JPS58102535A - Electrode resistance evaluation method for micro-electrode - Google Patents

Electrode resistance evaluation method for micro-electrode

Info

Publication number
JPS58102535A
JPS58102535A JP20088981A JP20088981A JPS58102535A JP S58102535 A JPS58102535 A JP S58102535A JP 20088981 A JP20088981 A JP 20088981A JP 20088981 A JP20088981 A JP 20088981A JP S58102535 A JPS58102535 A JP S58102535A
Authority
JP
Japan
Prior art keywords
electrode
resistance
electrodes
length
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20088981A
Other languages
Japanese (ja)
Inventor
Masuji Sato
佐藤 万寿治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP20088981A priority Critical patent/JPS58102535A/en
Publication of JPS58102535A publication Critical patent/JPS58102535A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant

Abstract

PURPOSE:To evaluate electrode resistance of micro-electrode for ohmic contact such as LSI by actually measuring a pair of basic pattern resistances and by accurately evaluating resistance of micro-electrodes from a difference between actual measurement and calculation. CONSTITUTION:1 is a first pattern, 2 is a second pattern, 3 is an operating layer in the width of W and length of L+2d, 4 and 5 are first electrode and second electrode in the width W and length d stacked at both sides of operating layer, 6 is a third electrode in the width W, length d formed at the location isolated by l1 from the first electrode and l2 from the second electrode. It is presumed that the metal material of the first to third electrodes 4, 5, 6 has a resistivity of zero ohm and thereby an intrinsic contact resistance rc is generated when the electrodes 4, 5, 6 and the operating layer 3 are placed in contact. In this case, a resistance between the first electrode 4 and third electrode 6 of the second pattern 2 and a resistance between the second electrode 5 and third electrode 6 are calculated and an intrinsic contact resistance rcOMEGAcm<2> resulting from such contact can be calculated therefrom.

Description

【発明の詳細な説明】 (1)  発明の技術分野 本発明はL8I等のオー<、り接触用の微小な電極の電
気抵抗の評価法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field of the Invention The present invention relates to a method for evaluating the electrical resistance of a minute electrode for contact such as L8I.

(2)  技術の背景 今来、L8I等の半導体素子のオーミック電極は動作層
形状が小型化するに伴い小さくなシ、その電気抵抗は相
対的に大きくなるため、従来無視でき九ものが無視でき
ないものとなって来ている。
(2) Background of the technology Nowadays, as the active layer shape becomes smaller, the ohmic electrodes of semiconductor devices such as L8I become smaller, and their electric resistance becomes relatively large, so that the ohmic electrodes of semiconductor devices such as L8I become smaller and the electrical resistance becomes relatively larger, so that the ohmic electrodes that could be ignored in the past cannot be ignored. It is becoming a thing.

その丸め電極抵抗を測定しようとしても電極が微小とな
ると、その電極に直接測定針を立てることができず間接
的な測定とな夛正確な評価が困−となる・この丸め正確
な評価ができる評価法の開発が要望されている。
Even if you try to measure the resistance of a rounded electrode, if the electrode is too small, you will not be able to place a measuring needle directly on the electrode, so it will be difficult to make an indirect measurement and make an accurate evaluation. There is a need for the development of evaluation methods.

(3)  従来技術と問題点 従来の微小オーイック電極の評価法は、大きい/臂ター
ン形状で各種電極材料の固有の接触抵抗を求め、微小形
状の時の値は数値計算で算出する方法をとって来た。従
りて形状が小さくなるにつれ子側のできない原因の丸め
に接触抵抗が増加する仁とがあると、その解明評価が困
難であった。
(3) Conventional technology and problems The conventional evaluation method for micro-oic electrodes involves determining the inherent contact resistance of various electrode materials in large/arm-turn shapes, and calculating the value for micro-shapes by numerical calculation. I came. Therefore, as the shape becomes smaller, it is difficult to clarify and evaluate the reason why the contact resistance increases due to the rounding of the child side.

