JPS58103826A - Controller for dc transmission system - Google Patents

Controller for dc transmission system

Info

Publication number
JPS58103826A
JPS58103826A JP56202948A JP20294881A JPS58103826A JP S58103826 A JPS58103826 A JP S58103826A JP 56202948 A JP56202948 A JP 56202948A JP 20294881 A JP20294881 A JP 20294881A JP S58103826 A JPS58103826 A JP S58103826A
Authority
JP
Japan
Prior art keywords
power
pole
control circuit
circuit
transmission system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56202948A
Other languages
Japanese (ja)
Other versions
JPS642016B2 (en
Inventor
武一 桜井
河合 忠雄
関谷 恵輔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Hitachi Ltd
Tokyo Electric Power Co Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Hitachi Ltd
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Hitachi Ltd, Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP56202948A priority Critical patent/JPS58103826A/en
Publication of JPS58103826A publication Critical patent/JPS58103826A/en
Publication of JPS642016B2 publication Critical patent/JPS642016B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 において、任意の極で送電能力を喪失するようなトラブ
ルが発生した場合、◆数種の送電電力をカバーするため
に1健全極の送電電力を増加させて全体としての送受電
電力の変化を極力抑制するようKした直流送電系統の制
御装置に関する。
[Detailed Description of the Invention] In the case where a trouble occurs in which power transmission capacity is lost at any pole, ◆In order to cover several types of transmitted power, the transmitted power of one healthy pole is increased and the overall power is increased. The present invention relates to a control device for a DC power transmission system designed to suppress changes in transmitted and received power as much as possible.

直流送電系統として例えば2端子送電2極榊成の場合に
は第1図に示す如くなっている。すなわち、第1図にお
いて、A.Bは電気所母線BU81 、 BUS2に連
繋した交流系統、Trム1,Tra2。
For example, in the case of a two-terminal power transmission bipolar Sakaki system, the DC power transmission system is as shown in FIG. That is, in FIG. 1, A. B is an AC system connected to electric station bus lines BU81 and BUS2, Tr 1 and Tra 2.

Trml * Trl2は変換器用変圧器、VAl *
 VA2 、 Vl1+Vl2は変換器、DCLAI 
、 DCLa2 、 DCLml 、 DCLl2は直
流リアクトル、DLl e DL2は直流線路、DNは
中性線である。またVGCA 1 、 VGC4 2 
、 VGC 1。
Trml * Trl2 is the converter transformer, VAl *
VA2, Vl1+Vl2 are converters, DCLAI
, DCLa2, DCLml, and DCLl2 are DC reactors, DLl e DL2 is a DC line, and DN is a neutral wire. Also VGCA 1, VGC4 2
, VGC 1.

VGCA2は変換器f−)・9ルス制御装置であシ、図
示しない直流送電制御装置からの指令により各変換器を
運転するものである。
VGCA2 is a converter f-)/9rus control device, which operates each converter according to commands from a DC power transmission control device (not shown).

かかる構成の直流送電系統において、各端子相互間で2
極夫々が互に独立して運転を行なっているとき、もし一
方の極で送電線故障などで送電ができなくなるとそのと
きの全送*谷量は事故前のそれの50%になる。したが
って、この場合交流系統ムが発電端で他の交流系統が邊
氷されていないとすると、急速に周波数上昇を起し、最
悪の時には電源トリップとなる。また交流系統Aが原子
力発電所の場合には原子炉圧力上昇からスクラムに発展
することが考えられる。そこで、かかる不具合を避ける
ためには健全極細の送電電力を過負荷耐量を含む余裕の
範囲で増加し、送電電力費化を抑制することが考えられ
る。これを健全極負荷移行という。
In a DC transmission system with such a configuration, there are two
When each pole operates independently of the other, if one pole becomes unable to transmit power due to a fault in the transmission line, the total transmission rate at that time will be 50% of that before the accident. Therefore, in this case, if the AC system is at the generating end and the other AC systems are not blocked, the frequency will rapidly rise, and in the worst case, a power trip will occur. Furthermore, if the AC system A is a nuclear power plant, it is conceivable that a scram may occur due to a rise in reactor pressure. Therefore, in order to avoid such problems, it is conceivable to increase the amount of healthy ultra-fine transmitted power within a margin that includes the overload capacity, thereby suppressing the cost of transmitted power. This is called healthy pole load transition.

