JP2504405B2 - Power system stabilization method - Google Patents
Power system stabilization methodInfo
- Publication number
- JP2504405B2 JP2504405B2 JP60216719A JP21671985A JP2504405B2 JP 2504405 B2 JP2504405 B2 JP 2504405B2 JP 60216719 A JP60216719 A JP 60216719A JP 21671985 A JP21671985 A JP 21671985A JP 2504405 B2 JP2504405 B2 JP 2504405B2
- Authority
- JP
- Japan
- Prior art keywords
- load
- power
- phase
- voltage
- stabilization method
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 16
- 230000006641 stabilisation Effects 0.000 title claims description 10
- 238000011105 stabilization Methods 0.000 title claims description 10
- 230000005540 biological transmission Effects 0.000 claims description 12
- 238000000926 separation method Methods 0.000 claims description 11
- 238000004364 calculation method Methods 0.000 claims description 7
- 238000010586 diagram Methods 0.000 description 5
- 230000000087 stabilizing effect Effects 0.000 description 4
- 230000000903 blocking effect Effects 0.000 description 3
- 239000003990 capacitor Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
Landscapes
- Supply And Distribution Of Alternating Current (AREA)
Description
【発明の詳細な説明】 [発明の技術分野] 本発明は電力系統の安定化方式に係り、特に多量の電
力を他系統より受電している重過負荷系統が送電線故障
等により単独系統となった場合に、負荷の一部をしゃ断
して単独系統の需給バランスを取り系統の周波数低下を
防止し得るようにした電力系統安定化方式に関する。Description: TECHNICAL FIELD OF THE INVENTION The present invention relates to a power system stabilization method, and in particular, a heavy overload system receiving a large amount of power from another system is considered to be a single system due to a transmission line failure or the like. In this case, the present invention relates to a power system stabilization method capable of preventing a frequency drop in the power system by cutting off part of the load to balance the supply and demand of the single power system.
[発明の技術的背景とその問題点] 一般に、多量の電力を他系統より受電している重過負
荷系統が送電線故障等により他系統との連系が断れて単
独系統になると、大巾な過負荷状態となり系統の電圧・
周波数が急激に低下する。この周波数が大巾に低下する
と、自系統内の発電機が保護リレーによって解列し、単
独系統の安定運転は不可能となる。そこで、従来からこ
のような系統故障時における安定化方式としては、母線
電圧の周波数若しくは周波数変化率を検出し、予め整定
した値に従って負荷の一部をしゃ断し、単独系統の需給
バランスを維持することにより系統周波数の低下を防止
する負荷しゃ断方式がある。[Technical background of the invention and its problems] Generally, when a heavy overload system receiving a large amount of electric power from another system is disconnected from the other system due to a transmission line failure or the like and becomes a single system, it is greatly affected. Overload condition and system voltage
The frequency drops sharply. If this frequency is drastically reduced, the generator in its own system will be disconnected by the protection relay, making stable operation of the independent system impossible. Therefore, conventionally, as a stabilization method at the time of such a system failure, the frequency of the bus voltage or the frequency change rate is detected, and a part of the load is cut off according to a preset value to maintain the supply-demand balance of the single system. There is a load cutoff method that prevents the system frequency from decreasing.
第1図(a)(b)は、一般的な重過負荷系統が単独
系統となった場合に、負荷しゃ断システムにより、負荷
の一部をしゃ断して系統の電圧・周波数を夫々安定化し
たときの一例を示すものである。一方、送電線の多く
が、地中ケーブル線で構成されているケーブル系統は、
系統内に過大な対地静電容量を有しており、第2図にこ
のケーブル系重過負荷系統の一例を示す。ケーブル系重
過負荷系統は、第2図に示す様にケーブル系統10,自系
統内発電機11,昇圧変圧器12,ケーブル線13a〜13d,連系
線14,負荷15,調相設備16から構成されている。FIGS. 1 (a) and 1 (b) show that when a general heavy overload system becomes a single system, a load blocking system cuts off a part of the load to stabilize the voltage and frequency of the system, respectively. FIG. On the other hand, a cable system in which most of the power transmission lines are underground cable lines,
The system has an excessive capacitance to ground, and Fig. 2 shows an example of this cable system heavy overload system. As shown in Fig. 2, the cable system heavy overload system is composed of a cable system 10, a generator 11 in its own system, a step-up transformer 12, cable lines 13a to 13d, an interconnection line 14, a load 15, and a phase adjusting facility 16. It is configured.
