JPS58103151A - Inspection of semiconductor substrate - Google Patents

Inspection of semiconductor substrate

Info

Publication number
JPS58103151A
JPS58103151A JP56204385A JP20438581A JPS58103151A JP S58103151 A JPS58103151 A JP S58103151A JP 56204385 A JP56204385 A JP 56204385A JP 20438581 A JP20438581 A JP 20438581A JP S58103151 A JPS58103151 A JP S58103151A
Authority
JP
Japan
Prior art keywords
chip
inspection
semiconductor
pattern
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56204385A
Other languages
Japanese (ja)
Inventor
Kazutoshi Nagano
長野 数利
Seiji Onaka
清司 大仲
Kosei Kajiwara
梶原 孝生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP56204385A priority Critical patent/JPS58103151A/en
Publication of JPS58103151A publication Critical patent/JPS58103151A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/316Testing of analog circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To provide the inspection method of the semiconductor substrate enabled to enlarge the throughput at the inspection process of semiconductor device by a method wherein the inspection process is performed jumping over a semiconductor chip having pattern inferiority. CONSTITUTION:After a pattern inspection is finished, the semiconductor substrate is advanced to the next progress of semiconductor process of etching, oxidation, etc. The mask positioning process and the pattern inspection are repeated for plural times thereafter, and the semiconductor devices are formed on respective chips on the semiconductor substrate. The semiconductor substrate formed with the semiconductor devices of the plural number is advanced next to the inspection process of the semiconductor devices of the respective chips. At this time, the semiconductor substrate formed with the semiconductor devices is set in a tester 4, and discrimination of quality of the first chip is performed at first comparing with address output of an inferior chip read from a memory unit. When the chip thereof is inferior, discrimination is advanced to the next chip without performing the inspection of electric characteristic. When the chip thereof is the article of good quality, and the inspection of electric characteristic results in good, discrimination is advanced to the next chip, and when the result of inspection is inferior, after the address of the chip thereof is inputted to the memory unit mentioned above to be stored as an inferior article, discrimination proceeds to the next chip.

Description

【発明の詳細な説明】 本発明は半導体基板の検査方法に関する。[Detailed description of the invention] The present invention relates to a method for inspecting a semiconductor substrate.

半導体装置の大規模集積化に伴ない、チップ寸法の増大
、パターン寸法の微細化の努力が精力的に続けられてい
る。チップ寸法の増大およびパターン寸法の微細化によ
り、従来用いられていたー2゜ 括露光方式のマスクアライナ−ではパターン不良率が急
激に増加するため、最近では縮小投影露光方式のマスク
アライナ−の実用化検討が進められている。縮小投影露
光方式では、マスクを所望パターンの数倍の大きさで製
作するため、マスク製作に基因するパターン不良は減少
し、よシ微細なパターンの形成も可能となる。またマス
ク合わせ工程でマスク上に異物が付着したとしても、縮
小投影であるため異物によるパターン不良は一括露光方
式に比べると減少する。
BACKGROUND OF THE INVENTION With the large-scale integration of semiconductor devices, efforts are being made to increase chip dimensions and miniaturize pattern dimensions. Due to the increase in chip size and the miniaturization of pattern dimensions, the pattern failure rate of the conventionally used -2° block exposure method mask aligners increases rapidly.Recently, reduction projection exposure method mask aligners have been put into practical use. Consideration is underway to change the In the reduction projection exposure method, a mask is manufactured with a size several times larger than the desired pattern, so pattern defects caused by mask manufacturing are reduced, and it is also possible to form a finer pattern. Furthermore, even if foreign matter adheres to the mask during the mask alignment process, pattern defects due to foreign matter are reduced compared to the batch exposure method because of reduced projection.

さらにマスク上のパターンは所望のパターンの数倍の大
きさに形成されているため、マスク製作費が安価になシ
、またマスク検査も容易でかつ検査コストも安価になる
Furthermore, since the pattern on the mask is formed several times the size of the desired pattern, the mask manufacturing cost is low, mask inspection is easy, and the inspection cost is also low.