ここで、健全極負荷移行を行なわせるための制御の考え
方について第2図に示す双極2回線4極檎成の2端子送
電系統例を参照して説明する。第2図において、A,B
は電気所母線BUB1。
Here, the concept of control for performing a healthy pole load shift will be explained with reference to an example of a two-terminal power transmission system having a two-pole, two-pole, and four-pole configuration shown in FIG. In Figure 2, A, B
is electric station bus line BUB1.

augh2に連繋した交流系統、Tral〜Tr,A4
 e Tyll〜Trロは変換器用変圧器、Vム1〜V
ム4 r Vl l〜Vl4は変換器である。またDC
Lム1〜DCLム4 、 l)CLml−DCIJ4は
i* fitリアクトル、DLI〜DL4は直流線路、
DN1tDN2は中性線である。
AC system connected to awgh2, Tral~Tr, A4
e Tyll~Tr ro is the converter transformer, Vmu 1~V
4 r Vl l to Vl4 are converters. Also DC
Lm1 to DCLm4, l) CLml-DCIJ4 is an i* fit reactor, DLI to DL4 are DC lines,
DN1tDN2 is a neutral wire.

したがって、かかる2端子送電系統において、今各種の
変換器が4極等負菊配分で運転されているとき、1極に
故障が発生するとそのときの。
Therefore, in such a two-terminal power transmission system, when various converters are currently operated with a four-pole equal-negative distribution, if a failure occurs in one pole, then...

全送電秤量は4極等負荷配分運転時のそれの75%に低
下する。そこで、健全極負荷移行制御によシ鍵全極各種
は、事故前の送電電力の133%に増加すれば、減少分
がカバーされ、交流系統ムから見た送電電力は元の値に
戻りそのまま運転されることになる。
The total power transmission capacity is reduced to 75% of that during 4-pole equal load distribution operation. Therefore, if the healthy pole load transfer control increases the transmitted power to 133% of the power transmitted before the accident, the decreased amount will be covered, and the transmitted power seen from the AC system will return to its original value and remain unchanged. It will be driven.

ところで、直流送電系統の制御装置は基本的には第3図
に゛示すような階層制御システムとなっている。すなわ
ち、第3図において、領域〔1〕は共通制御部であシ、
全系統の運転指令、一括制御を行なう部分で、制御上は
系統の総運転電力要求を受けてそれを個々の極に配分す
る機能を有する。%に3端子系又はそれ以上の多一端子
系統では、この部分が不可欠で各端子6極の夫々の運転
に必要な演算も行なう。C−Cはそのための直流系統共
通演算制御装置を示し、またR*tldこの共通演算制
御装置C−Cに入力される総運転電力要求指令を示す。
By the way, a control device for a DC power transmission system is basically a hierarchical control system as shown in FIG. That is, in FIG. 3, area [1] is the common control unit;
This is the part that performs operation commands and collective control for the entire system.In terms of control, it has the function of receiving the total operating power request of the system and distributing it to the individual poles. In a 3-terminal system or a multi-terminal system with more than 3 terminals, this part is essential and also performs the calculations necessary for the operation of each of the 6 terminals. CC indicates a DC system common arithmetic and control unit for this purpose, and R*tld indicates a total operating power request command input to this common arithmetic and control unit CC.

領域〔2〕は極制御部で、夫々の極内の演算を行なう部
分である。
Region [2] is a pole control section that performs calculations within each pole.

PCI〜PC4は6極の極演算一御装置を示す。PCI to PC4 indicate six-pole polar operation control devices.

領竣〔3〕は群制御部で極制御部〔2〕からの信号を受
けて変換器を制御するための位相ノぐルス信号を作る部
分である。GCl」(1ニア〜4.J:1〜2)はその
丸めの制御装置を示す。領域〔4〕は変換器のf−)ノ
豐ルス制御部で、VGCB (1: 1〜4゜j:1〜
2)は)f −) ノ4ルス制御装置である。
The final part [3] is a group control section which receives the signal from the pole control section [2] and generates a phase noggle signal for controlling the converter. GCl" (1 near to 4.J: 1 to 2) indicates the rounding control device. Area [4] is the f-) pulse control section of the converter, and VGCB (1: 1~4°J: 1~
2) is a ) f − ) norus control device.

かかる構成の直流送電系統の制御装置において、従来考
えられている負荷移行制御は故障検出信号を共通演算制
御装置C−CKSi11)、そこで総送電電力指令R0
fの値を健全極、例えば故障極が第2WAのP1極であ
るとすれば健全極PhP4に振分けるように演算し、負
荷の再配分を行なってその出力を夫々の極の極演算制御
装置pc2〜PC4に与えて健全極P2〜P4の送電電
力を増加させる方法である。しかし乍ら、共通演算制御
装置C−Cはしばしば各極演算制御装置PCI〜PC4
とは離れた場所に設置されているため、共通演算制御装
置C−Cと各極演算制御装置pci〜PC4との間は信
号伝送手段で連結しなければならず、その分制御が遅れ
かっ信頼性が低下するという問題がある。
In a control device for a DC power transmission system having such a configuration, conventionally considered load transfer control sends a failure detection signal to a common arithmetic and control unit C-CKSi11), where the total transmitted power command R0
If the value of f is a healthy pole, for example, the faulty pole is the P1 pole of the second WA, it is calculated to be distributed to the healthy pole PhP4, the load is redistributed, and the output is sent to the pole calculation control device of each pole. This is a method of increasing the transmitted power of healthy poles P2 to P4 by giving it to PC2 to PC4. However, the common arithmetic and control unit C-C is often connected to each pole arithmetic and control unit PCI to PC4.
Since the common arithmetic and control unit C-C and each pole arithmetic and control unit PCI to PC4 must be connected by a signal transmission means, the control may be slow and reliable. There is a problem of decreased sexuality.