よって、かかるケーブル系重過負荷系統が単独系統に
なった(t1時点)場合に、従来の負荷しゃ断方式によっ
て需給バランスを維持するために負荷の一部をしゃ断す
る(t2時点)と、系統の過大な対地静電容量が原因とな
って、第3図(a)(b)に示す様に電圧が急激に上昇
する。この電圧が急激に上昇すると、負荷の電圧特性に
よって残存負荷の消費電力が急激に増加し、需給バラン
スを維持することができない。従って、系統の周波数が
増々低下し単独系統の安定運転を行なうことが不可能と
なる。Therefore, when such a cable system heavy overload system becomes isolated system (t 1 point), to cut off some of the load in order to maintain the supply-demand balance by conventional load cutoff manner as (t 2 time), Due to the excessive ground capacitance of the system, the voltage sharply rises as shown in FIGS. 3 (a) and 3 (b). If this voltage rises sharply, the power consumption of the remaining load sharply increases due to the voltage characteristics of the load, and it is not possible to maintain a balance between supply and demand. Therefore, the frequency of the system decreases more and more, and stable operation of the independent system becomes impossible.
以上の様な問題は、系統にケーブル線の対地静電容量
という過大な進相無効電力負荷が有るためで、周波数低
下防止対策として有効電力の需給バランスを図るだけで
は充分な対策とならず、何んらかの無効電力バランスを
も同時に図ることが必要である。The problem described above is because the system has an excessive phase-advancing reactive power load, which is the electrostatic capacitance to the ground of the cable line, and it is not sufficient to simply balance the supply and demand of active power as a frequency drop prevention measure. It is necessary to try to balance some reactive power at the same time.
[発明の目的] 本発明は上記のような問題を解決するためになされた
もので、その目的は重過負荷系統が送電線故障等により
単独系統となった場合に、当該系統の電圧,周波数の低
下を防止して系統を安定化することが可能な電力系統安
定化方式を提供することにある。[Object of the Invention] The present invention has been made to solve the above problems, and its object is to reduce the voltage and frequency of a heavy overload system when it becomes an independent system due to a failure of a transmission line or the like. The purpose of the present invention is to provide a power system stabilization method capable of stabilizing the system by preventing a decrease in power consumption.
[発明の概要] 上記目的を達成するために本発明では、過大な対地静
電容量を有して電力を他系統より受電している重過負荷
系統が送電線故障等により系統分離して単独系統となっ
た場合に、負荷の一部をしゃ断して系統周波数を安定化
させる電力系統安定化方式において、故障前の受電電力
に基づいて、該受電電力の有効電力分に対応する負荷を
選択し且つこの選択した負荷の無効電力分を算出し前記
有効電力分と前記無効電力分とを合わせて負荷しゃ断量
を決定する一方、負荷しゃ断後の残存有効・無効電力,
単独系統内発電機の系統分離前の端子電圧値及び昇圧ト
ランスのリアクタンス値を含む所定の演算式から負荷端
子電圧を予め設定した目標値に制御するための調相設備
投入量を算出し、単独系統となった場合に前記負荷しゃ
断量および調相設備投入量と一致するように負荷の選択
しゃ断及び調相設備の選択投入を実施するようにしたこ
とを特徴とする。[Summary of the Invention] In order to achieve the above object, according to the present invention, a heavy overload system which has an excessively large electrostatic capacitance to the ground and receives electric power from another system is isolated by a system failure due to a transmission line failure or the like. In the power system stabilization method that cuts off part of the load to stabilize the system frequency when it becomes a system, select the load corresponding to the active power of the received power based on the received power before the failure. In addition, the reactive power component of the selected load is calculated, and the active power component and the reactive power component are combined to determine the load blocking amount, while the remaining active / reactive power after the load blocking,
Calculate the amount of phase-modulating equipment input to control the load terminal voltage to a preset target value from a predetermined calculation formula that includes the terminal voltage value before the grid separation of the generator in the grid and the reactance value of the step-up transformer. It is characterized in that the load is selectively cut off and the phase-modulating equipment is selectively inserted so that the load and the phase-modulating equipment input amount match when the system is formed.