縮小投影露光方式は以上述べた以外にも数多くの特徴を
もつものであるが、1チツプごとに順次露光を行なって
いくためスルーブツトの小さいのが欠点である。
Although the reduction projection exposure method has many other features in addition to those mentioned above, its drawback is that the throughput is small because each chip is sequentially exposed.

また半導体装置の大規模集積化に伴ない内蔵する機能が
増大し、半導体装置の検査工程でのスル−プットは著し
く小さくなっている。
Furthermore, with the large-scale integration of semiconductor devices, the number of built-in functions has increased, and the throughput in the testing process for semiconductor devices has become significantly smaller.

本発明は上記従来の欠点に鑑みてなされたものであり、
パターン不良を有する半導体チップを飛び越して検査工
程を行ない、半導体装置の検査工程でのスループットを
増大することを可能とする半導体基板の検査方法を提供
するものである。
The present invention has been made in view of the above-mentioned conventional drawbacks,
An object of the present invention is to provide a semiconductor substrate inspection method that enables the inspection process to be performed over semiconductor chips having pattern defects, thereby increasing the throughput in the semiconductor device inspection process.

以下本発明を実施例を用いて詳細に説明する。The present invention will be explained in detail below using examples.

第1図、第2図および第3図は本発明よりなる半導体基
板の検査方法の第1の実施例を示す図であり、第1図は
マスク合わせ工程を、第2図は検査工程を、第3図は組
立工程を示している。
1, 2, and 3 are diagrams showing a first embodiment of the semiconductor substrate inspection method according to the present invention, in which FIG. 1 shows a mask alignment process, FIG. 2 shows an inspection process, FIG. 3 shows the assembly process.

まず第1図のマスク合わせ工程について説明する。酸化
等の半導体処理の施された半導体基板にレジストを塗布
後、縮小投影露光方式マスクアライナ−1を用いてマス
ク合わせ工程に進む。マスク合わせ工程ではまず始めの
チップにおいて、そのチップの良・不良の判別を行なう
。良・不良の判別はマスクアライナ−1に接続された記
憶装置2にそのチップの番地として記憶されている。記
憶装置2から読み出してきた良・不良の判別が良であれ
ば、マスクアライナ−1によりそのチップにアライメン
ト操作および露光処理を施し次のチップへ移る。これと
反対にもしそのチップが不良であればアライメント操作
・露光処理を行なわずにそのチップを飛び越して次のチ
ップへ移る。前記マスク合わせ工程が第1回目のマスク
合わせ工程であれば、前記記憶装置2には良・不良の判
別が記憶(入力)されていないため、全チップを良と判
別して露光処理を行なう。この場合アライメントキーが
半導体基板上に形成されていないため、アライメント操
作は不要となる。以下、上記良・不良の判別、アライメ
ント操作および露光処理を各チップに順次施こしていっ
てマスク合わせ工程を終了する。
First, the mask alignment process shown in FIG. 1 will be explained. After applying a resist to a semiconductor substrate that has been subjected to semiconductor processing such as oxidation, the process proceeds to a mask alignment process using a reduction projection exposure type mask aligner 1. In the mask alignment process, the first chip is determined to be good or bad. The determination of whether the chip is good or bad is stored in a storage device 2 connected to the mask aligner 1 as the address of the chip. If the judgment of good/bad read out from the storage device 2 is good, the mask aligner 1 performs an alignment operation and an exposure process on that chip, and the process moves to the next chip. On the other hand, if that chip is defective, the process skips over that chip and moves on to the next chip without performing alignment or exposure processing. If the mask alignment process is the first mask alignment process, since the memory device 2 does not store (input) the determination of good/bad, all chips are judged as good and the exposure process is performed. In this case, since the alignment key is not formed on the semiconductor substrate, no alignment operation is required. Thereafter, the above-described determination of good/bad, alignment operation, and exposure processing are sequentially performed on each chip, and the mask alignment process is completed.