本発明はこの問題に鑑みてなされ九もので、複数の運転
極を有する直流送電系統において何れかの極で事故が発
生し送電できなくなった場合、事故検出信号を他の健全
極に4え、その信号によシ高遠に送電電力の増加を行な
わせることができる傅軸性の高い直流送電系統の制御装
置を提供することを目的とする。
The present invention has been made in view of this problem, and when an accident occurs at any pole in a DC power transmission system having multiple operating poles and power cannot be transmitted, an accident detection signal is sent to the other healthy poles. It is an object of the present invention to provide a control device for a DC power transmission system with high axis flexibility, which can increase transmitted power over a long distance based on the signal.

以下本発明の一実施例を図面を参照して説明する。第4
図は本発明装置における制御系の構成例を示すものであ
る。第4図において、C−Cは総送電電力の指令値ΣP
dpが与えられる共通演算制御装置で、この共通演算制
御装置C−Cは6極の運転指令値knΣPdpn (m
l : J〜4、何れの他かを表わす補助記号)を演算
するものである。
An embodiment of the present invention will be described below with reference to the drawings. Fourth
The figure shows an example of the configuration of a control system in the apparatus of the present invention. In Figure 4, C-C is the command value ΣP of the total transmitted power
dp is given, and this common arithmetic and control device C-C is given a six-pole operation command value knΣPdpn (m
l: J to 4, an auxiliary symbol representing any other) is calculated.

APR1〜APR4は共通演算制御装置C−Cで演算さ
れ九各種の運転指令値kIIΣPdpnが各別に加えら
れるとともにその極の実電力値Pdn(n:1〜4)が
加えられる定電力制御回路で、これら定電力回路APR
1〜APR4はその極の種運転電流指令値Idpm (
o : 7〜4 )を得るものである。またACRi〜
ACR4は定電力制御回路APR1〜APR4から出力
される種運転電流指令値Idpnが入力される定電流制
御回路である。これら定電力制御回路ムPRi〜APR
4および定電流制御回路ACRI〜ムCR4は夫々の極
の極演算制御装置’(’a (難: 1〜4)内に設け
られるものである。
APR1 to APR4 are constant power control circuits to which the nine various operation command values kIIΣPdpn calculated by the common arithmetic and control unit C-C are individually added, and the actual power value Pdn (n: 1 to 4) of the pole is added to each one. These constant power circuits APR
1 to APR4 are the seed operating current command values Idpm (
o: 7 to 4). Also ACRi~
ACR4 is a constant current control circuit into which the seed operating current command value Idpn output from the constant power control circuits APR1 to APR4 is input. These constant power control circuits PRi to APR
4 and constant current control circuits ACRI to CR4 are provided in the pole calculation control device'('a) of each pole.

第5図は定電力制御回路ムPRi〜APR4の内部構成
例を示すものである。第5図において、Kは共通演算制
御装置C−Cからの電力残令値Pdpiと他極の故障検
出信号rが入力されるrイン切換回路で、とのrイン切
換回路には故障検出信号Fが無い時はrインを11#、
故障検出信号Fが有る時はrインを“4″(’に’D 
> 1 )に切換えて電力指令値を出力するものである
。Lはrイン切換回路Kを通して入力される電力指令値
が設備の許容電力以上の運転とならないような値に制限
するリミッタ回路、Cはリミッタ囲路りを通して加えら
れる電力指令値とその極の夷亀力検出燻Pdnとを比較
しその差を取シ出す比較(ロ)路、AMPはこの比較回
路Cから出力される差信号を増幅する誤差アンプで、そ
の出力は定電流制御回路ムORmmの指令値としている
FIG. 5 shows an example of the internal configuration of the constant power control circuits PRi to APR4. In FIG. 5, K is an r-in switching circuit to which the power residual value Pdpi from the common arithmetic and control unit C-C and the failure detection signal r of the other pole are input; When there is no F, r in 11#,
When there is a failure detection signal F, set r-in to "4"(' to 'D
> 1) and outputs the power command value. L is a limiter circuit that limits the power command value input through the r-in switching circuit K to a value that does not cause the equipment to operate at more than the allowable power, and C is the power command value applied through the limiter circuit and its polarity. Comparison (b) circuit for comparing the tortoise force detection smoke Pdn and extracting the difference, AMP is an error amplifier that amplifies the difference signal output from this comparison circuit C, and its output is the output of the constant current control circuit MORmm. It is used as a command value.