[発明の実施例] まず本発明の基本的な考え方、すなわち負荷しゃ断
量,調相設備投入量の演算方法について述べる。[Embodiment of the Invention] First, a basic idea of the present invention, that is, a method of calculating a load cutoff amount and a phase adjusting equipment input amount will be described.
先述した様に、ケーブル系重過負荷系統は、ほとんど
全てが線路インピーダンスの小さなケーブル線で構成さ
れており、また系統自体も局地的であるため同系統内の
線路インピーダンスはほぼ無視できる。従って、同系統
内の負荷を自系統内発電機の昇圧変圧器の高圧側の出力
PG+jQGと、他系統からの受電電力PT+jQTおよび定常状態
での系統電圧VLOを用いて、(1),(2)式より負荷
のアドミッタンスで表現すると第2図の系統は第4図に
示す様な系統に縮約することができる。As described above, the cable system heavy overload system is almost entirely composed of cable lines with a small line impedance, and the system itself is local, so the line impedance in the system can be almost ignored. Therefore, load the same system with the output on the high voltage side of the boost transformer of the generator in the system.
Using P G + jQ G , the received power P T + jQ T from another system, and the system voltage V LO in the steady state, the admittance of the load can be expressed by equations (1) and (2). The system can be reduced to the system shown in FIG.
GL≒(PG+PT)/VLO 2 ……(1) BL≒−(QG+QT)/VLO 2 ……(2) 即ち、第4図の系統を自系統内発電機11,自系統内発
電機の昇圧変圧器12および負荷のアドミッタンス(GL+j
BL)で表現することができる。G L ≈ (P G + P T ) / V LO 2 …… (1) B L ≈− (Q G + Q T ) / V LO 2 …… (2) That is, the system shown in FIG. Generator 11, step-up transformer 12 of generator in the system and load admittance (G L + j
B L ).
次に、この第4図を用いて負荷しゃ断量,調相設備投
入量の演算方法について説明する。Next, a method of calculating the load cutoff amount and the phase-adjustment equipment input amount will be described with reference to FIG.
いま、ケーブル系重過負荷系統が送電線故障等により
系統分離して単独系統となった場合、有効電力の需給ア
ンバランス量は系統分離前に連系線に流れていた有効電
力PTとなる。よって、この有効電力PT分に見合う負荷を
選択しゃ断して有効電力の需給バランスを図る。なお、
この有効電力PT分の負荷をしゃ断すると、有効電力分の
みならず負荷の有する無効電力分をもしゃ断することに
なるので、実際の負荷しゃ断量は(3)式の様になる。Now, if the cable system heavy overload system is separated into a single system due to a transmission line failure, etc., the unbalanced amount of active power supply and demand becomes the active power P T that was flowing to the interconnection line before the system separation. . Therefore, the load corresponding to this active power P T is selected and cut off to balance the supply and demand of active power. In addition,
When the load for the active power P T is cut off, not only the active power but also the reactive power of the load is cut off. Therefore, the actual load cutoff amount is as shown in equation (3).
負荷しゃ断量=PT+jΣq …(3) ここで、Σqは同時にしゃ断される負荷の無効の電力
分である。Load cutoff amount = PT + j [ Sigma] q (3) Here, [Sigma] q is the reactive power of the loads to be cut off at the same time.