(4)  発明の目的 本発明は上記従来の欠点に鑑み、LSI等のオーミ、り
接触用の微小な電極の電極抵抗を正確に評価できる評価
法を提供することを目的とするものである。
(4) Purpose of the Invention In view of the above-mentioned conventional drawbacks, it is an object of the present invention to provide an evaluation method that can accurately evaluate the electrode resistance of minute electrodes for ohmic contact in LSIs and the like.

(5)  発明の構成 そしてこの目的は本発明によれば、幅Wで長さL+21
なる動作層の両端に該動作層に重ねて幅w1長さdなる
第1及び第2の電極を設けた第1のI譬ターンと、鋏第
1のノリーンと同様で且つ動作層の中間に第1の電極よ
’Ets、第2の電極よ’E1m離れた位置に幅W、長
さdなる第3の電極を設けた第2の/母ターンを形成し
、それぞれの・譬ターンの第1、第2の電極間の抵抗R
AIR,を測定し、その差”Allよ) L・ ・・・(1ン 但しr、はシート抵抗、t・は輸送長 但しR6は動作層と電極間の接触抵抗 (1) 、 (2)及び(3)式を用いて動作層と電極
間の接触抵抗町を算出する仁とを特徴とする微小電極の
電極抵抗評価法を提供することによって実現される。
(5) Structure of the invention and this object according to the invention, the width W and the length L+21
A first I-turn having first and second electrodes having a width w1 and a length d are provided at both ends of the active layer, overlapping the active layer, and a first I-turn similar to the first Noreen scissors and located in the middle of the active layer. A second / mother turn is formed in which a third electrode with a width W and a length d is provided at a position 1 m apart from the first electrode and 1 m from the second electrode. 1. Resistance R between the second electrodes
AIR, and the difference between them is ``All''.L...(1n, where r is the sheet resistance, t is the transport length, and R6 is the contact resistance between the active layer and the electrodes (1), (2) and (3) to calculate the contact resistance between the active layer and the electrode.

(6)発明の実施例 以下本発明実施例を図面によって詳述する。(6) Examples of the invention Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図社本発明による微小電極の電極抵抗評価法に用い
るIリーンを示す図である。
FIG. 1 is a diagram showing I-lean used in the electrode resistance evaluation method of a microelectrode according to the present invention.

同図において1は第1の/?ターン、2は第2のI9タ
ーン、3は幅W1長さL+2dなる動作層、4及び5は
動作層の両端に重ねて形成された幅W、長さdなる第1
の電極及び第2の電極、6は第1の電極よ”)I−x 
s $12の電極よ’fits離れた位置に形成され九
幅W1長さdなる第3の電極をそれぞれ示す。
In the figure, 1 is the first /? 2 is a second I9 turn, 3 is an active layer with a width W1 and a length L+2d, and 4 and 5 are a first layer with a width W and a length d formed overlappingly on both ends of the active layer.
and the second electrode, 6 is the first electrode") I-x
A third electrode having a width W1 and a length d is shown, which is formed at a position spaced apart from the electrode of s $12.

第1図においてtmlの/譬ターンlの入力抵抗をR1
、第2のIリーン2の入力抵抗をR1とじ、第1〜第3
の電極4,5.6の金属は抵抗率θオームとすることを
前提とし、電極4,5.6と動作層3と接触することK
よシ固有接触抵抗rcが発生するものとする。しかると
きは接触抵抗を含めた各・譬ターン1.2の入力抵抗は
次の(1)及び(2)式で現わされる。
In Fig. 1, the input resistance of tml/turn l is R1
, the input resistance of the second I lean 2 is set to R1, and the input resistance of the first to third
It is assumed that the metal of the electrodes 4, 5.6 has a resistivity of θ ohm, and that the metal of the electrodes 4, 5.6 is in contact with the active layer 3.
It is assumed that a specific contact resistance rc occurs. In this case, the input resistance of each turn 1.2 including contact resistance is expressed by the following equations (1) and (2).

t。t.

