JPS58103542A - Cap for containers for carbonated beverages - Google Patents

Cap for containers for carbonated beverages

Info

Publication number
JPS58103542A
JPS58103542A JP56201700A JP20170081A JPS58103542A JP S58103542 A JPS58103542 A JP S58103542A JP 56201700 A JP56201700 A JP 56201700A JP 20170081 A JP20170081 A JP 20170081A JP S58103542 A JPS58103542 A JP S58103542A
Authority
JP
Japan
Prior art keywords
cap
density
mfr2
component
10min
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56201700A
Other languages
Japanese (ja)
Inventor
Fumitoshi Ikejiri
池尻 文利
Yoshinori Morita
森田 好則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP56201700A priority Critical patent/JPS58103542A/en
Publication of JPS58103542A publication Critical patent/JPS58103542A/en
Pending legal-status Critical Current

Links

Landscapes

  • Closures For Containers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To provide the titled cap having excellent creep and stress crack resistance, by using a PE compsn. comprising a specified PE and an ethylene/alpha- olefin copolymer. CONSTITUTION:A PE compsn., MFR2 (melt flow rate measured at 190 deg.C under the total load of 2.16kg) of 0.3-30g/10min, density of 0.945-0.965g/cm<2> and high shearing flow rate (HSFR) of 600sec<-1>, obtained by mixing 20-70wt% PE, MFR2 of 5-2,000g/10min and density of 0.965-0.975g/cm<3>, with 80-30wt% ethylene/alpha-olefin copolymer, MFR2 <=15g/10min, MFR10 (melt flow rate measured at 190 deg.C under the total load of 10.0g) <=15g/10min and density of 0.890- 0.950g/cm<3>, is used to make a cap for containers for carbonated beverages. EFFECT:A cap having excellent sealing performance and shock resistance without deformation by internal pressures or external forces and free from gas leakage from sealing section may be obtained.

Description

【発明の詳細な説明】 本発明は、炭酸飲料容器のキャップに関する0 ビール、清涼飲料などの炭酸飲料のキャップは1従来金
属製のものであったが、近年樹脂製キャップに変換する
試みがなされている。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to caps for carbonated beverage containers.Caps for carbonated beverages such as beer and soft drinks have traditionally been made of metal, but attempts have been made in recent years to convert them to caps made of resin. ing.

炭酸飲料容器は、内部に相当な圧力がかかるため、キャ
ップ材として衝撃等に強い抗力を示し、破損を起こさな
いものを選択することが重要であるが、それと共にガス
洩れ防止のためキャップのシール性が良好でなければな
らない。とくにキャップ素材として熱可塑性樹脂を用い
るときには、シール構造に適合するよう寸法精度良く成
形できる加工性が必要であり、さらに炭酸飲料の保存時
において、内圧により或いは外力によって樹脂の変形が
生−じ・、シール部よりガス洩れを起こすことのない□
ようり)リーブ特性の良好なことも必要である。
Carbonated beverage containers are subject to considerable internal pressure, so it is important to select a material for the cap that has strong resistance to impacts and will not cause breakage.At the same time, it is important to select a cap material that will not cause damage, but it is also important to select a cap material that has a strong resistance to impact, etc., and will not cause damage. Must be of good quality. In particular, when thermoplastic resin is used as a cap material, it must be processable so that it can be molded with good dimensional accuracy to fit the seal structure.Furthermore, when storing carbonated drinks, the resin may be deformed due to internal pressure or external force. , no gas leakage from the seal □
) It is also necessary to have good leave properties.

従来、密度及びメルトフローレー)(VFR)の異なる
2種のポリエチレン(エチレンと少量のa−オレフィン
との共重合体を含む)をブレンド又は順次重合すること
によって得られるポリエチレン組成物が加工性、耐スト
レスクラック性、耐衝撃性等に優れており、管、ビン、
コンテナー、繊維、フィルム、シートなどの成形品とし
て使用され得ることが知られているが、これら公知の組
成物の多くは、品質要求の厳しい炭酸飲料容器のキャッ
プ素材として必ずしも適合しうるものではなかった。
Conventionally, polyethylene compositions obtained by blending or sequentially polymerizing two types of polyethylene (including a copolymer of ethylene and a small amount of a-olefin) with different density and melt flow rate (VFR) have been improved in processability, It has excellent stress crack resistance and impact resistance, and is suitable for pipes, bottles,
Although it is known that they can be used as molded products such as containers, fibers, films, and sheets, many of these known compositions are not necessarily suitable as cap materials for carbonated beverage containers with strict quality requirements. Ta.

本発明者らは、とくに炭酸飲料容器のキャップに適合し
うる素材を検討した結果、以下の如きポリエチレン組成
物が優れていることを見出し、本発明を完成させるに至
った。
The present inventors have investigated materials that are particularly suitable for caps of carbonated beverage containers, and have found that the following polyethylene compositions are excellent, and have completed the present invention.

すなわち本発明は、(A)荷重2.16に9におけるメ
ル)7tl−レ−)MFR2が5ないし2000 g/
 10m1n。
That is, the present invention provides (A) load 2.16 to 9 mel) 7tl-ray) MFR2 of 5 to 2000 g/
10m1n.