次に、調相設備の投入量の演算方法を述べる。いま第
4図の縮約系統において、送電線故障等により、単独系
統となった後に(3)式で演算した負荷しゃ断を実施
し、さらに負荷しゃ断後の過電圧を抑制するために調相
設備の投入を行なった後の等価回路は、第5図に示す様
になる。同図において、GL *,BL *は夫々負荷しゃ断を
実施した後の残存負荷のコンダクタンス分およびセサプ
タンス分であり、(4),(5)式にて夫々表わされ
る。Next, a method of calculating the input amount of the phase adjusting equipment will be described. Now, in the reduced system of Fig. 4, after the system becomes an independent system due to a transmission line failure, etc., the load cutoff calculated by equation (3) is executed, and further the phase-adjustment equipment is installed to suppress the overvoltage after the load cutoff. The equivalent circuit after turning on is as shown in FIG. In the figure, G L * and B L * are the conductance component and the susceptance component, respectively, of the residual load after the load is cut off, and are represented by the equations (4) and (5), respectively.
GL *=PG/VLO 2 …(4) BL *=−(QG+QT‐Σq)/VLO 2 …(5) 一方、発電機の端子電圧Vtは単独系統となった後、定
常状態では自動電圧調整器(AVR)の動作により、系統
分離前の値に復帰するので、Vt=Vtoとおくことができ
る。従って、単独系統となった後の負荷の負荷端子電圧
の定常状態値VLは、 となる。逆に、負荷端子電圧の目標値Lを整定する
と、調相設備の最適投入容量BRは次式の如く求めること
ができる。G L * = P G / V LO 2 (4) B L * =-(Q G + Q T -Σ q ) / V LO 2 (5) On the other hand, the generator terminal voltage V t is After that, in the steady state, the value before the grid separation is restored by the operation of the automatic voltage regulator (AVR), so that V t = V to can be set. Therefore, the steady-state value VL of the load terminal voltage of the load after becoming the independent system is Becomes On the contrary, if the target value L of the load terminal voltage is settled, the optimum input capacity B R of the phase adjusting equipment can be obtained by the following equation.
本発明は、以上述べた方法によって、負荷しゃ断量を
決定すると共に、系統電圧を系統分離前の定常状態値に
するように調相設備の投入量を故障前の受電電力より演
算し、系統分離(t1時点)後この演算結果と一致する様
に負荷の選択しゃ断および調相設備の選択投入を実施
(t2時点)することにより、単独系統の電圧と周波数を
安定化するものであり、第6図(a)(b)にその一例
を示す。 According to the present invention, the load cutoff amount is determined by the above-mentioned method, and the input amount of the phase-modulating equipment is calculated from the received power before the failure so that the system voltage becomes the steady state value before the system separation. After (t 1 time), the load and the phase-modulating equipment are selectively cut off so as to coincide with this calculation result (at t 2 time), thereby stabilizing the voltage and frequency of the independent system. An example is shown in FIGS. 6 (a) and 6 (b).
以下、上述の様な考え方に基づく本発明の一実施例に
ついて第7図を用いて説明する。第7図は、本発明によ
る電力系統安定化方式のシステム構成例を示すものであ
り、図示の様に中央演算部1,発電機端末部2,負荷端末部
3,調相設備端末部4,連系線端末部5から構成している。
なお、本実施例では説明の簡単化のため、負荷,調相設
備ともに一ケ所としている。An embodiment of the present invention based on the above concept will be described below with reference to FIG. FIG. 7 shows a system configuration example of the power system stabilizing method according to the present invention. As shown in the figure, the central processing unit 1, the generator terminal unit 2, the load terminal unit.
It is composed of 3, phase adjusting equipment terminal 4, and interconnection line terminal 5.
In the present embodiment, for simplification of description, the load and the phase adjusting equipment are provided in one place.