・・・(2つ また第26/中ターン2の第1の電極4と第3の電極極
6との間の抵抗をR13、第2の電極5と菖3の電極6
との間の抵抗をRss (At >Am  )とすると
それぞれRIIIRIIは(3) 、 (4)式となる
(R13 is the resistance between the first electrode 4 and the third electrode 6 of the 26th/middle turn 2, and the resistance between the second electrode 5 and the electrode 6 of the irises 3 is
Letting the resistance between Rss (At > Am), RIIIRII becomes equations (3) and (4), respectively.

(3)及び(4)式よシ動作層3のシート抵抗r、 (
B勺)が(5)式で算出される。
According to equations (3) and (4), the sheet resistance r of the active layer 3, (
B) is calculated using equation (5).

ここでt・はシ、、クレイの定義した輸送長で(句弐で
現わされる。
Here, t is the transport length defined by Clay (expressed in the second phrase).

Rcは形状dXWの電極における接触抵抗(電極抵抗)
である、RA>R1であるからその差をΔR1い又a7
t・をfで表現すると、(1)、(2)式よシL・ ・・・(7) となり%(7)式を整理すると(8)式となる。
Rc is the contact resistance (electrode resistance) in the electrode of shape dXW
Since RA>R1, the difference is ΔR1 or a7
When t is expressed by f, equations (1) and (2) become L... (7), and rearranging equation (7) yields equation (8).

(8)弐においてW、dはノリーン形状できまり、r。(8) In the second part, W and d are determined by the Noreen shape, and r.

は(5)式で算出でき、またΔRAlは測定で求まる値
であるから右辺は既知量とな9、左辺のfが未知量であ
る。従ってfに関する(8)式の左辺のグラフを書いて
おけば(8)式の右辺よシfが算出される。fは(9)
式であるから 1、デd//となる。そこでこれを(6)式に代入する
と一式となる。
can be calculated using equation (5), and since ΔRA1 is a value determined by measurement, the right-hand side is a known quantity9, and the left-hand side f is an unknown quantity. Therefore, by drawing the graph of the left side of equation (8) regarding f, f can be calculated from the right side of equation (8). f is (9)
Since it is an equation, it becomes 1, de d//. Therefore, substituting this into equation (6) yields one set.

d婁 ycm y、 、、        °°゛(至)これ
で接触に伴う固有接触抵抗re(Ωが)の値は算出され
る。一方形状によって決まる電極抵抗町はaカ式で求ま
る。
d 婁 y cm y, ,, °°゛ (To) The value of the specific contact resistance re (Ω) accompanying contact is now calculated. On the other hand, the electrode resistance town determined by the shape can be found using the formula a.

を九(&sJ 、 H式を使うとRcは(2)式となる
9(&sJ, Using the H formula, Rc becomes the formula (2).

ここで(8)式Ofによる傾向を調べると■ /<1→
 d<jv(第2のIり一ンの第3の電極6がないの とはは同じ状m) 即ち ノil、、 −Q 又町→ω 電極の抵抗は無限に大きい。
Here, if we examine the tendency based on formula (8) Of, ■ /<1→
d<jv (same situation as the third electrode 6 of the second I line is not present), that is, -Q Matamachi→ω The resistance of the electrode is infinitely large.

■ f>1→d>j・(篤2のIり一ンの第3の電極6
が電流短 絡を起しているのと 同じ) r、d      d    d すなわち第1図の第10I4ターンlが第2の/4ター
ン2になることによシ抵抗ゼロオーム領域が(d−24
・ )できる、tたRC紘下式になる。
■ f>1→d>j・(Third electrode 6 of Atsushi 2
is causing a current short circuit) r, d d d In other words, the 10I4 turn l in Figure 1 becomes the second /4 turn 2, so that the resistance zero ohm region becomes (d-24
・) It will be the same as the RC Hiroshita style.