マスク合わせ工程終了後、半導体基板に現像処理を施し
パターンを形成する。パターンの形成された半導体基板
は次にパターン検査装置3によるパターン検査へと進む
。パターン検査ではまず始めのチップの良・不良の判別
を前記記憶装置よりの出力により行なう。そのチップの
判別がもし不良であれば良・不良の識別を行なわずに次
のチップへ進み、反対に良であれば、上記マスク合わせ
工程で形成されたパターンをマスクパターンと比較し、
そのチップのパターンの良・不良の識別を行なう。上記
チップのパターンがパターン形成不良と判断された場合
、そのチップの番地を前記記憶装置2に入力し、不良と
して記憶する。また良と判断された場合は次のチップへ
進む。
After the mask alignment process is completed, the semiconductor substrate is subjected to a development process to form a pattern. The semiconductor substrate on which the pattern has been formed is then subjected to pattern inspection by a pattern inspection device 3. In the pattern inspection, first of all, it is determined whether the chip is good or bad based on the output from the storage device. If the chip is determined to be defective, proceed to the next chip without identifying whether it is good or defective; on the other hand, if it is good, the pattern formed in the mask alignment process is compared with the mask pattern,
The pattern of the chip is determined to be good or bad. If the pattern of the chip is determined to be defective in pattern formation, the address of the chip is input to the storage device 2 and stored as defective. If the chip is judged to be good, proceed to the next chip.

以下同様に上記良・不良の判別、良・不良の識別および
不良の認識を各チップに順次行なって、パターン検査を
終了する。
Thereafter, similarly, the above-described determination of good/bad, identification of good/bad, and recognition of defect are sequentially performed on each chip, and the pattern inspection is completed.

パターン検査終了後、半導体基板はエツチング。After pattern inspection, the semiconductor substrate is etched.

酸化等の次の半導体処理工程へ進む。以下同様に第1図
に示したマスク合わせ工程およびノ(ターン検査を複数
回繰り返して半導体基板上の各チップに半導体装置が形
成される。
Proceed to the next semiconductor processing step such as oxidation. Thereafter, a semiconductor device is formed on each chip on a semiconductor substrate by repeating the mask alignment process and turn inspection shown in FIG. 1 a plurality of times.

半導体装置が複数個形成された半導体基板は次に各チッ
プの半導体装置の検査工程に進む。第2図の検査工程に
示しているよ゛うに、半導体装置の形成された半導体基
板をテスター4に設置し、まず始めのチップの良・不良
の判別を記憶装置より読み出した不良チップの番地出力
に照らし合わせて行なう。そのチップが不良であれば電
気特性の検査は行なわずに次のチップへ進む。そのチッ
プが良であれば電気特性の検査を行ない、検査結果が良
であれば次のチップへ、検査結果が不良であればそのチ
ップの番地を前記記憶装置に入力し不良として記憶した
後、次のチップへ進む。
The semiconductor substrate on which a plurality of semiconductor devices are formed next proceeds to a step of testing the semiconductor devices of each chip. As shown in the inspection process in Figure 2, a semiconductor substrate on which a semiconductor device is formed is placed on the tester 4, and the address of the defective chip read out from the memory device is output to determine whether the first chip is good or bad. Do this in light of. If that chip is defective, the process proceeds to the next chip without testing its electrical characteristics. If the chip is good, the electrical characteristics are inspected, and if the test result is good, move on to the next chip; if the test result is bad, the address of the chip is input into the storage device and stored as defective, and then Proceed to next chip.

以下同様な検査工程を各チップに順次施していき検査工
程を終了する。
Thereafter, a similar inspection process is sequentially performed on each chip, and the inspection process is completed.

検査工程終了後、半導体基板は組立工程へ進む。After the inspection process is completed, the semiconductor substrate proceeds to the assembly process.

第3図の組立工程に示しているように、チップ状に分割
された半導体装置の形成されている各チップは記憶装置
2より読み出した良・不良の判別を示す番地出力に対応
して、良であるチップのみ順次域シ出して組立装置6に
より組立を行なう。
As shown in the assembly process of FIG. Only the chips having the following values are sequentially extracted and assembled by the assembly device 6.

以上の実施例において、マスクアライナ−1゜パターン
検査装置3.テスター4および組立装置6に接続されて
いる記憶装置2としては同一の記憶装置を用いたが、各
装置の記憶装置としては別7−2 個のものを用いて磁気テープのみを共用して記憶データ
を利用することもできる。
In the above embodiments, mask aligner-1 degree pattern inspection device 3. The same storage device was used as the storage device 2 connected to the tester 4 and the assembly device 6, but 7-2 separate storage devices were used for each device, and only the magnetic tape was shared. Data can also be used.