図8においてまず系統分離前は、需給状態に応じて一
定周期で、発電機端末部2は自系統内発電機11の昇圧変
圧器12の高圧側の出力PG+jQGおよび端子電圧Vtoを、負
荷端末部3は負荷15の各フィダー線の電力PLi+jQLi(i
=1,n)および負荷15の端子電圧VLOを、調相設備端末部
4は調相設備16の各調相機器(スタテックコンデンサ,
シャントリアクトル)の並解列を、連系線端末部5は連
系線14の潮流つまり受電電力PT+jQTをそれぞれ測定し、
図示しない伝送系を介して中央演算部1に伝送する。中
央演算部1は、上記入力VLO,PG+jQG,PT+jQTとともに負
荷15の各フィダー線の電力PLi+jQLiを[表1]に示す様
に、調相設備16の各調相機器の並解列を[表2]に示す
様に夫々記憶する。なお、[表2]には各調相機器の並
解列の他、予め記憶されている容量をも示している。In FIG. 8, first, before the system separation, the generator terminal unit 2 outputs the high-voltage side output P G + jQ G of the step-up transformer 12 of the internal generator 11 and the terminal voltage V to The load terminal unit 3 supplies the power P Li + jQ Li (i
= 1, n) and the terminal voltage V LO of the load 15, and the phase-modulating equipment terminal unit 4 uses each phase-modifying device (static capacitor, static capacitor,
Shunt reactor) parallel connection, the interconnection line terminal unit 5 measures the tidal current of the interconnection line 14, that is, the received power P T + jQ T ,
It is transmitted to the central processing unit 1 via a transmission system (not shown). The central processing unit 1, as shown the input V LO, P G + jQ G , the power P Li + jQ Li of each feeder line of the load 15 with P T + jQ T in Table 1, phase modifying equipment 16 The parallel solution sequences of the respective phase adjusting devices are stored respectively as shown in [Table 2]. [Table 2] also shows the pre-stored capacities in addition to the parallel solution sequence of each phase adjusting device.
中央演算部1は、以上の系統の需給状態を基に、系統
分離後にしゃ断する負荷15のフィダー線および並解させ
る調相設備16の調相機器を、第8図に示す様なフローチ
ャートに従って選択する。 The central processing unit 1 selects the feeder line of the load 15 to be cut off after the system separation and the phase-adjusting device of the phase-adjusting equipment 16 to be parallelized according to the flow chart shown in FIG. To do.
すなわち、中央演算部1はまずステップS1において、
受電有効電力PTに見合う様にしゃ断する負荷15のフィダ
ー線を選択し、(3)式で示した様に同時にしゃ断され
る無効電力分Σqを演算する。例えば、[表1]で示す
フィダー線1,2,3を系統分離後にしゃ断することを決定
すると、無効電力分Σqは次式の様になる。That is, the central processing unit 1 first, in step S1,
The feeder line of the load 15 to be cut off is selected so as to be commensurate with the received active power P T , and the reactive power component Σ q to be cut off at the same time is calculated as shown in equation (3). For example, if it is decided to cut off the feeder lines 1, 2, and 3 shown in [Table 1] after grid separation, the reactive power component Σ q is as in the following equation.
Σq=QL1+QL2+QL3(MVar) …(8) 次に、ステップS2においては自系統内発電機11の昇圧
変圧器12の高圧側の出力PG+jQG,負荷15の端子電圧
VLO,受電無効電力QT,そしてΣqから(4),(5)
式より残存負荷のコンダクタンス分GL *およびサセプタ
ンス分BL *を夫々演算する。Σ q = Q L1 + Q L2 + Q L3 (MVar) (8) Next, in step S2, the high-voltage side output P G + jQ G of the step-up transformer 12 of the internal generator 11 and the load 15 Terminal voltage
From V LO , received reactive power Q T , and Σ q (4), (5)
The conductance component G L * and susceptance component B L * of the residual load are calculated from the equations.
次に、ステップS3においては、自系統内発電機11の昇
圧変圧器12のリアクタンス値Xt、および低圧側の電圧V
to,GL *,BL *、そして予め整定してある負荷端子電圧
の目標値Lより、調相設備の最適投入量BRを演算す
る。Next, in step S3, the reactance value X t of the step-up transformer 12 of the internal generator 11 and the voltage V on the low voltage side
From to , G L * , B L * , and the preset target value L of the load terminal voltage, the optimum injection amount B R of the phase adjusting equipment is calculated.
