JPS58103896A - Control system for induction motor - Google Patents

Control system for induction motor

Info

Publication number
JPS58103896A
JPS58103896A JP56197738A JP19773881A JPS58103896A JP S58103896 A JPS58103896 A JP S58103896A JP 56197738 A JP56197738 A JP 56197738A JP 19773881 A JP19773881 A JP 19773881A JP S58103896 A JPS58103896 A JP S58103896A
Authority
JP
Japan
Prior art keywords
voltage
frequency
value
regulator
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56197738A
Other languages
Japanese (ja)
Inventor
Masahiro Minamoto
皆元 正博
Kazuhito Nakahara
和仁 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP56197738A priority Critical patent/JPS58103896A/en
Publication of JPS58103896A publication Critical patent/JPS58103896A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2201/00Indexing scheme relating to controlling arrangements characterised by the converter used
    • H02P2201/03AC-DC converter stage controlled to provide a defined DC link voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/047V/F converter, wherein the voltage is controlled proportionally with the frequency

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

PURPOSE:To accelerate the rise of a current when the frequency varies by providing a differentiation compensating circuit which inputs a frequency instruction value at the voltage/frequency constant controller of an induction motor having a frequency regulating loop. CONSTITUTION:A differentiation compensating circuit 20 is provided at the front stage of a voltage regulator which regulates so that the output voltage of an inverter 2 which energizes an induction motor 3 matches the frequency command voltage. This circuit 20 receives the outputs of an adder 31, thereby increasing the input amount of a voltage regulator 10. Even if the deviation between the set value of a terminal voltage and the detected value is small at the frequency varying time, the input of the regulator 10 can be increased by the output of the circuit 20, thereby rapidly increasing the set current value, with the result that the rise of the actual current value can be accelerated.

Description

【発明の詳細な説明】 この発明は、電流形インバータにょる誘導電動機の制御
方式、特に該電動機の端子電圧を印加周波数と比例させ
て制御するようにした制御方式(以下、これをV/F一
定制御方式ともいう。)に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a control method for an induction motor using a current source inverter, particularly a control method in which the terminal voltage of the motor is controlled in proportion to the applied frequency (hereinafter referred to as V/F). (Also called constant control method.)

第11i1はかへるV/F一定制御方式の基本構成を示
す構成図である。
11i1 is a configuration diagram showing the basic configuration of the constant V/F control method.

jlE1図において、1はコンバータ部、24−1イ7
バ一タ部、3は誘導電動機(IM)、4は電流平滑用リ
アクトル、5は電流検出器、6は電圧検出器、7,13
は整流器、8は移相器、9は電流調節器(ACR)、1
0ハ電圧11111器(AVR)、11はパルス分配器
、12は電圧/周波数(V/F )発振器、14は加減
速演算器、15は周波数設定器、16は磁束検出器、1
7は磁束調節器、18は極性切替器、19は磁束設定器
、31〜34は加算器である。
jlE1 In the diagram, 1 is the converter section, 24-1-7
Butter part, 3 is an induction motor (IM), 4 is a current smoothing reactor, 5 is a current detector, 6 is a voltage detector, 7, 13
is a rectifier, 8 is a phase shifter, 9 is a current regulator (ACR), 1
11 is a pulse distributor, 12 is a voltage/frequency (V/F) oscillator, 14 is an acceleration/deceleration calculator, 15 is a frequency setter, 16 is a magnetic flux detector, 1
7 is a magnetic flux adjuster, 18 is a polarity switch, 19 is a magnetic flux setter, and 31 to 34 are adders.