密度0.965ないし0.975 g /1ys3のポ
リエチレン20ないし70重量部および(B) MF 
R20,01なイシ0.2 g/ 10m1n、荷重1
0.0 kQにおけるメルト7゜−レー) MF R,
o/NF R2が15以下、密度0.890共重合体8
0ないし30重量部(合計して100重量部)からなり
、がっMFR2が0.3ないL3.Og/10w1n、
密度0.965ないし0.945 g /apt3、H
8FRが6 D Oaec  以上のポリエチレン組成
物を用いることを特徴とする炭酸飲料用容器用キャップ
である。
20 to 70 parts by weight of polyethylene having a density of 0.965 to 0.975 g/1ys3 and (B) MF
R20,01 stone 0.2 g/10m1n, load 1
Melt 7°-ray at 0.0 kQ) MF R,
o/NF R2 is 15 or less, density 0.890 copolymer 8
L3. consisting of 0 to 30 parts by weight (100 parts by weight in total) and having an MFR2 of 0.3. Og/10w1n,
Density 0.965 to 0.945 g/apt3, H
A cap for a carbonated beverage container characterized by using a polyethylene composition having a FR of 6 D Oaec or more.

ココにMFR2はASTM D−1238−73のE条
件、すなわち温度190’c、全荷重2.16kg、M
 FR1oハN条件、すなわち湿度190℃、全荷重1
0,0#gにより測定したものであり、またH8FRは
、射出成形でのスパイラルフローと良い相関関係を持つ
値としてキャピラリーレオメータ−を用い、以下の条件
で測定したものである。
Here, MFR2 meets the E conditions of ASTM D-1238-73, i.e. temperature 190'C, total load 2.16kg, M
FR1oN conditions, i.e. humidity 190℃, total load 1
0.0 #g, and H8FR is a value that has a good correlation with spiral flow in injection molding, and was measured using a capillary rheometer under the following conditions.

H8FR測定条件 装 置 島津製作所製キャビ□ラリー型レオメータ− ノズル 径1.Ommφ、L/D=30温度190″C H8FR値は図2のメルトフローカーブよす、セん断応
力2.4 X 106dyne /3におけるせん断速
度(s−c)として表示される。
H8FR measurement conditions Equipment: Shimadzu Cavity Rally type rheometer Nozzle diameter: 1. Ommφ, L/D=30 Temperature 190″C The H8FR value is expressed as the shear rate (s-c) at a shear stress of 2.4×106dyne/3 according to the melt flow curve in FIG.

本発明のキャップに供する(A)成分は、MFR2が5
ないし2000 g/ 10m1n、好ましくは20な
いし1000 g/ 10m1n 、密度が0.965
ないし0.975 g /C1l’のポリエチレンであ
る。該ポリエチレンとしてMFR2が前記より小さいも
のを用いた場合には、組成物のH8FRを6008θc
−1以上とするために、(B)成分としてMFR1o/
MFR2の太きいものを用いる必要があり、その結果、
耐ストレスクラック性が劣るという欠点が生ずる。また
該ポリエチレンとしてMFR2が前記よりさらに大きい
ものを用いた場合には、組成物の耐衝撃性が劣   [
す、とくにウェルド部の融着不良も起こり、キャブにし
た場合、衝撃により破損し易いという欠点が生ずる。さ
らに該ポリエチレンとして密度がさらに小さいものを用
いた場合には、図3に示すように組成物のクリープ特性
が劣ると共に、耐スト   (レスクラック性が劣るの
で、キャップとして密封性、耐衝撃性に問題を生ずる。
The component (A) used in the cap of the present invention has an MFR2 of 5
to 2000 g/10m1n, preferably 20 to 1000 g/10m1n, density 0.965
to 0.975 g/C1l' of polyethylene. When the polyethylene having MFR2 smaller than the above is used, the H8FR of the composition is 6008θc.
-1 or more, as component (B) MFR1o/
It is necessary to use a thick MFR2, and as a result,
The disadvantage is that stress crack resistance is poor. Furthermore, if a polyethylene having an MFR2 larger than the above is used, the impact resistance of the composition will be poor.
In particular, defective welding occurs at the weld part, and when used as a cab, there is a drawback that it is easily damaged by impact. Furthermore, when a polyethylene with a lower density is used, as shown in Figure 3, the composition has poor creep properties and poor stress (resistance to cracking) properties, resulting in poor sealing performance and impact resistance as a cap. cause problems.

一方、本発明のキャップに供する(B)成分は、MFR
2が0.01ないし0.2 g/ 10m1n 、  
好ましくは帆01ないし0.1 g/l 0mtn、 
MFR,o/MFR2が15以下、密度が0.890な
いし0.950 g /cI11、好ましくは0.90
0ないし0.945g/clR(7)lレン・α−オレ
フィン共重合体である。ここにα−オレフィンとしては
、プロピレン、1−ブテン、1−ペンテン、1−ヘキセ
ン、1−オクテン、1−デセン、1−ドデセン、1−テ
トラデセン、4−メチル−1−ペンテンのような例えば
炭素数3ないし18程度のものを例示することができる
On the other hand, the component (B) used in the cap of the present invention is MFR
2 is 0.01 to 0.2 g/10m1n,
Preferably sail 01 to 0.1 g/l 0mtn,
MFR, o/MFR2 is 15 or less, density is 0.890 to 0.950 g/cI11, preferably 0.90
0 to 0.945 g/clR(7) l lene/α-olefin copolymer. Examples of the α-olefin include carbon atoms such as propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, and 4-methyl-1-pentene. Examples include numbers 3 to 18.