更に、ステタップS4においてはこの調相設備の最適投
入量BRに見合う様に、並解列する調相設備16の調相機器
を選択する。例えば、[表2]に示す調相機器 の容量の合計R1+R2+R3が最適投入容量BRにほぼ一致する
とすると、調相機器 の投入を決定する。Further, in Sutetappu S4, as appropriate to the optimum dosages B R of the phase modifying equipment, to select the compensator device parallel disconnection to phase modifying equipment 16. For example, the phase adjusting device shown in [Table 2] The sum of the capacities of R 1 + R 2 + R 3 is approximately equal to the optimum input capacity B R Decide to input.
かかる状態から、いま、送電線故障等によって連系線
14がしゃ断されて系統分離が発生(t1時点)すると、中
央演算部1は負荷端末部3に対して上記で選択した負荷
15のフィダー線のしゃ断指令を、また調相設備端末部4
に対して同様に上記で選択した調相設備16の調相機器の
並解列指令を、夫々図示しない伝送系を介して送出す
る。これにより、負荷端末部3および調相設備端末部4
では、上記指令に従って負荷15のフィダー線のしゃ断お
よび調相設備16の調相機器の選択投入を実施(t2時点)
して、単独系統の電圧、周波数を安定化させる。From this state, the interconnection line is now
When 14 is cut off and system separation occurs (at time t 1 ), the central processing unit 1 causes the load terminal unit 3 to select the load selected above.
Cut off the 15 feeder lines, and the phase adjustment equipment terminal 4
Similarly, the parallel parallel command of the phase-adjusting device of the phase-adjusting equipment 16 selected above is sent out via a transmission system (not shown). As a result, the load terminal unit 3 and the phase adjusting equipment terminal unit 4
In, performing selective introduction of feeder lines of cut-off and phase modifying equipment 16 compensator device of the load 15 in accordance with the command (t 2 time)
Then, the voltage and frequency of the independent system are stabilized.
尚、上記実施例では調相設備の投入容量BRを第5図に
示した縮約系統の等価回路より求めたが、縮約しない系
統で潮流演算を行なうことにより求めることもできる。
ここで潮流演算とは、各母線の電圧の大きさV,位相角
θ,有効電力P,無効電力Qのうちの2つを指定値とし、
他の2つの量を求める演算手法である。従って、系統分
離前に系統分離後において負荷しゃ断を実施した後の系
統状態を想定し、また、調相設備の接続される母線をP,
V指定母線として潮流演算を行なうことにより、調相設
備の接続される母線の電圧を目標値に維持するための
無効電力量を求めることができ、調相設備投入量BRは
次式より簡単に求められる。In the above embodiment, the input capacity B R of the phase-modulating equipment is calculated from the equivalent circuit of the contracted system shown in FIG. 5, but it can also be calculated by performing the power flow calculation in the non-contracted system.
Here, the power flow calculation has two specified values of the magnitude V of the voltage of each bus, the phase angle θ, the active power P, and the reactive power Q,
This is a calculation method for obtaining the other two quantities. Therefore, assume the system state after load cutoff before system isolation and after connecting the busbar to which the phase-adjustment equipment is connected to P,
By performing the power flow calculation as V specified bus, phase modifiers bus of voltage connected equipment can be obtained reactive energy for maintaining the target value, phase modifying equipment dosages B R easy by the following formula Required to.
BR=−/2 …(9) [発明の効果] 以上説明したように本発明によれは、故障前の需給状
態を基に周波数対策としての負荷しゃ断量を決定すると
共に、負荷しゃ断後の電圧上昇抑制対策としての調相設
備投入量を系統電圧が系統分離前の定常状態値をとるよ
うに演算し、送電線故障等による系統分離後この演算結
果と一致する様に負荷の選択しゃ断および調相設備の選
択投入を実施する様にしたので、重過負荷系統が送電線
故障等により単独系統になった場合に、当該系統の電
圧,周波数の低下を防止すると共に、系統電圧を系統分
離前の定常状態値に制御して系統を安定化することが可
能な電力系統安定化方式が提供できる。B R = − / 2 (9) [Advantages of the Invention] As described above, according to the present invention, the load cutoff amount as the frequency countermeasure is determined based on the supply and demand state before the failure, and the load cutoff amount after the load cutoff is determined. As a measure to suppress voltage rise, the amount of phase-modulating equipment input is calculated so that the system voltage takes a steady-state value before system separation, and after system separation due to a transmission line failure, etc. Since the phase-in equipment is selectively turned on, when the heavy overload system becomes a single system due to a transmission line failure, etc., the voltage and frequency of the system are prevented from decreasing and the system voltage is separated. A power system stabilization method capable of stabilizing the system by controlling to the previous steady state value can be provided.