即ち一つの電極面の抵抗は動作層が伸びてt・になり九
ときの抵抗に和尚する。従りて良いオーミック電極とは
L・の小さい電極のことである。
That is, the resistance of one electrode surface becomes t. as the active layer expands, and the resistance decreases to the resistance at 9. Therefore, a good ohmic electrode is an electrode with a small L.

dの値はLSIのオーミ、り電極寸法と同等にすれば、
(41式よfit、8ルベルの電極面積での接触抵抗の
評価が可能になる。電極の抵抗が大きいか小さいかの判
断は第1図の/4ターンにおいて、抵抗R,、R,の差
異をみれば推定がつく、ΔRAm(=RA−R1)が大
きければ良い電極、ΔR□が小さければ良くない電極と
目やすをつけることができる。
If the value of d is made equal to the ohmic and electrode dimensions of LSI, then
(Formula 41 fits, it becomes possible to evaluate the contact resistance with an electrode area of 8 lb.) The judgment of whether the electrode resistance is large or small can be made at the /4 turn in Figure 1 by the difference in resistance R,, R, It can be estimated by looking at .If ΔRAm (=RA-R1) is large, it is a good electrode, and if ΔR□ is small, it is a bad electrode.

第1図の・譬ターンの電極部はLSIと同等の電極寸法
であると測定針が立たないので現実には第2図のように
同一形状の引出し電極4 a 15 m +61を付け
る。この引出し電極4 m + 5m + 6mは同一
抵抗となるので第2のノ9ターン2におけるシート抵抗
測定においてはR11IRImの値の減算でr、を算出
するので減算効果により引き出し線の影響は除去される
。電極抵抗のrcl Rcを評価する際も同一前提が成
立する。
If the electrode part of the pattern shown in FIG. 1 has the same electrode dimensions as the LSI, the measuring needle will not stand up, so in reality, a lead-out electrode 4 a 15 m +61 of the same shape as shown in FIG. 2 is attached. Since the lead electrodes 4 m + 5 m + 6 m have the same resistance, in the sheet resistance measurement at the second turn 2, r is calculated by subtracting the value of R11IRIm, so the influence of the lead wires is removed by the subtraction effect. Ru. The same premise holds true when evaluating the electrode resistance rcl Rc.

第3図は(8)式を(至)式と表現し、F(1)のf依
存性をグラフ化したものである。
FIG. 3 expresses equation (8) as equation (to) and graphs the f dependence of F(1).

第3図のグラフ図と(8)式を使用すればfが求まるの
で輸送長1.が算出でき(t・=d//)、固有接触抵
抗rC1一つの電極面(同一電極抵抗が前提)の接触抵
抗Rcがそれぞれ叫、(6)式より算出することができ
る。
Using the graph in Figure 3 and equation (8), f can be found, so the transport length is 1. (t.=d//), and the specific contact resistance rC1 and the contact resistance Rc of one electrode surface (assuming the same electrode resistance) can be calculated from equation (6).

なお第1図の基本パターンを変形してdに違いをつけて
形成しても評価可能であることは当然のことである。
It goes without saying that evaluation can be made even if the basic pattern shown in FIG. 1 is modified and formed with different values of d.

(7)発明の効果 以上、詳細に説明したように、本発明の微小電極の電極
抵抗評価法は、2つの基本・母ターンの抵抗を実測し、
その差よシ計算して微小X億の電極抵抗を正確に評価す
ることを可能とし、LSI等のオーミ、り接触用の微小
な電極の電極抵抗の評価に供し得るといった効果大なる
ものである。
(7) Effects of the Invention As explained in detail above, the electrode resistance evaluation method of a microelectrode of the present invention involves actually measuring the resistance of two basic/mother turns,
It is possible to accurately evaluate the minute electrode resistance of X billion by calculating the difference, and it has a great effect that it can be used for evaluating the electrode resistance of minute electrodes for ohmic and contact devices such as LSI. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明による微小電極の電極抵抗評
価法のための基本・9ターンを説明するための図、第3
図は本発明による微小電極の電極抵抗評価法の評価過程
で用いる/ニーF(/’)のグラフ図である。 図面において、1及び2は基本・ぐターン、3は動作層
、4.5.6は電極、4m + 5m + 6mは引出
し電極をそれぞれ示す。 第1図 弗2回 弗3同 f (=%0)
Figures 1 and 2 are diagrams for explaining the basic 9 turns for the electrode resistance evaluation method of microelectrodes according to the present invention.
The figure is a graph of /knee F (/') used in the evaluation process of the microelectrode electrode resistance evaluation method according to the present invention. In the drawings, 1 and 2 are basic gutters, 3 is an active layer, 4.5.6 is an electrode, and 4m + 5m + 6m is an extraction electrode, respectively. Figure 1 弗 2nd 弗 3 Same f (=%0)