次に上記のように構成された直流送電系統の制御装置の
作用について述べる。今、第2図に示す双Ii2回線4
極構成の2端子送電系統において、すべての極P1〜P
4が健全な状態で運転されているものとすれば、その時
の総送電電力指令値ΣPdpが共通演算制御装置C−C
K与えられている。したがって、この共通演算制御装置
C−Cでは総送電電力指令値ΣPdpにもとすいて6極
の運転指令値knΣpd、 (=pdp、 )を演算し
、夫夫の出力を夫々のゼ演算制御装fPcJ〜PCd内
の定電力制御回路APR,(1: I〜4)K与える。
Next, the operation of the DC power transmission system control device configured as described above will be described. Now, the dual Ii 2 line 4 shown in Figure 2
In a two-terminal power transmission system with a pole configuration, all poles P1 to P
4 is operating in a healthy state, the total transmitted power command value ΣPdp at that time is the common arithmetic and control unit C-C.
K is given. Therefore, this common arithmetic and control device C-C calculates the operation command value knΣpd, (=pdp, ) for the six poles in addition to the total transmitted power command value ΣPdp, and the output of the husband and wife is sent to each of the six arithmetic and control devices. Constant power control circuits APR, (1: I to 4) K are given in fPcJ to PCd.

この定電力制御回路APR,ではこの運転指令値Pdp
nt’fイン切換回路に1 リミッタ回路りを通して比
較回路Cに入力する。この場合、rイン切換回路に、、
には他極からの故障検出信号Fが入力されていないので
、そのrインは”1″であり、入力値と出力値は等しい
。比較回路Cでは電力指令値p、1□とその極の実電力
指令値Pdnとを比較し、その差信号を種運転電流の指
令値Idpnとして定電流制御回路ムCRnに与える。
In this constant power control circuit APR, this operation command value Pdp
The signal is input to the comparator circuit C through the nt'f input switching circuit and a limiter circuit. In this case, in the r-in switching circuit,
Since the failure detection signal F from the other pole is not input to the terminal, its r-in is "1", and the input value and the output value are equal. The comparison circuit C compares the power command value p, 1□ with the actual power command value Pdn of the pole, and provides the difference signal to the constant current control circuit CRn as the command value Idpn of the seed operating current.

したがって、各種の変換器はその極の定電流制御回路A
CR,からの指令によ多位相制御され、直流送電運転が
行なわれる。
Therefore, each type of converter has a constant current control circuit A of its pole.
Multi-phase control is performed according to commands from the CR, and DC power transmission operation is performed.

このような状軛で運転されているとき、何れかの極、例
えばP1極に故障が発生すると、PI極の送電電力がス
テツブ的に低下するため、他の健全価P2〜P3は直ち
に次のような負荷移行制御に入る。すなわち、共通演算
制御装置C−Cから定電力制御回路ムPRnK:運転指
令値Pdpnが入力されると、この運転指令値Pdpm
はrイン切換回路Kに他極から故障検出信号rが入力さ
れることKよってそのゲインが−4”K切換えられるた
め、rイン切換回路Kを通るととKよってに’m (k
’n > 1 ) Pdpm K変化する。さらにこの
rイン切換回路Kを通して得られる運転指令値に’s 
Pdpnはリミッタ回路りを通ることによシその憔の設
備の貯容電力以上の運転とならないように制限されてそ
の極の実電力検出値Pdnと比較され、その差信号が誤
差アンf AMPを通して定電流制御回路AcRn1/
C人カする。したがって定電力制御回路ムPRnよシか
かる極運転電流指令値Idpnが定電流制御回路ムCR
,K入力されることKより、各健全価の変換器は送電電
力が増加する方向に制御され負荷移行が行なわれる。
When operating under such conditions, if a failure occurs in one of the poles, for example, the P1 pole, the transmitted power of the PI pole will decrease step by step, so the other health values P2 to P3 will immediately change to the next one. It enters load transfer control like this. That is, when constant power control circuit PRnK: operation command value Pdpn is input from common arithmetic and control unit CC, this operation command value Pdpm
Since the failure detection signal r is input to the r-in switching circuit K from the other pole, its gain is switched by -4''K, so when it passes through the r-in switching circuit K, it becomes 'm (k
'n > 1) Pdpm K changes. Furthermore, the operation command value obtained through this r-in switching circuit K is
Pdpn is limited by passing through a limiter circuit so that the operation does not exceed the stored power of the equipment, and is compared with the actual power detection value Pdn of that pole, and the difference signal is determined through the error amplifier fAMP. Current control circuit AcRn1/
C. Therefore, the pole operating current command value Idpn applied to the constant power control circuit PRn is the constant current control circuit CR.
, K, the converters of each health value are controlled in the direction of increasing the transmitted power, and load shifting is performed.