該CB)成分としてMFR2が前記より大きいものを用
いると組成物として耐クリープ特性、耐ストレスクラッ
ク性が不良となり、キャップにした場合、クリープ変形
によるガス洩れ、あるいはクラック箔化などの欠点が生
ずる。またMFR2が前記よりゴ1さい非常に分子量の
高いものを使用するのは、八)(B)両成分の良好な混
合状態が得られず、キャップの外観を損い、かつウェル
ド部の融着不良を引き起こす。またMFR4゜/MFR
2が前記範囲より大といものを用いると、耐ストレスク
ラック性が不良となる〇 該成分(B)の密度が前記より小さいものを用いると組
成物ペレット同志、および製品同志の「くっつき」が生
じ好ましくない。
If a component with MFR2 larger than the above is used as the component CB), the composition will have poor creep resistance and stress crack resistance, and when used as a cap, problems such as gas leakage due to creep deformation or cracked foil formation will occur. In addition, using a material with a very high molecular weight, the MFR2 of which is much smaller than the above, is because (8) (B) a good mixing state of both components cannot be obtained, spoiling the appearance of the cap, and causing fusion of the weld part. cause defects. Also, MFR4゜/MFR
If a material in which 2 is larger than the above range is used, the stress crack resistance will be poor. If a material in which the density of component (B) is smaller than the above range is used, "sticking" of the composition pellets and the products will occur. Undesirable.

また密度か前記より大きいものを用いると、やはり耐ク
リープ特性、耐ストレスクラック性が劣る。
Furthermore, if a material with a density higher than the above is used, creep resistance and stress crack resistance will still be inferior.

(A)成分と(B)成分の配合割合は、(AJ成分20
ないし70重量部、好ましくは30ないし60重量部に
対し、(B)成分80ないし30重量部、好ましくは7
0ないし40重量部(合計して100重量部)とし、組
成物のMFR2が0.3ないし3.0 g / 10 
mi n s  好ましくは0.5ないし2−0g/1
0m1n、密度か0.945ないし0.965 g /
C1N 、好マシくハ0.950ないし0.960 g
 /ax3、H8FRが600sec−’以上、好まし
くは800 esc  以上のものとする。(A)成分
の配合割合が前記範囲より多くなると良好な混合状態が
得られずウェルド融着不良となって好ましくなく逆に囚
成分の割合が前記範囲より小さくなり、組成物のM F
 R2、密度等の数値か前記範囲より小さくなると成形
寸法精度、および耐クリープ性が不良となって好ましく
ない。なお上記のような組成物を得るには、遷移金属化
合物触媒成分と有機金属化合物触媒成分から形成される
触媒の存在下、(A)成分を製造した後、CB)成分を
製造する方法、あるいは(B)成分を製造した後(A)
成分を製造する方法のような二段重合を採用するのが、
(A)(B)両成分の均密な混合物が得られるので好ま
しい。しかしながら、(A)、(B)各成分を別途製造
した後、種々のブレンド方法によって配合してもよい。
The blending ratio of component (A) and component (B) is (AJ component 20
to 70 parts by weight, preferably 30 to 60 parts by weight, and 80 to 30 parts by weight, preferably 7 parts by weight of component (B).
0 to 40 parts by weight (total 100 parts by weight), and the MFR2 of the composition is 0.3 to 3.0 g / 10
min s preferably 0.5 to 2-0 g/1
0mln, density 0.945 to 0.965g/
C1N, preferably 0.950 to 0.960 g
/ax3, H8FR is 600 sec-' or more, preferably 800 esc or more. If the blending ratio of the component (A) exceeds the above range, a good mixing state will not be obtained and poor weld fusion will result, which is undesirable.On the contrary, the ratio of the component will become smaller than the above range, and the M F of the composition will be reduced.
If the values of R2, density, etc. are smaller than the above ranges, the molding dimensional accuracy and creep resistance will be poor, which is not preferable. In addition, in order to obtain the above-mentioned composition, in the presence of a catalyst formed from a transition metal compound catalyst component and an organometallic compound catalyst component, component (A) is produced, and then component CB) is produced, or (B) After producing the component (A)
Adopting two-stage polymerization, such as the method for producing components, is
(A) and (B) are preferred because a homogeneous mixture of both components can be obtained. However, each component (A) and (B) may be separately produced and then blended using various blending methods.

キャップを製造するにあたっては、上記組成物に、各種
安定剤、酸化防止剤、顔料などの添加剤が適宜配合され
てもよい。
In manufacturing the cap, additives such as various stabilizers, antioxidants, pigments, etc. may be appropriately added to the above composition.