またマスクアライナ−として縮小投影露光方式のマスク
アライナ−を用いたが、縮小投影露光方式に限られるも
のではなく1チツプづつあるいは複数のチップづつ露光
する方式でも良い。
Furthermore, although a reduction projection exposure type mask aligner is used as the mask aligner, the present invention is not limited to the reduction projection exposure type, and may be a method of exposing one chip at a time or a plurality of chips at a time.

次に本発明よシなる半導体基板の検査方法の第2の実施
例につき説明する。この第2の実施例では第1の実施例
の記憶装置のかわりにインクジェットによるマーキング
を用いた。すなわち、マスクアライナ−でまずアライメ
ント操作を行なう前にチップ上にインクジェットによる
マーキングの有無を光の反射像により確認し、マーキン
グがあればそのチップにはパターン不良があるというこ
とを意味しているのでアライメント操作・露光処理は行
なわずに次のチップへ進む。マーキングがなければその
チップへのアライメント操作・露光処理を行なった抜法
のチップへ進み、以下同様な処理を順次各チップに施し
てマスク合わせ工程を終了する。
Next, a second embodiment of the semiconductor substrate inspection method according to the present invention will be described. In this second embodiment, inkjet marking was used in place of the storage device of the first embodiment. In other words, before performing an alignment operation using a mask aligner, the presence or absence of inkjet markings on the chip is checked using the reflected light image, and if markings are present, it means that the chip has a pattern defect. Proceed to the next chip without performing alignment operation or exposure processing. If there is no marking, the process proceeds to the next chip that has been subjected to alignment and exposure processing, and thereafter the same processing is sequentially applied to each chip to complete the mask alignment process.

半導体基板に現像処理を施した後、パターン検査装置で
順次各チップのパターン検査を行なう。
After the semiconductor substrate is developed, each chip is sequentially pattern-inspected using a pattern inspection device.

パターン不良のあるチップにはインクジェットによるマ
ーキングを施す。
Chips with pattern defects are marked using inkjet.

検査工程では各チップの半導体装置の電気特性の検査に
先立ってマーキングの検出を行ない、マーキングがあれ
ば次のチップへ、なければ半導体装置の電気特性の検査
を行なう。以下同様に各チップに順次、マーキングの検
出および半導体装置の電気特性の検査を施し、電気特性
が不良であれば新たにマーキングを施す。
In the inspection process, markings are detected prior to testing the electrical characteristics of the semiconductor device of each chip, and if there is a marking, the next chip is moved on, and if not, the electrical characteristics of the semiconductor device are tested. Thereafter, markings are detected and the electrical characteristics of the semiconductor device are inspected on each chip in turn in the same manner, and if the electrical characteristics are poor, a new marking is applied.

組立工程では半導体基板の各チップに、マスク合わせ工
程、検査工程で施された不良のマーキングを検出し、良
品チップのみ組立を行なう。
In the assembly process, defective markings made on each chip of the semiconductor substrate during the mask alignment process and inspection process are detected, and only good chips are assembled.

以上の第2の実施例で述べたように、第2の実施例にお
いては第1の実施例で不良チップの判別および認識に用
いた記憶装置をインクジェットによるマーキングに変え
たものである。インクジエ、?トによるマーキングを用
いたことにより、各工程で作業者が半導体基板内の不良
チップの分布等を直接目で確認でき、その結果を半導体
装置の製造工程に迅速にフィードバックすることができ
る。
As described in the second embodiment above, in the second embodiment, the memory device used for determining and recognizing defective chips in the first embodiment is replaced with inkjet marking. Inkje,? By using the marking method, workers can directly visually confirm the distribution of defective chips within the semiconductor substrate in each process, and the results can be quickly fed back to the semiconductor device manufacturing process.