電圧検出lI6で検出・された誘導機IMの3相の端子
電圧は、一方では整流器13に導かれ、端子電圧の大き
さの演算に用いられ、他方では積分器と整流器からなゐ
磁束演算@16に導かれ、磁束の大館さの演算に用いら
れる。なお、電圧から磁束を演算する時には、従来から
電流による補償を行なう方法や、それを行なわない方法
など種々の方法が知られているが、ここで示した磁束演
算器16はそれらの方法のいずれをも用いることが出来
る。また、整流@13により検出された端子電圧の大き
さは加算器32に導びかれ、電圧の設定値と比較され、
その出力は電圧調節器(AVR)10に導かれる。電圧
調節器lOの出力は電流設定値となり、これが加算器3
3において、電流検出器5および整流器7により検出さ
れる電流の大きさと比較され、その出力は電流調節器(
ACR)9に導かれる。電流調節器9の出力は移相器8
に導かれ、諌移相器8はコンバータ部lの制御信号を出
力する。周波数設定器15の出力は、加減速演算器14
を介して加算器31の加算入力の一方に導かれる。加算
器31の出力は、一方では前述した電圧の設定値となり
、また、他方では周波数指令値としてV/F発振器12
の入力に導かれる。V/F発振器の出力はパルス分配器
11に導かれ、このパルス分配器11はインバータ部2
の制御信号を出力する。磁束演算器16の出力は磁束検
出値となり、加算器34に導かれ、磁束設定器19によ
り与えられる磁束設定値と比較され、その出力は磁束調
節器17に導かれる。磁束調節器17は磁束の実際値が
設定値より小さくなった時に磁束設定値と同極性の信号
(構成によっては逆極性の信号)を出力する片(一方向
)fl性の調節器である。1、磁束調節器17の出力は
極性切替器18に導かれ、切替518では駆動時には調
節器17の出力を同極性で、また制動時には調節器17
の出力を逆極性で出力し、この出力は前記加算器31に
導かれる。なお、極性切替器18で用いられる駆動また
は制動の判定信号としては、例えば電流調節器90極性
を用いることができるが、これは所望のトルク方向を判
別できるならば他の方法であってもよい。このようにし
て、磁□束検出値が設定値よりも小さくならないように
印加周波数は自動調整され、したがって電圧の設定値と
実際値との偏差は小さく保たれる。
The three-phase terminal voltage of the induction machine IM detected by the voltage detection lI6 is guided to the rectifier 13 on the one hand and used to calculate the magnitude of the terminal voltage, and on the other hand, the magnetic flux calculation consisting of an integrator and a rectifier @ 16 and is used to calculate the magnitude of the magnetic flux. When calculating magnetic flux from voltage, various methods have been known, such as a method that performs compensation using current and a method that does not perform compensation, but the magnetic flux calculator 16 shown here can be used to can also be used. Further, the magnitude of the terminal voltage detected by the rectifier @13 is led to the adder 32 and compared with the voltage setting value,
Its output is directed to a voltage regulator (AVR) 10. The output of voltage regulator lO becomes the current setting value, which is added to adder 3.
3, the magnitude of the current detected by the current detector 5 and the rectifier 7 is compared, and its output is connected to the current regulator (
ACR) 9. The output of the current regulator 9 is the phase shifter 8
The phase shifter 8 outputs a control signal for the converter section l. The output of the frequency setter 15 is sent to the acceleration/deceleration calculator 14.
to one of the addition inputs of the adder 31. The output of the adder 31 is, on the one hand, the set value of the voltage mentioned above, and on the other hand, the output of the V/F oscillator 12 as the frequency command value.
is guided by the input. The output of the V/F oscillator is guided to a pulse distributor 11, and this pulse distributor 11 is connected to an inverter section 2.
outputs a control signal. The output of the magnetic flux calculator 16 becomes a magnetic flux detection value, which is led to an adder 34 and compared with the magnetic flux set value given by the magnetic flux setting device 19, and its output is led to the magnetic flux adjuster 17. The magnetic flux regulator 17 is a one-way FL regulator that outputs a signal of the same polarity as the magnetic flux setting value (or a signal of opposite polarity depending on the configuration) when the actual value of the magnetic flux becomes smaller than the set value. 1. The output of the magnetic flux regulator 17 is guided to the polarity switch 18, and the switch 518 switches the output of the regulator 17 to the same polarity during driving and to the regulator 17 during braking.
The output of the adder 31 is outputted with the opposite polarity. Note that the polarity of the current regulator 90 can be used, for example, as the driving or braking determination signal used by the polarity switch 18, but other methods may be used as long as the desired torque direction can be determined. . In this way, the applied frequency is automatically adjusted so that the detected magnetic flux value does not become smaller than the set value, and therefore the deviation between the set value and the actual voltage value is kept small.