このような負荷移行制御とすれば、共通演算制御装置C
−Cからの電力指令値Pdpnを変えなくても定電力制
御回路APR,の入力指令は見かけ上に′n倍となシ、
極送電電力4に’n*に増加することKなる。ここで、
第2図、第4図において、各極等負荷配分とすれば、P
1極に故障が発生した場合には となシ、各種のゲイン切換回路の設定値の合計が4とな
るように設定すれば良いことになる。
If this kind of load transfer control is used, the common arithmetic and control unit C
Even if the power command value Pdpn from -C is not changed, the input command to the constant power control circuit APR is apparently 'n times larger.
The pole transmission power 4 increases to 'n*, which results in K. here,
In Figures 2 and 4, if the load is distributed equally to each pole, then P
If a failure occurs in one pole, all that is required is to set the settings of the various gain switching circuits so that the sum of the settings is 4.

この場合、各種のゲイン設定が等しいとすればに’n−
1,33となる。
In this case, if the various gain settings are equal, then 'n-
It becomes 1,33.

第7図は第2図において、各極尋負荷配分で送電中KP
I極で送電能力が喪失し、健全価へ負荷移行した場合の
各種の送電電力および総送電電力を表わし九タイムチャ
ートである。ζこでは各種のゲイン設定は同じ値として
いる。を九故障検出時間#i説明を簡単にする丸め無視
している。繭7図において、時刻11でP1極に故障が
発生すると他極は直ちに負荷移行制御に入るが、P1極
の送電電力がステツブ的に低下する丸め、健全価では送
電電力の増加に多少時間がかかる。その丸め総送電電力
は一時的に低下する。
Figure 7 shows the KP during power transmission in each extreme load distribution in Figure 2.
9 is a time chart showing various types of transmitted power and total transmitted power when the power transmission capacity is lost at the I pole and the load is shifted to the healthy value. ζIn this case, various gain settings are set to the same value. 9 fault detection time #i is ignored rounding to simplify the explanation. In the Cocoon 7 diagram, when a failure occurs in the P1 pole at time 11, the other pole immediately enters load transfer control, but at a rounded rate where the transmitted power of the P1 pole gradually decreases, and at a healthy price, it takes some time for the transmitted power to increase. It takes. The rounded total transmitted power will be temporarily reduced.

しかし時刻1.で負荷移行制御が完了すると総送電電力
は元の値に戻る。ン′刻t1でP1極を再起動して他極
のゲイン切換回路Kをリセットすることで、適当な変化
速度で送電電力を元の伏線に戻す。時刻t4はすべての
動作が完了し、事故前の状態に戻つ九ことを示している
However, time 1. When the load transfer control is completed, the total transmitted power returns to its original value. By restarting the P1 pole at time t1 and resetting the gain switching circuit K of the other pole, the transmitted power is returned to its original foreshadowing at an appropriate rate of change. Time t4 indicates that all operations are completed and the state returns to the state before the accident.

第5図に示す定電力制御回路APRnの構成例では電力
設定入力側にrイン切換回路Kを設けたが、このrイン
切換回路Kを比較回路Cの実電力検出信号入力側に設け
ても前述と同周の作用効果を得ることができる。この場
合、ゲイン切換回路には他極から故障検出信号Fが入力
されたときのゲインが11”よlj−さな値に設定され
る。つtb、比較回路Cから得られる差信号が第5図の
場合のそれと轡しくなるように、”n(k’n>1 )
 Pdpn  Pdn=Pdpn k”n (li’n
 <1 ) Pdnとすればよい。
In the configuration example of the constant power control circuit APRn shown in FIG. 5, the r-in switching circuit K is provided on the power setting input side, but this r-in switching circuit K may also be provided on the actual power detection signal input side of the comparison circuit C. The same effects as those described above can be obtained. In this case, the gain when the failure detection signal F is input from the other pole to the gain switching circuit is set to a value smaller than 11''. As shown in the figure, "n(k'n>1)
Pdpn Pdn=Pdpn k”n (li'n
<1) Pdn may be used.