なお第2の実施例のインクジェットによるマーキングの
代わシにレーザによるマーキングを用いることもできる
。レーザを用いるとマーキングを小さくすることが可能
になるため、たとえばアライメントキー上にレーザによ
るマーキングを施すことによりアライメント操作とマー
キングの検出が同時に行なえる、また各チップの寸法が
小さくても適用可能であるなどの新入な特徴が見出され
る。
Note that laser marking may be used instead of the inkjet marking in the second embodiment. Using a laser makes it possible to make the marking smaller, so for example, by marking the alignment key with a laser, alignment operation and marking detection can be performed at the same time, and it can also be applied even if the dimensions of each chip are small. New features such as:

以上の第1の実施例および第2の実施例において、良・
不良の判別、識別および不良の認識等の動作はすべて自
動化が可能であり、マスク合わせ工程、検査工程および
組立工程において、自動化された半導体基板の製造およ
び検査ラインを構成できる。またパターン検査あるいは
電気特性の検査工程に昼いて、経験的に知られている不
良チップの極在する領域にのみ本発明の半導体基板の検
査方法を適用し、さらにスループットの向上を図10、
− ることも可能である。また上記検査をチップ内の最も不
良の発生し易諭パターンについて行なうこと、あるいは
電気特性の検査をチップ内の半導体装置の特定の装置に
ついてのみ、あるいはテストトランジスタについてのみ
行なうことなども可能である。
In the above first embodiment and second embodiment,
Operations such as defect determination, identification, and defect recognition can all be automated, and an automated semiconductor substrate manufacturing and inspection line can be configured in the mask alignment process, inspection process, and assembly process. In addition, during the pattern inspection or electrical characteristic inspection process, the semiconductor substrate inspection method of the present invention is applied only to areas where defective chips, which are known from experience, are abundant, and the throughput is further improved as shown in FIG.
- It is also possible. It is also possible to perform the above-mentioned inspection on the most defective pattern within the chip, or to conduct the electrical characteristic inspection only on a specific semiconductor device within the chip, or only on a test transistor.

以上述べたように、本発明よりなる半導体基板の検査方
法においては半導体基板上に形成されたパターンとマス
クパターンを比較して不良パターンの検出を行ない、次
のマスク合わせ工程あるいは検査工程で不良パターンを
有する半導体チップを飛び越して上記工程を行なうこと
により、マスク合わせ工程あるいは検査工程でのスルー
プットの増大を図るものであシ、マスク合わせ工程が回
を重ねるに従って、また特に長時間を要する検査工程に
おいてその効果は著しく顕著なものとなる。
As described above, in the semiconductor substrate inspection method according to the present invention, a pattern formed on a semiconductor substrate and a mask pattern are compared to detect a defective pattern, and the defective pattern is detected in the next mask alignment process or inspection process. The purpose is to increase the throughput in the mask alignment process or inspection process by skipping over semiconductor chips having The effect will be extremely noticeable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における半導体基板の製造方
法を示すマスク合わせ工程図、第2図は同方法における
検査工程図、第3図は同方法における組立工程図である
。 1・・・・・・マスクアライナ−12・・・・・・記憶
装置、3・・・・・・パターン検査装置、4・・・・・
・テスター、6・・・・・・組立装置。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第 
1 図 第25A aS図
FIG. 1 is a mask alignment process diagram showing a semiconductor substrate manufacturing method according to an embodiment of the present invention, FIG. 2 is an inspection process diagram in the same method, and FIG. 3 is an assembly process diagram in the same method. 1...Mask aligner-12...Storage device, 3...Pattern inspection device, 4...
・Tester, 6... Assembly equipment. Name of agent: Patent attorney Toshio Nakao and 1 other person
1 Figure 25A aS diagram

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上の各半導体チップにマスクパターンを転写
する工程と、前記半導体チップに転写されたパターンと
前記マスクパターンを比較し前記半導体チップの前記パ
ターンの良あるいは不良を検査する工程とを有し、前記
パターンの良あるいは不良の検査結果に基いて不良の半
導体チップを識別し、前記不良の半導体チップ内の半導
体装置の特性検査工程を飛び越して順次前記半導体装置
への特性検査工程を施すことを特徴とする半導体基板の
検査方法。
A step of transferring a mask pattern to each semiconductor chip on a semiconductor substrate, and a step of comparing the pattern transferred to the semiconductor chip and the mask pattern to inspect whether the pattern of the semiconductor chip is good or bad, A defective semiconductor chip is identified based on the inspection result of whether the pattern is good or bad, and the characteristic inspection process is sequentially performed on the semiconductor devices, skipping the characteristic inspection process of the semiconductor device in the defective semiconductor chip. A method for inspecting semiconductor substrates.
JP56204385A 1981-12-16 1981-12-16 Inspection of semiconductor substrate Pending JPS58103151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56204385A JPS58103151A (en) 1981-12-16 1981-12-16 Inspection of semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56204385A JPS58103151A (en) 1981-12-16 1981-12-16 Inspection of semiconductor substrate