炭酸飲料容器のキャップは、とくに気密性が要求される
。その形状及び気密構造は容器本体の形状、その他によ
って適宜選択しうる〇 以下、実施例により説明する。
Caps for carbonated beverage containers are particularly required to be airtight. Its shape and airtight structure can be appropriately selected depending on the shape of the container body and other factors.Hereinafter, it will be explained using examples.

実施例1 (1)触媒合成 窒素気流中で無水塩化マグネシウム5モルを脱水精製し
たヘキサン10gに懸濁させ、攪拌しながらエタノール
25モルを1時間かけて滴下後、室温にて1時間反応し
た。これに12モルのジエチルアルミニウムクロリドを
室温で滴下し、2時間攪拌した。続いて四塩化チタン1
0モルを加えた後、60°Cに昇温して3時間攪拌しな
がら反応を行った。
Example 1 (1) Catalyst Synthesis 5 moles of anhydrous magnesium chloride were suspended in 10 g of dehydrated hexane in a nitrogen stream, 25 moles of ethanol was added dropwise over 1 hour with stirring, and the suspension was reacted for 1 hour at room temperature. To this was added dropwise 12 mol of diethylaluminium chloride at room temperature, and the mixture was stirred for 2 hours. Next, titanium tetrachloride 1
After adding 0 mol, the temperature was raised to 60°C and the reaction was carried out with stirring for 3 hours.

生成した固体部は傾しやによって分離し、精製ヘキサン
によりくり返し洗浄した後ヘキサンの懸濁液とした。
The generated solid portion was separated using a tilter, washed repeatedly with purified hexane, and then made into a hexane suspension.

ヘキサン懸濁液中のT1濃度は滴定によって定量した。The T1 concentration in the hexane suspension was determined by titration.

また、得られた固体の1部を減圧乾燥して触媒組成を調
べたところ、固体1g当りチタンが74mg5マグネシ
ウムが202mg、塩素が618mgそれぞれ存在して
いた。
Further, when a portion of the obtained solid was dried under reduced pressure and the catalyst composition was examined, it was found that 74 mg of titanium, 202 mg of magnesium, and 618 mg of chlorine were present per gram of the solid.

(2)重合 ブレンド用A成分、B成分の重合を以下の如く行った。(2) Polymerization Polymerization of component A and component B for blending was carried out as follows.

A成分;200/の重合器に脱水精製したヘキサを50
6/hr、)リエチルアルミニウム140 mmol 
/ hrの速度で、前記担体付触媒をT1原子に換算し
て1.4mmol /hrを連続的に供給し、重合器内
容物を所要速度で排出しなから80°Cに保持しつつエ
チレンを1s kg/ hr s水素を18Nm/hr
の速度で導入し、全圧7に9/cIII2、平均滞留時
間2時間の条件下で連続的に重合を行った。
A component: 50% dehydrated hexa in a 200% polymerization vessel
6/hr,) ethylaluminum 140 mmol
The supported catalyst was continuously supplied at a rate of 1.4 mmol/hr in terms of T1 atoms, and while the contents of the polymerization vessel were discharged at the required rate and maintained at 80°C, ethylene was added. 1s kg/hr s hydrogen 18Nm/hr
The polymerization was carried out continuously under conditions of a total pressure of 7 to 9/cIII2 and an average residence time of 2 hours.

得られたポリエチレンのMFR2は 240 g/ 10m1n、極限粘度〔η〕は0.73
 d6 / g %密度はo、974g/備 であった
The MFR2 of the obtained polyethylene was 240 g/10 m1n, and the intrinsic viscosity [η] was 0.73.
The d6/g% density was o, 974 g/g.

B成分;へ成分の重合と同様に、トリエチルアルミニウ
ム75 mmol / hr 、触媒をT1換算で1 
、Q mmol / hr 、重合温度70°C。
Component B: Same as the polymerization of component B, triethylaluminum 75 mmol/hr, catalyst 1 in terms of T1.
, Q mmol/hr, polymerization temperature 70°C.

エチレンを15&9/hrs 1−ブテンを750g/
brs水素を0.080 N rn /hrの速度で導
入し、全圧4 kg/(:R2の条件下で連続的に重合
を行った。
Ethylene 15&9/hrs 1-butene 750g/hrs
BRS hydrogen was introduced at a rate of 0.080 N rn /hr, and polymerization was carried out continuously under the conditions of a total pressure of 4 kg/(:R2).

得られたポリエチレンのMFR2は 0.06g/ 10 m1n1(77)は3.20dl
/g。
MFR2 of the obtained polyethylene is 0.06 g/10 m1n1 (77) is 3.20 dl
/g.

MFR,o/MFR2は9.7、密度は0.956g/
cIIIであった〇 (3)  ブレンド 上記入成分、B成分パウダーを50150のブレンド比
で、耐熱安定剤および塩M@収剤を添加し、ヘンシェル
ミキサーで混合する。
MFR, o/MFR2 is 9.7, density is 0.956g/
cIII (3) Blend The above ingredients and B component powder are blended at a blending ratio of 50150, heat stabilizer and salt M@harvesting agent are added, and mixed in a Henschel mixer.

次いで65mmφフルフライト単軸押出機を用い、混線
造粒を行った。
Next, cross-wire granulation was performed using a 65 mmφ full-flight single-screw extruder.