第1図(a)(b)は一般的な重過負荷系統が単独系統
となった場合に従来の負荷しゃ断方式により、安定化し
た時の一例を示す図、第2図はケーブル系重過負荷系統
の一例を示す図、第3図(a)(b)はケーブル系重過
負荷系統が単独系統となった場合に従来の負荷しゃ断方
式により負荷の一部をしゃ断した時の現象を示す図、第
4図はケーブル系重過負荷系統の縮約系統を示す図、第
5図は第4図の等化回路を示す図、第6図(a)(b)
はケーブル系重過負荷系統が単独系統となった場合に負
荷しゃ断と調相設備投入により安定化を図った例を示す
図、第7図は本発明の一実施例を示す構成図、第8図は
第7図における作用を説明するためのフローチャート図
である。 1……中央演算部、2……発電機端末部、3……負荷端
末部、4……調相設備端末婦、5……連係線端末部、10
……ケーブル系統、11……自系統内発電機、12……昇圧
変圧器、13a〜13d…ケーブル線、14……連係線、15……
負荷、16……調相設備。1 (a) and 1 (b) are diagrams showing an example of the case where a general heavy overload system is a single system and is stabilized by a conventional load cutoff method, and FIG. 2 is a cable system heavy load system. The figure which shows an example of a load system, FIG.3 (a) (b) shows the phenomenon when a part of load is cut off by the conventional load cutoff system, when a cable system heavy overload system becomes an independent system. Fig. 4 is a diagram showing a reduction system of the cable system heavy overload system, Fig. 5 is a diagram showing the equalization circuit of Fig. 4, and Figs. 6 (a) and (b).
FIG. 7 is a diagram showing an example in which the load is cut off and stabilization is performed by inputting phase adjusting equipment when the cable heavy overload system becomes a single system, and FIG. 7 is a configuration diagram showing an embodiment of the present invention, FIG. The figure is a flow chart for explaining the operation in FIG. 1 ... Central processing unit, 2 ... Generator terminal unit, 3 ... Load terminal unit, 4 ... Phase adjusting terminal device, 5 ... Collective line terminal unit, 10
...... Cable system, 11 …… Internal power generator, 12 …… Step-up transformer, 13a to 13d… Cable line, 14 …… Linking line, 15 ……
Load, 16 ... Phase adjusting equipment.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 大塚 均 東京都千代田区内幸町1丁目1番3号 東京電力株式会社内 (72)発明者 小俣 和也 東京都府中市東芝町1番地 株式会社東 芝府中工場内 (72)発明者 佐藤 正弘 東京都府中市東芝町1番地 株式会社東 芝府中工場内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Hitoshi Otsuka 1-3-3 Uchisaiwaicho, Chiyoda-ku, Tokyo TEPCO (72) Inventor Kazuya Omata 1 Toshiba-cho, Fuchu-shi, Tokyo TOSHIBA CORPORATION Fuchu Factory (72) Inventor Masahiro Sato 1 Toshiba Town, Fuchu City, Tokyo TOSHIBA Corporation Fuchu Factory
Claims (1)
より受電している重過負荷系統が送電線故障等により系
統分離して単独系統となった場合に、負荷の一部をしゃ
断して系統周波数を安定化させる電力系統安定化方式に
おいて、 故障前の受電電力に基づいて、該受電電力の有効電力分
に対応する負荷を選択し且つこの選択した負荷の無効電
力分を算出し前記有効電力分と前記無効電力分とを合わ
せて負荷しゃ断量を決定する一方、負荷しゃ断後の残存
有効・無効電力,単独系統内発電機の系統分離前の端子
電圧値及び昇圧トランスのリアクタンス値を含む所定の
演算式から負荷端子電圧を予め設定した目標値に制御す
るための調相設備投入量を算出し、単独系統となった場
合に前記負荷しゃ断量および調相設備投入量と一致する
ように負荷の選択しゃ断及び調相設備の選択投入を実施
するようにしたことを特徴とする電力系統安定化方式。1. A part of a load when a heavy overload system having an excessive capacitance to ground and receiving electric power from another system is separated into a single system due to a transmission line failure or the like. In the power system stabilization method that shuts off the power to stabilize the system frequency, selects the load corresponding to the active power of the received power based on the received power before the failure and determines the reactive power of the selected load. While calculating the active power component and the reactive power component to determine the load cutoff amount, the remaining active / reactive power after the load cutoff, the terminal voltage value before the grid separation of the generator in the single grid and the step-up transformer Calculate the amount of phase-modulating equipment input to control the load terminal voltage to a preset target value from the predetermined calculation formula that includes the reactance value. Negative to match A power system stabilization method characterized in that the load is selectively cut off and the phase-modulating equipment is selectively input.