第6図は第5図とは異なる構成例の定電力制御回路ムP
Rnを示すものである。第6図において、ANDは電力
指令値Pdpnが一方の入力端に、他極からの故障検出
信号Fが他方の入力端に加えられるアンド回路、Klは
アンド回路ANDから出力される電力指令値Pdpnを
k”(k”(1)倍する〆2 247回路、ADDはこのrイン回路mから得られる出
カビ/ Pdpユと電力指令値Pdpiとを加算(Pd
pn + k” Pすn)する加算回路で、この加xt
m路ムDD以降の各構成要素は第5図と同じである。
FIG. 6 shows a constant power control circuit P with a configuration example different from that in FIG. 5.
This indicates Rn. In FIG. 6, AND is an AND circuit in which the power command value Pdpn is applied to one input terminal and the failure detection signal F from the other pole is applied to the other input terminal, and Kl is the power command value Pdpn output from the AND circuit AND. 247 circuits, ADD is the sum of the output mold/Pdp obtained from this r-in circuit m and the power command value Pdpi (Pd
pn + k” Psn), this addition xt
Each component after the m-way DD is the same as in FIG. 5.

したがって、かかる構成の定電力制御回路APRIIに
おいてもその癲令値入力信号を他極の事故時自他で増加
させるべき電力値を演算して元の電力指令mKjJl算
することで、第5図の場合と同様の作用効果を得ること
ができる。
Therefore, even in the constant power control circuit APRII having such a configuration, the power value to be increased by itself or others in the event of an accident at the other pole is calculated from the command value input signal, and the original power command mKjJl is calculated. The same effects can be obtained as in the case of

以上の説明では定電力制御回路において電力指令値入力
側又は実電力検出入力側にrイン切換(ロ)路等の信号
レベル変換回路を付加し九が、この信号レベル変換(ロ
)路を同様の考え方で定電流制御回路ACRn内に付加
して本前述同様の作用効果が得られる。
In the above explanation, a signal level conversion circuit such as an r-in switching (b) path is added to the power command value input side or the actual power detection input side in the constant power control circuit. By adding it to the constant current control circuit ACRn based on this idea, the same effects as described above can be obtained.

オ九前配した各実施例では2端子直流送電系絖に適用す
る場合について述べたが、3端子以上の多端子系統にも
同様にして適用することができる。この場合、多端子系
統において、定電力制御系および定電流制御系が共通演
算部には含まれず、極制御側に含まれているときには夫
夫の端子の6極の定電力制御回路又は定電流制御回路の
信号入力側に前述したような信号レベル変換回路を設け
ればよく、またリミッタ回路の付加についても同様であ
る。さらに直流送電系統として、複数の双極で構成され
、かつ双極単位で運転されるような系統に対しても同様
に適用実施できるものである。
Although the embodiments described above are applied to a two-terminal DC power transmission system, the present invention can be similarly applied to a multi-terminal system having three or more terminals. In this case, in a multi-terminal system, the constant power control system and the constant current control system are not included in the common calculation unit, and if they are included in the pole control side, the 6-pole constant power control circuit or constant current control system of the husband's terminal A signal level conversion circuit as described above may be provided on the signal input side of the control circuit, and the same can be said of adding a limiter circuit. Furthermore, the present invention can be similarly applied to a DC power transmission system that is composed of a plurality of bipoles and is operated in bipolar units.

以上述べたように本発明によれば、複数の運転極を有す
る直流送電系統において何れかの極で事故が発生し送電
できなくなった場合、事故検出信号を他の健全極に与え
てその信号により高速に送電電力の増加を行なわせるよ
うKしたので、従来のように共通演算制御装置で負荷の
再配分を行なってその出力を6極の種演算制御装置に伝
送する必要がなく、その分負荷移行制御が遠くなシ、信
頼性の高い制御を行なうことができる直流送電系統の制
御装置が提供できる3、
As described above, according to the present invention, when an accident occurs at any pole in a DC power transmission system having a plurality of operating poles and power cannot be transmitted, an accident detection signal is given to the other healthy poles, and the signal is used to transmit the power. Since the transmission power is increased rapidly, there is no need to redistribute the load using the common arithmetic and control unit and transmit the output to the six-pole seed arithmetic and control unit, as in the conventional case, and the load can be increased by that amount. 3. We can provide a control device for DC power transmission systems that can perform highly reliable control in situations where transition control is far away.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は2端子送電2極構成の直流送電系統を示す図、
第2図は双極2回MI4健構成の2端子送電系統を示す
図、第3図は直流送電系統の基本的な制御装置を示す階
層制御システム構成図、第4図は本発明装置の一実施例
を示すブロック構成図、第5図は同実施例における定電
力制御回路の構成を示すブロック構成図、第6図は本発
明の他の実施例における定電力制御回路の構成を示すブ
ロック構成図、第7図は第2図において1極の送電能力
が喪失し九場合の健全極負荷移行状態を説明するための
タイムチャートを示す図である。 ム、B・・・交流系統、Vム1〜Vム4.■1〜v、4
・・・変換器、DLl〜DL4・・・直流線路、DNl
 、 DN2・・・中性線、C−C・・・共通演算制御
装置、PC1〜PC4・・・種演算制御装置、GCij
・・・位相制御装置、vGij・・・f −) yJ?
ルス制御装置、APRll・・・定電力制御回路、ムC
a、・・・定電流制御回路、K・・・ゲイン切換回路、
L・・・リミッタ回路、C・・・比較回路、■・・・−
差アング、AND・・・アンド回路、ADD・・・加算
回路。
Figure 1 is a diagram showing a DC power transmission system with a two-terminal power transmission and two-pole configuration.
Fig. 2 is a diagram showing a two-terminal power transmission system with a bipolar 2-time MI4 healthy configuration, Fig. 3 is a hierarchical control system configuration diagram showing the basic control device of a DC transmission system, and Fig. 4 is an implementation of the device of the present invention. FIG. 5 is a block diagram showing the configuration of a constant power control circuit in the same embodiment; FIG. 6 is a block diagram showing the configuration of a constant power control circuit in another embodiment of the present invention. , FIG. 7 is a diagram showing a time chart for explaining a state in which the load shifts to a healthy pole in the case where the power transmission capacity of one pole is lost in FIG. 2. M, B... AC system, Vm1 to Vm4. ■1~v,4
...Converter, DLl to DL4...DC line, DNl
, DN2...neutral line, C-C...common arithmetic and control device, PC1 to PC4...species arithmetic and control device, GCij
...phase control device, vGij...f −) yJ?
Luss control device, APRll... Constant power control circuit, MuC
a, constant current control circuit, K... gain switching circuit,
L...limiter circuit, C...comparison circuit, ■...-
Difference Ang, AND...AND circuit, ADD...Addition circuit.