得られたエチレン共重合組成物は以下の物性であった。The obtained ethylene copolymer composition had the following physical properties.

MFR2=0.78g/10m1n、(η〕=L96a
g/gs’Ij’lK = 0.955 g /cps
5、asFR=1050sec ’実施例2 実施例1と同様の触媒を使用し、連続シリーズ2段重合
を行った。
MFR2=0.78g/10m1n, (η)=L96a
g/gs'Ij'lK = 0.955 g/cps
5.asFR=1050sec'Example 2 Using the same catalyst as in Example 1, a continuous series of two-stage polymerization was carried out.

内容積2001の第1段重合器にヘキサンを5Ql/h
r、)リエチルアルミニウム140 mmol/hrs
担体付触媒をT1換算で2.8m m 01/h1”の
速度で連続的に供給し、重合器内容物を所要速度で排出
しながら、80℃においてエチレンを15&9/hr。
5Ql/h of hexane to the first stage polymerization vessel with an internal volume of 2001
r,) ethylaluminum 140 mmol/hrs
The supported catalyst was continuously fed at a rate of 2.8 m m 01/h1 in terms of T1, and ethylene was fed at 80° C. at 15&9/hr while discharging the contents of the polymerization vessel at the required rate.

水素を18 N m / hrの速度で導入し、全圧7
 kg /as 。
Hydrogen was introduced at a rate of 18 N m/hr, with a total pressure of 7
kg/as.

平均滞留時間2時間の条件下で連続的に第1段重合を行
う。重合で生成したポリエチレンを含むヘキサンの懸濁
溶液(エチレン重合体含量300g/l、ポリエチレン
のMFR2=270g/10m1n、極限粘度〔η〕=
0.71dl/g、密度=0.974 g/備3・)を
同温度においてフラッシュ・ドラムに導き、溶液中に含
まれる水素を分離後、そのまま内容積2001の第2段
重合器に全量導入し、触媒を追加することなく、精製ヘ
キサン50//hrを供給し、重合器内容物を所要速度
で排出しながら、70°Cにおいてエチレンを15 k
ti/ hr 、 1−ブテンを650g / hr 
s、水素0.075 N m /hrの速度で導入して
全圧をs、5kg/cm2、滞留時間2時間の条件下に
連続的に第2段重合を行う。
The first stage polymerization is carried out continuously under conditions of an average residence time of 2 hours. Suspension solution of hexane containing polyethylene produced by polymerization (ethylene polymer content 300 g/l, MFR2 of polyethylene = 270 g/10 m1n, intrinsic viscosity [η] =
0.71 dl/g, density = 0.974 g/3.) was introduced into a flash drum at the same temperature, and after separating the hydrogen contained in the solution, the entire amount was directly introduced into the second stage polymerization vessel with an internal volume of 2001. 15 k of ethylene at 70 °C without adding catalyst, feeding 50//hr of purified hexane and discharging the polymerizer contents at the required rate.
ti/hr, 1-butene 650g/hr
The second stage polymerization is carried out continuously under the following conditions: hydrogen is introduced at a rate of 0.075 N m /hr, the total pressure is 5 kg/cm 2 , and the residence time is 2 hours.

第2段重合器からの流出物はエチレン重合体組成物30
0g/1l−hrを含み、該重合体のMF R2は0.
68 g/ 10m1ns (’7)は2.07dl/
g1密度は0.955 g /cm3であった。
The effluent from the second stage polymerization vessel is an ethylene polymer composition of 30%
0g/1l-hr, and the MF R2 of the polymer is 0.
68 g/ 10m1ns ('7) is 2.07 dl/
The g1 density was 0.955 g/cm3.

第1段目の物性との加成性および換算式から計算して得
られる2段目の重合生成物の物性は以下の如くである0 〔η)  =s、43al/g MFR2=0.043g/10m1n (MFR2=38(η)−5,5) p=0.955g/α3 該重合体は、実施例1と同様の造粒条件でペレットを得
た。
The physical properties of the second stage polymerization product calculated from the additivity with the first stage physical properties and the conversion formula are as follows: 0 [η) = s, 43al/g MFR2 = 0.043g /10m1n (MFR2=38(η)-5,5) p=0.955g/α3 The polymer was obtained into pellets under the same granulation conditions as in Example 1.

実施例3〜7、比較例1〜4 実施例1の方法において、水素および1−ブテンの供給
量、さらにコモノマーとしてのα−オレフィンの種類を
変えて得られたA成分、B成分を実施例1と同様の方法
でブレンドしてエチレン共重合組成物を得た。
Examples 3 to 7, Comparative Examples 1 to 4 Components A and B obtained by changing the amount of hydrogen and 1-butene supplied and the type of α-olefin as a comonomer in the method of Example 1 were used as examples. An ethylene copolymer composition was obtained by blending in the same manner as in 1.

比較例5 A成分は実施例1で述べた通常の連続重合で得られたポ
リエチレンであり、実施例3、比較例1のA成分と同一
物質である。
Comparative Example 5 Component A is polyethylene obtained by the usual continuous polymerization described in Example 1, and is the same material as Component A in Example 3 and Comparative Example 1.