このような制御方式は簡単で、かつ安価に構成すること
ができるので、従来は厳格な制御特性が要求されないよ
うな場合においてのみ使用され、負荷急便や設定周波数
の急変等に対して早い応答性が1求される場合には適用
できなかった。その原因の1つは、電圧調節器10の大
きな積分定数によって電流の早い立ち上がりが抑えられ
るため、誘導機は早い応答ができt、すべりが太き(な
りすぎ、誘導機の磁束が減少して税調が生じるためであ
るが、このような税調は、第iv!Jにおいて一点鎖線
で示す磁束を一定に保つ作用をする周波数調整ループに
よって防止することができる。しかしながら、この周波
数調整ループを設けたことにより設定端子電圧と印加周
波数との比の設定値に対し、端子電圧実際値と印加周波
数との比は一定範囲内に抑えられるため、加算器32め
出力である端子電圧の設定値と検出値との偏差は常に小
さく調整されるが、電圧調節器10の時定数が大きいた
め電流指令値の増加が遅く、したがって電流実際値の立
ち上がりも遅く、このため負蕎急変時には速度の過渡的
変動が大きいという欠点を有している。
This type of control method is simple and can be configured at low cost, so it has traditionally been used only in cases where strict control characteristics are not required, and it is used to provide quick response to sudden changes in load or set frequency. It could not be applied when one requirement is required. One of the reasons for this is that the large integral constant of the voltage regulator 10 suppresses the rapid rise of the current, so the induction machine is unable to respond quickly and the slip becomes too thick (too much, reducing the magnetic flux of the induction machine). This is because a tax adjustment occurs, but such a tax adjustment can be prevented by a frequency adjustment loop that acts to keep the magnetic flux constant, as shown by the dashed line in Section IV!J.However, if this frequency adjustment loop is provided, As a result, the ratio between the actual value of the terminal voltage and the applied frequency is suppressed within a certain range with respect to the set value of the ratio between the set terminal voltage and the applied frequency. The deviation from the current value is always adjusted to be small, but because the time constant of the voltage regulator 10 is large, the increase in the current command value is slow, and therefore the rise of the actual current value is also slow, which causes transient fluctuations in speed when the load suddenly changes. It has the disadvantage of being large.

この発明は上記に鑑みなされたもので、誘導機のV/F
一定制御を行なう場合に、負荷急変時の過渡的変動を小
さぐ抑え、かつ周波数指令値の速度応答性を向上させて
安定な運転を行ない5るようにすることを目的とする。
This invention was made in view of the above, and is based on the V/F of an induction motor.
It is an object of the present invention to suppress transient fluctuations when a sudden load changes and to improve speed responsiveness of a frequency command value to perform stable operation when constant control is performed.

この発明の特徴は、誘導電動機の印加周波数(F)と端
子電圧(V)との比(V/P )が一定となるように制
御するとともに、V/Fの関係が所定の値を超えたとと
電動機磁束を検出し、該V/Fの値が所定の値となるよ
うに周波数指令値を修正するようにした誘導電動機の制
御方式において、前記修正された周波数指令に応じた量
の微分絶対値を演算する微分補償回路を設け、周波数変
化時には諌出力を電圧調節器または電流調節器の入力に
加算することにより、電圧調節器または電流調節器の入
力を一時的に高め、電流実際値の立ち上がりを速めた点
にある。
The feature of this invention is that the ratio (V/P) between the applied frequency (F) and the terminal voltage (V) of the induction motor is controlled to be constant, and when the V/F relationship exceeds a predetermined value, In an induction motor control method that detects the motor magnetic flux and corrects the frequency command value so that the value of V/F becomes a predetermined value, the differential absolute value of the amount corresponding to the modified frequency command is A differential compensation circuit that calculates the value is provided, and when the frequency changes, the output is added to the input of the voltage regulator or current regulator, thereby temporarily increasing the input of the voltage regulator or current regulator, and changing the actual current value. The point is that it has a faster rise.