Claims (4)

【特許請求の範囲】[Claims] (1)  複数の運転極を有する直流送電系統忙おいて
、各運転他に夫々設けられ定電流制御回路および定電力
制御回路を備えてその極を運転指令値と実電力検出値と
の偏差にもとすいて運転制御する種演算制御装置と、前
記直流送電系統の総電力指令値が入力されそれを個々の
@に配分して前記各種の種演算制御装置に前記運転指令
値として与える共通演算制御装置とを備え、前記各種の
種演算制御装置の定電力制御回路又は定電流制御回路の
運転指令値信号入力側又は集電力検出値入力IK、入力
信号レベル対出力信号レベルをあらかじめ設定された比
率又は値に従って変化させる信号レペ、ル変換回路を設
け、複数の2!I!転極の内何れかの極で事故、その他
の原因で送電電力の一部又は全部が喪失したときその検
出信号を健全極の前記信号レベル変換回路に与えて前記
定電力制御回路又は定電流制御回路の入力信号レベルを
変化させ、健全極送電電力が増加するように制御するこ
とを%黴とする直流送電系統の制御装置。
(1) In a busy DC power transmission system with multiple operating poles, a constant current control circuit and a constant power control circuit are provided for each operating pole to control the deviation between the operating command value and the actual power detection value. A seed arithmetic control device that initially controls the operation, and a common calculation in which the total power command value of the DC transmission system is input and is distributed to individual @s and given to the various seed arithmetic control devices as the operation command value. and a control device, the operation command value signal input side or the collected power detection value input IK of the constant power control circuit or constant current control circuit of the various seed calculation control devices, and the input signal level versus output signal level is set in advance. A signal conversion circuit is provided to change the signal according to the ratio or value, and a plurality of 2! I! When part or all of the transmitted power is lost due to an accident or other cause at any of the polarity reversals, the detection signal is given to the signal level conversion circuit of the healthy pole to perform constant power control circuit or constant current control. A control device for a DC power transmission system that changes the input signal level of the circuit and controls the power transmitted to a healthy node to increase.
(2)複数の運転極は夫々双極で構成され、かつ双極単
位で運転されるものである時許餉求の範囲第(1)項に
記載の直流送電系統の制御装置。
(2) The control device for a DC power transmission system according to item (1), wherein each of the plurality of operating poles is composed of bipoles and is operated in units of bipoles.
(3)複数の運転極を有する直流送電系統において、各
運転極に夫々設けられ定電流制御回路および定電力制御
回路を備えてその極の運転指令値と実電力検出値との偏
差にもとすいて運転制御する種演算制御装置と、前記直
流送電系統の総電力指令値が入力されそれを個々の極に
配分して前記各種の種演算制御装置に前記運転指令値と
して与える共通演算制御装置とを備え、前記各種の種演
算制御装置の定電力制御回路又は定電流制御回路の運転
指令値信号入力側又は奥電力検出値入力側に1人力信号
レベル対出力信号レベルをあらかじめ設定された比率又
は値に従って変化させる信号レベル褒洪回路を設け、さ
らKこの信号レベル変換回路の出力1iIIK前記定電
力制御回路又は定電流制御回路の信号入力レベルに制限
を加えるリミッタ回路を設け、複数の運転極の内側れか
の極で事故、その他の原因で送電電力の一部又は全部が
喪失したときその検出信号を健全極の前記信号レベル変
換回路に与えて前記定電力制御回路又は定電流制御回路
の入力信号レベルを変化させると共に前記リミッタ回路
によシその極の送電電力を許容された値に抑えて健全極
送電電力が増加するように制御することを特徴とする直
流送電系統の制御装置。
(3) In a DC transmission system having multiple operating poles, each operating pole is provided with a constant current control circuit and a constant power control circuit, and the deviation between the operating command value and the detected actual power value of that pole is a common arithmetic control device that receives the total power command value of the DC power transmission system, distributes it to individual poles, and supplies it to the various seed arithmetic control devices as the operation command value; and a preset ratio of the human power signal level to the output signal level on the operation command value signal input side or back power detection value input side of the constant power control circuit or constant current control circuit of the various types of arithmetic and control devices. Alternatively, a signal level conversion circuit is provided to change the signal level according to the value, and a limiter circuit is provided to limit the signal input level of the constant power control circuit or constant current control circuit, and a limiter circuit is provided to limit the signal input level of the constant power control circuit or constant current control circuit. When part or all of the transmitted power is lost due to an accident or other cause at one of the inner poles, the detection signal is given to the signal level conversion circuit of the healthy pole to control the constant power control circuit or the constant current control circuit. 1. A control device for a DC power transmission system, characterized in that the input signal level is changed and the limiter circuit controls the transmitted power of that pole to a permissible value so that the transmitted power of a healthy pole increases.
(4)  複数の運転極は夫々双極で構成され、かつ双
極単位で運転されるものである特許請求の範囲第(3)
項に記載の直流送電系統の制御装置。
(4) Claim (3) wherein each of the plurality of operating poles is composed of bipoles and is operated in bipolar units.
A control device for a DC power transmission system as described in paragraph 1.
JP56202948A 1981-12-16 1981-12-16 Controller for dc transmission system Granted JPS58103826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56202948A JPS58103826A (en) 1981-12-16 1981-12-16 Controller for dc transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56202948A JPS58103826A (en) 1981-12-16 1981-12-16 Controller for dc transmission system