B成分;内容積200gの重合器に、ヘキサン6011
担体付触媒をT1換算2.8mmol、  )リエチル
アルミニウム120mmol、さらに水素を0.14N
m を初期一括供給する。
B component: Hexane 6011 in a polymerization vessel with an internal volume of 200 g.
2.8 mmol of supported catalyst in terms of T1, 120 mmol of ethylaluminum, and 0.14N of hydrogen.
m is initially supplied in bulk.

温度を85℃に保ちつつエチレン2 /;9 /h r
 。
Ethylene 2/;9/hr while keeping the temperature at 85℃
.

1−ブテン80g/hrの速度で連続的に導入し、重合
を行う。
Polymerization is carried out by continuously introducing 1-butene at a rate of 80 g/hr.

重合開始3時間後に第1回脱圧を行い 水素の減少を画る。その後も3時間毎に脱圧を行う。The first depressurization was performed 3 hours after the start of polymerization. Depicting the decrease in hydrogen. Thereafter, depressurize every 3 hours.

全重合時間は12時間でポリエチレン収量は23kgで
あった0経時のMF R2変化、および最終品の物性は
以下の如くであった。
The total polymerization time was 12 hours, and the polyethylene yield was 23 kg.The change in MF R2 after 0 hours and the physical properties of the final product were as follows.

6時間後 6時間後 9時間後 12時間後MPR21
50171,30,15 物性、MFR2=0.15 g/ 10m1n、  (
η〕=2.70dj?/g、密度=0.938g/cM
1MF R10/MF R2== 18.5(2)ブレ
ンド ブレンドは、実施例1の方法でブレンド比A/ B =
 40 / 60で行った。得られたエチレン共重合組
成物は以下の物性であった。
After 6 hours After 6 hours After 9 hours After 12 hours MPR21
50171,30,15 Physical properties, MFR2=0.15 g/10m1n, (
η]=2.70dj? /g, density = 0.938g/cM
1MF R10/MF R2 == 18.5 (2) Blend Blend is made by the method of Example 1 at blend ratio A/B =
I went with 40/60. The obtained ethylene copolymer composition had the following physical properties.

MFR2=0.84 g710min、 (η) = 
1.96 dl/g1密度=0.955g/as 、H
8FR:=1120sec−1実施例7〜10、比較例
6〜1゜ 実施例2の方法において、1段目の重合量と2段目の重
合量の割合、1段目と2段目のコモノマーの供給割合、
コモノマーの種類、重合条件を種々変えてエチレン共重
合組成物を得た。
MFR2=0.84 g710min, (η) =
1.96 dl/g1 density = 0.955g/as, H
8FR:=1120sec-1 Examples 7 to 10, Comparative Examples 6 to 1° In the method of Example 2, the ratio of the polymerization amount in the first stage and the polymerization amount in the second stage, the comonomer in the first stage and the second stage supply ratio,
Ethylene copolymer compositions were obtained by varying the type of comonomer and polymerization conditions.

前記エチレン共重合組成物をプレス成形により200m
mX20mmX2mmの試験片を作成し、機械的特性の
試験を行った。試験条件は以下の通り(1)  引張り
試験 ASTMD−638 (2)アイゾツト衝撃強度 ASTM  D−256ノツチ付 ASTM D−1695に準する。
The ethylene copolymer composition was press-molded to a length of 200 m.
A test piece of m x 20 mm x 2 mm was prepared and tested for mechanical properties. The test conditions are as follows: (1) Tensile test ASTM D-638 (2) Izot impact strength ASTM D-256 with notch according to ASTM D-1695.

温度 50°C 界面活性剤 Antarox A400.10%溶液 (4〕  引張りクリープ試験 実施例1と比較例3のエチレン共重合組成物に:ついて
AsTM D−674に準じ、80 ”C、応力30k
g/lx2を加えて歪を測定する。結果を図3に示す。
Temperature: 50°C Surfactant: Antarox A400.10% solution (4) Tensile creep test For the ethylene copolymer compositions of Example 1 and Comparative Example 3: According to AsTM D-674, 80"C, stress 30k
Measure the strain by adding g/lx2. The results are shown in Figure 3.

射出成形性試験を以下の条件で行った。An injection moldability test was conducted under the following conditions.