以下、この発明の実施例を図面を参照して説明する。Embodiments of the present invention will be described below with reference to the drawings.

給2図はこの発明の実施例を示す構成図である。Figure 2 is a block diagram showing an embodiment of the present invention.

同図からも明らかなように、この実施例は第1図の如き
従来例に対し、電圧調節器(AVR) 10の前段に微
分補償回路20が設けられている点に特徴を有し、該微
分補償回路20は加算器31の出力を受けて電圧鉤節器
lOの入力量を大きくするものである。このようにする
ことにより、周波数変動時には、端子電圧の設定値と検
出値との偏差が小さい場合でも、微分補償回路20の出
力によって電圧調節器10の入力を大きくすることがで
き、したがってその出力、すなわち電流設定値を速やか
に高め、結果として電流実際値の立ち上が9を速めるこ
とができる。
As is clear from the figure, this embodiment is different from the conventional example shown in FIG. 1 in that a differential compensation circuit 20 is provided at the front stage of the voltage regulator (AVR) 10. The differential compensation circuit 20 receives the output of the adder 31 and increases the amount of input to the voltage connecter lO. By doing so, when the frequency fluctuates, even if the deviation between the set value and the detected value of the terminal voltage is small, the input of the voltage regulator 10 can be increased by the output of the differential compensation circuit 20, and therefore the output That is, the current setting value can be quickly increased, and as a result, the rise 9 of the actual current value can be accelerated.

一鮎3図はこの発明の他“の実施例を示す要部構成図で
ある。− 臣の例においては、微分補償回路20の出力は扁算器3
2ではなく、加算器33に導かれており、電流調節器9
の設定値を大ぎくすることにより、その出力、すなわち
実動−値を高めるものである。
Figure 3 is a diagram showing the main part of an embodiment of the present invention.
2, but is led to the adder 33, and the current regulator 9
By increasing the set value of , the output, ie, the actual operating value, is increased.

第4図はこの発明のさらに他の実施例を示す要−部構成
図である。
FIG. 4 is a block diagram of main parts showing still another embodiment of the present invention.

この例においては、微分補償回路20の入力は極性切替
器18の出力から導かれている。したがって、この場合
は周波数鹸定の変化に対しては効果がないが、前述の如
館周波数li!整ループが働く場合には、92図と同様
の作用効果が得られるものである。
In this example, the input of the differential compensation circuit 20 is derived from the output of the polarity switch 18. Therefore, in this case, there is no effect on changes in frequency determination, but the above-mentioned Nyodate frequency li! When the regular loop works, the same effect as shown in Fig. 92 can be obtained.

第!swJは、−2〜4図において用いられる微分補償
回路の構成を示す回路図である。
No.! swJ is a circuit diagram showing the configuration of a differential compensation circuit used in Figures -2 to -4.

同図において、N1−N3は演算増巾器、CIはプンデ
ンす、R1−R7は抵抗、Dlはダイオードである。
In the figure, N1-N3 are operational amplifiers, CI is an amplifier, R1-R7 are resistors, and Dl is a diode.

端子201には周波数指令電圧が導かれ、演算増巾aN
1.コンデンサC1および抵抗R,1,R2にヨリ微分
的に増巾され、後続の回路により整流される。
A frequency command voltage is led to the terminal 201, and the calculation amplification aN
1. It is differentially amplified by the capacitor C1 and the resistors R, 1, and R2, and rectified by the subsequent circuit.

ここで、抵抗R3==R4,R6=2R5となるように
選ばれる。したがって、入力201が正負いずれの方向
に変動しても、その出力202には入力の微分値の、さ
らに整流値(入力微分値の絶対値)が得られることにな
り、該微分絶対値によって電圧調節器(AVR)または
電流調節器(ACR)の入力を一時的に大きくして、電
流実際値の立ち上がりを早めることができる。
Here, the resistances are selected so that R3==R4 and R6=2R5. Therefore, even if the input 201 fluctuates in either the positive or negative direction, a further rectified value (absolute value of the input differential value) of the input differential value is obtained at the output 202, and the voltage is determined by the differential absolute value. The input of the regulator (AVR) or current regulator (ACR) can be temporarily increased to hasten the rise of the actual current value.