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60216719A JP2504405B2 (en) | 1985-09-30 | 1985-09-30 | Power system stabilization method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60216719A JP2504405B2 (en) | 1985-09-30 | 1985-09-30 | Power system stabilization method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6277830A JPS6277830A (en) | 1987-04-10 |
JP2504405B2 true JP2504405B2 (en) | 1996-06-05 |
Family
ID=16692847
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60216719A Expired - Lifetime JP2504405B2 (en) | 1985-09-30 | 1985-09-30 | Power system stabilization method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2504405B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5710304B2 (en) * | 2011-02-09 | 2015-04-30 | 東北電力株式会社 | Power system stabilizing device and control method thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58151833A (en) * | 1982-03-03 | 1983-09-09 | 東京電力株式会社 | System stabilizing method |
-
1985
- 1985-09-30 JP JP60216719A patent/JP2504405B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58151833A (en) * | 1982-03-03 | 1983-09-09 | 東京電力株式会社 | System stabilizing method |
Also Published As
Publication number | Publication date |
---|---|
JPS6277830A (en) | 1987-04-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10756536B2 (en) | System for handling short circuits on an electrical network | |
EP2589127B1 (en) | A multi-terminal dc transmission system and method and means for control thereof | |
US10826378B2 (en) | Power conversion apparatus for interconnection with a three-phrase ac power supply | |
US6107784A (en) | System interconnection protective device for non-utility generation equipment | |
JP5508796B2 (en) | Power supply system control method and power supply system control apparatus | |
EP1119894A1 (en) | Uninterruptible power supply systems, voltage regulators and operating methods employing controlled ferroresonant transformer circuits | |
US9787080B2 (en) | Microgrid distribution manager with dynamically adjustable trip curves for multi-source microgrids | |
US5657213A (en) | Method and device for control of a series-compensated converter station | |
US20220126721A1 (en) | Method for operating a charging station for vehicles | |
JPH11113175A (en) | Power conversion device | |
JP2504405B2 (en) | Power system stabilization method | |
WO2011111058A2 (en) | A switched capacitor bank | |
US2038505A (en) | Rectifier control system | |
RU2374738C1 (en) | Current limiting device of electric network | |
US4127805A (en) | Device for connecting tuned power transmission line to a.c. network | |
EP4376254A1 (en) | Autonomous cooperative control system and autonomous cooperative control method | |
CN213717834U (en) | Dedicated intelligent integration electrical power generating system structure of broadcasting and TV and circuit | |
WO1995031847A1 (en) | Recovery of transmitted power in an installation for transmission of high-voltage direct current | |
CN109818344B (en) | Controllable current source earth fault full compensation method with inductance compensation | |
US1617007A (en) | Transmission system | |
US20240339862A1 (en) | Uninterruptible power supply apparatus | |
Srilatha et al. | Power Quality Improvement Using Distribution Static Compensator | |
JPS6347059B2 (en) | ||
JP2763618B2 (en) | Static type reactive power regulator | |
JPH0465619B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |