273613B2 (en) | Air conditioner | |
JPH0474210B2 (en) | ||
JPH0479850B2 (en) | ||
JPS58108361A (en) | Controller for air conditioner for car | |
US5483805A (en) | Control apparatus for an air conditioning system for an electric vehicle | |
US11203251B2 (en) | Vehicle air conditioning device | |
GB2389920A (en) | Controlling vehicle air conditioner during fuel cut control | |
US5477700A (en) | Air conditioning system which can be used in an electric car | |
US6466853B1 (en) | Vehicle transmission and air conditioning control system | |
JPS627002B2 (en) | ||
JPH0756421B2 (en) | High-voltage controller for dual refrigerator | |
JPS59112156A (en) | Method of controlling compressor for air-conditioning of car | |
JPS6232093Y2 (en) | ||
JPS58105821A (en) | Controlling device of air conditioner for vehicle | |
JPS6233622Y2 (en) | ||
JPS62975Y2 (en) | ||
JPH0136058Y2 (en) | ||
JPS6316567Y2 (en) | ||
JPS61291868A (en) | Control system of operation of refrigerator | |
JPH04257715A (en) | Air conditioner for vehicle | |
JP3525501B2 (en) | Vehicle fuel cooling system | |
JPS5818047A (en) | Method of controlling operation of capacity-variable compressor used in space-cooling apparatus | |
JPS6146016Y2 (en) | ||
JPS6146018Y2 (en) |