(リ 射出成形機 東芝l5−50 (2)  スパイラル70−試験 金型R: s mm 、 半円形スパイラルフロー金型
金型温度 40’C 樹脂温度 260°C 射出タイム 5秒 冷却タイム 5秒 射出スピード 高速 (3)収縮率 金型150X 120X2mm 金型温度 40℃ 樹脂温度 200℃ 射出圧力 1000/800kIj10I2射出タイム
 1076秒 冷却タイム 30秒 射出スピード 低速 収縮率差(至) また以下に示す条件で直径50mm、高さ20闘、肉厚
2mmの図1に示すようなスクリューキャップの射出成
形を行い持続耐圧テストおよび落下強度テストを行った
0 成形機   東芝zs−50 樹脂温度  220℃ 金型温度  30℃ 射出タイム 2秒 射出圧力  1000/800に9/備2冷却タイム 
10秒 (1)  持続耐圧テスト ガラス製瓶(内容積6DJ)に冷却したコカコーラ50
 mlを注入後、締トルク15kg・αで上記キャップ
で閉栓する。1試験体当り10本ずっ50°C空気浴中
に逆立状・態で10日間保存し、キャブの形状変化、ク
ラックの有無、液洩れの有無を検査する。
(Re-injection molding machine Toshiba l5-50 (2) Spiral 70-test mold R: s mm, semicircular spiral flow mold Mold temperature 40'C Resin temperature 260°C Injection time 5 seconds Cooling time 5 seconds Injection speed High speed (3) shrinkage rate Mold 150X 120X2mm Mold temperature 40℃ Resin temperature 200℃ Injection pressure 1000/800kIj10I2 Injection time 1076 seconds Cooling time 30 seconds Injection speed Low speed shrinkage rate difference (total) Also, under the conditions shown below, the diameter is 50mm, A screw cap with a height of 20 mm and a wall thickness of 2 mm as shown in Figure 1 was injection molded and subjected to a sustained pressure test and a drop strength test.0 Molding machine: Toshiba ZS-50 Resin temperature: 220℃ Mold temperature: 30℃ Injection time 2 seconds injection pressure 1000/800 to 9/2 cooling time
10 seconds (1) Continuous pressure test Coca-Cola 50 cooled in a glass bottle (inner volume 6DJ)
After injecting ml, close it with the above cap with a tightening torque of 15 kg・α. Store 10 specimens per test specimen in an upright position in an air bath at 50°C for 10 days, and inspect for changes in the shape of the cab, presence of cracks, and presence of liquid leakage.

(2)キャップ面落下テスト 上記閉栓した瓶をキャップ面を下方にし、50cI11
からコンクリート面に落下させ割れの有無を検査する。
(2) Cap side drop test The above-closed bottle was placed with the cap side down, and 50cI11
Drop it onto a concrete surface and inspect for cracks.

結果を表1〜表3に示す。The results are shown in Tables 1 to 3.

【図面の簡単な説明】[Brief explanation of drawings]

図1はキャップの一例、図2はせん断速度とせん断応力
の関係を示す図面、図3は引張りりIJ−ブ曲線の一例
を示す図面である。 出願人  三井石油化学工業株式会社 代理人  山  口     和 図  1 0mm 〈−□ mm
FIG. 1 is an example of a cap, FIG. 2 is a drawing showing the relationship between shear rate and shear stress, and FIG. 3 is a drawing showing an example of a tensile IJ-B curve. Applicant Mitsui Petrochemical Industries Co., Ltd. Agent Kazuzu Yamaguchi 1 0 mm 〈-□ mm

Claims (1)

【特許請求の範囲】[Claims] (1)  (4)荷重2.16kgにおけるメルトフロ
ーレートMFR2が5ないし2000 g710m1n
、密度0.965ないし0.975g/♂のポリエチレ
ン20ないし70重量部および (B)VFR20,01ないしo−2g / 10 m
in 、荷重10.0kgにおけるメルトフローレー)
MFRl。 / M F R2が15以下、密度0.890ないし0
.950 g /cII3のエチレン・α−オレフィン
共重合体80ないし30重量部(合計して100重量部
)からなり、かつVFR2が0.3ないし3.0g/1
0m1n、密度0.945ないし0.965 g 7c
m3、高せん断7t17−1z −) H8FRが60
0sec−1以上のポリエチレン組成物を□用いること
を特徴とする脚酸飲料容器用キャップ。
(1) (4) Melt flow rate MFR2 at a load of 2.16 kg is 5 to 2000 g710m1n
, 20 to 70 parts by weight of polyethylene with a density of 0.965 to 0.975 g/♂ and (B) VFR 20,01 to o-2 g/10 m
in, melt flow rate at a load of 10.0 kg)
MFRl. / M F R2 is 15 or less, density 0.890 to 0
.. It consists of 80 to 30 parts by weight (total 100 parts by weight) of an ethylene/α-olefin copolymer of 950 g/cII3, and has a VFR2 of 0.3 to 3.0 g/1.
0mln, density 0.945 to 0.965g 7c
m3, high shear 7t17-1z -) H8FR is 60
A cap for a leg acid drink container characterized by using a polyethylene composition of 0 sec-1 or more.
JP56201700A 1981-12-16 1981-12-16 Cap for containers for carbonated beverages Pending JPS58103542A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56201700A JPS58103542A (en) 1981-12-16 1981-12-16 Cap for containers for carbonated beverages

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56201700A JPS58103542A (en) 1981-12-16 1981-12-16 Cap for containers for carbonated beverages

Publications (1)

Publication Number Publication Date
JPS58103542A true JPS58103542A (en) 1983-06-20

Family

ID=16445461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56201700A Pending JPS58103542A (en) 1981-12-16 1981-12-16 Cap for containers for carbonated beverages

Country Status (1)