Publications (2)

Publication Number Publication Date
JPS58103826A true JPS58103826A (en) 1983-06-21
JPS642016B2 JPS642016B2 (en) 1989-01-13

Family

ID=16465809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56202948A Granted JPS58103826A (en) 1981-12-16 1981-12-16 Controller for dc transmission system

Country Status (1)

Country Link
JP (1) JPS58103826A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017011916A (en) * 2015-06-24 2017-01-12 株式会社日立製作所 Multiterminal dc power transmission system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0458227U (en) * 1990-09-27 1992-05-19
JPH0733927U (en) * 1993-12-01 1995-06-23 朝紀 池田 Handbag

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017011916A (en) * 2015-06-24 2017-01-12 株式会社日立製作所 Multiterminal dc power transmission system

Also Published As

Publication number Publication date
JPS642016B2 (en) 1989-01-13

Similar Documents

Publication Publication Date Title
EP2589127B1 (en) A multi-terminal dc transmission system and method and means for control thereof
WO2018230327A1 (en) Power conversion device
Gwon et al. Mitigation of voltage unbalance by using static load transfer switch in bipolar low voltage DC distribution system
JP6689472B1 (en) Power converter
EP0047501B1 (en) Multiterminal dc power transmission system
US10148091B2 (en) High voltage direct current power transmission series valve group control device
RU2692216C2 (en) Selective parallel operation method for measuring/control devices
JPS58103826A (en) Controller for dc transmission system
US3543045A (en) Method and apparatus for connecting and disconnecting converter station between transmission lines
US5179291A (en) Access unit for local area network
US5701241A (en) Recovery of transmitted power in an installation for transmission of high-voltage direct current
CN108493976B (en) Method and system for flexible direct current back-to-back device drop point and capacity configuration
JP3150437B2 (en) Control device of AC / DC converter
JP2801770B2 (en) Monitoring circuit of AC / DC converter
JP2801758B2 (en) Monitoring device
JPH0213530B2 (en)
JPS61102124A (en) Frequency controller for direct current transmission system
JP2744107B2 (en) Monitoring device
CN117477628A (en) Method and system for selecting partition scheme for multi-DC feed-in power grid
JP2504405B2 (en) Power system stabilization method
KR100965163B1 (en) Ac to dc converter control device
JPH0145825B2 (en)
CN117060343A (en) Method, device, equipment and medium for processing fault of modularized multi-level converter
JPS6334695B2 (en)
JPS58133127A (en) Power control system for ac/dc interlocking system