以上のように、この発明によれば、周波数調節ループを
持つ誘導電動機の電圧/周波数(V/F )一定制御装
置に周波数指令値を入力とする微分補償回路を設け、周
波a変化時の電流の立ち上がりを早めるようにしたため
、負荷急変時に磁束調節器が働いて周波数1111が行
なわれる場合には速度の過甑的賀動を小さくすることが
できるため、速度を迅速に足常値に持って行(ことが可
能となり、また、加減速制御時にも電流の立ち上がりが
早くな為ため、早い速度応答が得られるという利点を一
有する・
As described above, according to the present invention, a differential compensation circuit that inputs a frequency command value is provided in a voltage/frequency (V/F) constant control device for an induction motor having a frequency adjustment loop, and the current when the frequency a changes is Since the rise of the speed is accelerated, when the magnetic flux regulator is activated and frequency 1111 is performed when the load suddenly changes, excessive fluctuations in the speed can be reduced, so the speed can be quickly brought to the normal value. It also has the advantage of providing a fast speed response because the current rises quickly during acceleration/deceleration control.

【図面の簡単な説明】[Brief explanation of the drawing]

第1Wiは誘導機□V/F一定制御方式の従来例を示す
構成図、第2図はこの発明の実施例を示す構成図、第”
3図はこの発明の他の実施例を示す要部構成図、第4図
はこの発明のさらに他の実施例を。 示す要部構成図、第5図はこの発明による微分補償回路
を示す回路図である。 符号説明 l・・・・・・、コンバータ部、2・・・・・・インバ
ータ部、3・・・・・・−専横、4・・・・・・電流平
滑用リアクトル、ト・・・・・電流検出器、6・・・・
・・電圧検出器、7..1B・・・・・・整流器、8・
・・・・・移相器、9・・・・・・電流調節器、1G・
・・・・・電圧調節器、11・・・・・・パルス分配器
、12・・・・・・電圧/周波数発振器、14・・・・
・・加減速演算器、lト・・・・・周波数設定器、16
・・・・・・磁束検出器、17・・・・・・磁束調節器
、18・・・・・・極性切替器、19・・・・・・磁束
設定器、2G・・・・・・微分補償回路、31〜34・
・・・・・加算器、N1〜N3・・・・・・演算増巾器
、CI・・・・・・コンデンサ、Kl〜R丁・・・−・
抵抗、Dl・・・・・・ダイオード代理人 弁理士 松
 崎   清
1 Wi is a block diagram showing a conventional example of the induction motor □ V/F constant control system, FIG. 2 is a block diagram showing an embodiment of the present invention,
FIG. 3 is a main part configuration diagram showing another embodiment of the invention, and FIG. 4 shows still another embodiment of the invention. FIG. 5 is a circuit diagram showing a differential compensation circuit according to the present invention. Symbol explanation: 1: Converter section, 2: Inverter section, 3: - Exclusive, 4: Current smoothing reactor, Tor...・Current detector, 6...
...voltage detector, 7. .. 1B... Rectifier, 8.
... Phase shifter, 9 ... Current regulator, 1G.
...Voltage regulator, 11...Pulse distributor, 12...Voltage/frequency oscillator, 14...
...Acceleration/deceleration calculator, l...Frequency setting device, 16
...Magnetic flux detector, 17...Magnetic flux regulator, 18...Polarity switch, 19...Magnetic flux setting device, 2G... Differential compensation circuit, 31-34・
... Adder, N1 to N3 ... Arithmetic amplifier, CI ... Capacitor, Kl to R - ...
Resistance, Dl...Diode agent Kiyoshi Matsuzaki, patent attorney

Claims (1)

【特許請求の範囲】[Claims] 順、逆変換器からなり、誘導電動機に給亨するインバー
タの出力電圧を周波数指令電圧と一散させるべく調節す
る電圧調節器と、該電圧調節出力にもとづどインバータ
の出力電流を調節する電流調節器とを有し、該調節出力
にもとづいて順変換器の位相制御を行なう順変換器制御
手段と、前記周波数指令電圧にもとづいて逆変換器の周
波数を操作する逆変換器制御手段と、電動機の端子電圧
から演算して得られる磁束検出値が所定の値となるよう
に前記周波数指令電圧値を補正する周波数制御ループと
を備えてなり、誘導電動機の印加周波数(F’)と端子
電圧(V)との比(V/F )を所定の値となるように
制御する誘導電動機のV/F 一定制御方式において、
前記周波数制御ループにより補正された周波数指令値に
応じた量の微分絶対値を出力する微分補償手段を設け、
電動機周波数が急変したと鎗は、咳補償手段の出力を前
記電圧調節器または電流調節器に与えることにより、そ
れらの入力を一時的に大t<して電流実際値の立ち上が
りを速めるようにしたことを特徴とする誘導電動機の制
御方式。
A voltage regulator that is composed of a forward and an inverse converter and adjusts the output voltage of the inverter supplied to the induction motor so as to spread it out with the frequency command voltage, and a voltage regulator that adjusts the output current of the inverter based on the voltage adjustment output. forward converter control means having a current regulator and controlling the phase of the forward converter based on the adjustment output; and inverse converter control means controlling the frequency of the inverse converter based on the frequency command voltage. , a frequency control loop that corrects the frequency command voltage value so that the magnetic flux detection value calculated from the terminal voltage of the motor becomes a predetermined value, In the V/F constant control method of an induction motor, which controls the ratio (V/F) to the voltage (V) to a predetermined value,
Provided with a differential compensation means for outputting a differential absolute value of an amount according to the frequency command value corrected by the frequency control loop,
When the motor frequency suddenly changes, the output of the cough compensation means is applied to the voltage regulator or the current regulator, thereby temporarily increasing the input to the voltage regulator or current regulator, thereby accelerating the rise of the actual current value. A control method for an induction motor characterized by the following.
JP56197738A 1981-12-10 1981-12-10 Control system for induction motor Pending JPS58103896A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56197738A JPS58103896A (en) 1981-12-10 1981-12-10 Control system for induction motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56197738A JPS58103896A (en) 1981-12-10 1981-12-10 Control system for induction motor

Publications (1)

Publication Number Publication Date
JPS58103896A true JPS58103896A (en) 1983-06-21

Family

ID=16379512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56197738A Pending JPS58103896A (en) 1981-12-10 1981-12-10 Control system for induction motor

Country Status (1)

Country Link
JP (1) JPS58103896A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62198896U (en) * 1986-06-04 1987-12-17

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62198896U (en) * 1986-06-04 1987-12-17
JPH0729753Y2 (en) * 1986-06-04 1995-07-05 株式会社明電舎 Electric motor speed controller

Similar Documents

Publication Publication Date Title
US3950684A (en) Direct current motor speed control apparatus
US4037144A (en) Control device for use in shunt motor
JPH07114559B2 (en) Power system stabilizer
US4859924A (en) Inverter
US4422022A (en) Speed control for truck
JPH0350492B2 (en)
JPS58103896A (en) Control system for induction motor
JPH05336789A (en) Controlling system of motor
JP3287877B2 (en) Electric vehicle torque control device
JP3156427B2 (en) Current control device for PWM inverter
JP2681969B2 (en) Coulomb friction compensation method by variable structure system
JP3339275B2 (en) Inverter device torque control device
US2752549A (en) Magnetic amplifier motor control
US4651078A (en) Device for driving an induction motor
JPH0433583A (en) Induction motor controller
US3873901A (en) Automatic torque control system for motors
JPS6264287A (en) Slip correction control type inverter
JP3200965B2 (en) Motor control device
JPH055835Y2 (en)
JP2594968B2 (en) Drive control device for induction motor
JPS5980182A (en) Acceleration torque compensator in speed controller of induction motor
JPS6325917Y2 (en)
JPH0628958Y2 (en) DC motor field controller
JP2562878B2 (en) Speed control method
JPH1142000A (en) Vector controller for induction motor