Country Link
JP (1) JPS58103542A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60177046A (en) * 1984-02-22 1985-09-11 Mitsubishi Petrochem Co Ltd Powdery polyethylene composition
JPS60233136A (en) * 1984-05-04 1985-11-19 Idemitsu Petrochem Co Ltd Ethylenic polymer composition for storing hydrocarbon
JPH1111514A (en) * 1997-06-21 1999-01-19 Natl Crown Kk Gasket material for crown cap and manufacture thereof
JP2009535490A (en) * 2006-05-02 2009-10-01 ダウ グローバル テクノロジーズ インコーポレイティド High density polyethylene composition, method of making the same, product made therefrom, and method of making such product
US7750083B2 (en) 2001-11-09 2010-07-06 Ineos Manufacturing Belgium Screw cap composition
US8044160B2 (en) 2004-11-03 2011-10-25 Borealis Technology Oy Polyethylene composition for injection molded caps and closure articles
JP2012092254A (en) * 2010-10-28 2012-05-17 Japan Polyethylene Corp Polyethylene resin composition for container lid
KR20130033362A (en) 2010-04-06 2013-04-03 닛폰포리에치렌가부시키가이샤 Polyethylene resin molding material for container lid
EP2751189B1 (en) 2011-09-30 2015-09-30 Total Research & Technology Feluy High-density polyethylene for caps and closures
EP2052026B2 (en) 2007-05-02 2021-07-14 Dow Global Technologies LLC High-density polyethylene compositions, method of making the same, injection molded articles made therefrom, and method of making such articles

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60177046A (en) * 1984-02-22 1985-09-11 Mitsubishi Petrochem Co Ltd Powdery polyethylene composition
JPH0477019B2 (en) * 1984-02-22 1992-12-07 Mitsubishi Petrochemical Co
JPS60233136A (en) * 1984-05-04 1985-11-19 Idemitsu Petrochem Co Ltd Ethylenic polymer composition for storing hydrocarbon
JPH051299B2 (en) * 1984-05-04 1993-01-07 Idemitsu Petrochemical Co
JPH1111514A (en) * 1997-06-21 1999-01-19 Natl Crown Kk Gasket material for crown cap and manufacture thereof
EP1462378B1 (en) 2001-11-09 2017-04-05 INEOS Manufacturing Belgium NV Screw cap composition based on multimodal polyethylene
US7750083B2 (en) 2001-11-09 2010-07-06 Ineos Manufacturing Belgium Screw cap composition
US7750082B2 (en) 2001-11-09 2010-07-06 Ineos Manufacturing Belgium Screw cap composition
US8044160B2 (en) 2004-11-03 2011-10-25 Borealis Technology Oy Polyethylene composition for injection molded caps and closure articles
US8445594B2 (en) 2006-05-02 2013-05-21 Dow Global Technologies Llc High-density polyethylene compositions, method of making the same, articles made therefrom, and method of making such articles
US8697806B2 (en) 2006-05-02 2014-04-15 Dow Global Technologies High-density polyethylene compositions and method of making the same
JP2009535490A (en) * 2006-05-02 2009-10-01 ダウ グローバル テクノロジーズ インコーポレイティド High density polyethylene composition, method of making the same, product made therefrom, and method of making such product
EP2052026B2 (en) 2007-05-02 2021-07-14 Dow Global Technologies LLC High-density polyethylene compositions, method of making the same, injection molded articles made therefrom, and method of making such articles
US11447620B2 (en) 2007-05-02 2022-09-20 Dow Global Technologies Llc High-density polyethylene compositions, method of making the same, injection molded articles made therefrom, and method of making such articles
KR20130033362A (en) 2010-04-06 2013-04-03 닛폰포리에치렌가부시키가이샤 Polyethylene resin molding material for container lid
JP2012092254A (en) * 2010-10-28 2012-05-17 Japan Polyethylene Corp Polyethylene resin composition for container lid
EP2751189B1 (en) 2011-09-30 2015-09-30 Total Research & Technology Feluy High-density polyethylene for caps and closures

Similar Documents

Publication Publication Date Title
US11345798B2 (en) Polyethylene compositions and closures made from them
JP4467303B2 (en) Screw cap composition
EP0492656B1 (en) Polyethylene composition
US7737220B2 (en) High density homopolymer blends
JP7037482B2 (en) HDPE
RU2375392C2 (en) Polyethylene resin for pipe fitting
US20150094418A1 (en) Polyethylene compositions and closures for bottles
JP2003510429A (en) Polyethylene molding material, its production method and its use
US20040204542A1 (en) Ethylene polymer composition
EP1819770B1 (en) Multimodal polyethylene composition obtainable with high activity catalyst
EP2746334B1 (en) Polyethylene blend with improved ESCR
JPH0565373A (en) Polyethylene composition
CN117801414A (en) Polymer composition with improved impact strength
JPS58103542A (en) Cap for containers for carbonated beverages
EP1764385B1 (en) Pressure pipe comprising a multimodal polyethylene composition with an inorganic filler
JPS6210150A (en) Resin composition for inflation film
JP3375168B2 (en) Polyethylene composition
KR102700853B1 (en) High density polyethylene composition and high density polyethylene article comprising the same
JP4084887B2 (en) Composition based on polyethylene and method for producing shaped article of the composition
JP3372074B2 (en) Polyethylene composition
JP3372057B2 (en) Ethylene polymer composition
JP3375167B2 (en) Ethylene polymer composition
EP3994185B1 (en) Multimodal polyethylene
JP3980198B2 (en) Polyethylene resin composition
JP3375169B2 (en) Polyethylene resin composition