Publications (1)

Publication Number Publication Date
JPS58103151A true JPS58103151A (en) 1983-06-20

Family

ID=16489653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56204385A Pending JPS58103151A (en) 1981-12-16 1981-12-16 Inspection of semiconductor substrate

Country Status (1)

Country Link
JP (1) JPS58103151A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6042842A (en) * 1983-08-17 1985-03-07 Mitsubishi Electric Corp Method for detecting defect of fine pattern
JPS6130044A (en) * 1984-07-20 1986-02-12 Nippon Denso Co Ltd Semiconductor chip inspection method
JPH02208949A (en) * 1989-02-09 1990-08-20 Mitsubishi Electric Corp Semiconductor manufacturing device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4845179A (en) * 1971-06-25 1973-06-28
JPS53104168A (en) * 1977-02-23 1978-09-11 Hitachi Ltd Semiconductor pellet bonding method
JPS53129587A (en) * 1977-04-18 1978-11-11 Jeol Ltd Electron beam exposure unit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4845179A (en) * 1971-06-25 1973-06-28
JPS53104168A (en) * 1977-02-23 1978-09-11 Hitachi Ltd Semiconductor pellet bonding method
JPS53129587A (en) * 1977-04-18 1978-11-11 Jeol Ltd Electron beam exposure unit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6042842A (en) * 1983-08-17 1985-03-07 Mitsubishi Electric Corp Method for detecting defect of fine pattern
JPS6130044A (en) * 1984-07-20 1986-02-12 Nippon Denso Co Ltd Semiconductor chip inspection method
JPH0580824B2 (en) * 1984-07-20 1993-11-10 Nippon Denso Co
JPH02208949A (en) * 1989-02-09 1990-08-20 Mitsubishi Electric Corp Semiconductor manufacturing device

Similar Documents

Publication Publication Date Title
US11348222B2 (en) Methods and systems for inspection of wafers and reticles using designer intent data
US3751647A (en) Semiconductor and integrated circuit device yield modeling
US7135344B2 (en) Design-based monitoring
US6140140A (en) Method for detecting process sensitivity to integrated circuit layout by compound processing
US6766208B2 (en) Automatic production quality control method and system
JP2002071575A (en) Defect inspecting and analyzing method and system therefor
US4778745A (en) Defect detection method of semiconductor wafer patterns
CN101210932B (en) Method for promoting defect detection reliability
US6539272B1 (en) Electric device inspection method and electric device inspection system
JPS58103151A (en) Inspection of semiconductor substrate
US7855088B2 (en) Method for manufacturing integrated circuits by guardbanding die regions
KR20010039251A (en) Method of detecting defects in reticle pattern by comparing pattern of chip with normal pattern
JPS58103150A (en) Manufacture of semiconductor substrate
JPH09211840A (en) Inspection method and inspection device for reticle as well as inspection method and inspection device for pattern
WO2021184526A1 (en) Priority ranking device and method for detection object defect pattern, and storage medium
JPS58196445A (en) Method of inspecting mask
US12062166B2 (en) Method and system for diagnosing a semiconductor wafer
Skumanich et al. Advanced Interconnect Process Development Utilizing Wafer Inspection with" on-the-fly" automatic defect classification
JPH0643110A (en) Detecting method for defect of resist pattern
JPH01218037A (en) Inspection of semiconductor wafer
KR0168353B1 (en) Inspection method of non-pattern wafer
CN112444526A (en) Defect detection method and defect detection system
JPH07306848A (en) Yield estimation device
Erhardt et al. A defect-to-yield correlation study for marginally printing reticle defects in the manufacture of a 16Mb flash memory device
JPH05299318A (en) Manufacture of semiconductor device