Claims (1)

【特許請求の範囲】 1、幅Wで長さL+21なる動作層の両端に該動作層に
重ねて幅W1長さ4なる第1及び第2の電極を設は九第
10ノ々ターンと、該jllのノ豐/ −ンと同様で且
つ動作層の中間に第1の電極よシL1、第2の電極よF
h離れ九位置に幅W1長さ纏なる第3の電極を設けた第
2の・り一ンとを形成し、それぞれの・臂ターンの第1
.第2の電a間の抵抗R,、R,を測定し、その差Δ”
AIよ〉t・ −(1) 但しr、はシート抵抗、t・は輸送長 但しRcは動作層と電極間の接触抵抗 (1) * (2)及び(3)式を用いて動作層と電極
間の接触抵抗Rcを算出する仁とを特徴とする微小電極
の電極抵抗評価法。
[Claims] 1. First and second electrodes each having a width W1 and a length 4 are provided at both ends of an active layer having a width W and a length L+21 so as to overlap the active layer, and have nine and tenth non-turns; The first electrode L1 and the second electrode F are arranged in the middle of the active layer.
A second arm is formed with a third electrode having a width W1 length at nine positions h apart, and the first arm of each arm turn is formed.
.. Measure the resistance R, , R, between the second electrodes a, and the difference Δ”
AI〉t・-(1) where r is the sheet resistance, t・ is the transport length, and Rc is the contact resistance between the active layer and the electrode (1) * Using equations (2) and (3), calculate the active layer and 1. A method for evaluating electrode resistance of a microelectrode, comprising: calculating a contact resistance Rc between electrodes.
JP20088981A 1981-12-15 1981-12-15 Electrode resistance evaluation method for micro-electrode Pending JPS58102535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20088981A JPS58102535A (en) 1981-12-15 1981-12-15 Electrode resistance evaluation method for micro-electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20088981A JPS58102535A (en) 1981-12-15 1981-12-15 Electrode resistance evaluation method for micro-electrode

Publications (1)

Publication Number Publication Date
JPS58102535A true JPS58102535A (en) 1983-06-18

Family

ID=16431928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20088981A Pending JPS58102535A (en) 1981-12-15 1981-12-15 Electrode resistance evaluation method for micro-electrode

Country Status (1)

Country Link
JP (1) JPS58102535A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112290222A (en) * 2020-09-27 2021-01-29 南京大学 Programmable anisotropic coded super surface

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112290222A (en) * 2020-09-27 2021-01-29 南京大学 Programmable anisotropic coded super surface
CN112290222B (en) * 2020-09-27 2021-10-08 南京大学 Programmable anisotropic coded super surface

Similar Documents

Publication Publication Date Title
JPS58102535A (en) Electrode resistance evaluation method for micro-electrode
KR890003011A (en) Integrated circuit test structure and test method to measure surface effects of layers
TWI288452B (en) Semiconductor test circuit structure and method of testing semiconductor circuit
CN217494322U (en) Multi-electrode-layer stacked electronic skin, mechanical arm and robot
TW201015081A (en) Capacitive touch panel and inspection method thereof
WO2020085250A1 (en) Soil evaluation sensor, soil evaluation system, electrode for soil evaluation sensor, and device for obtaining impedance characteristic of soil
JP3398089B2 (en) Measurement method of resistivity value of resistive film
US20230078663A1 (en) Method for Determining Material Parameters of a Multilayer Test Sample
JPS6035605B2 (en) How to detect contact data using a contact sensor
JPH0360192B2 (en)
JPS63296260A (en) Printed substrate of hybrid integrated circuit
JP6821318B2 (en) Inspection equipment and inspection method
JP3232398B2 (en) Multi-electrode type skin impedance two-dimensional distribution measuring method and apparatus
ATE342585T1 (en) PRODUCTION METHOD FOR PYROELECTRIC SENSORS WITH A PYROELECTRIC THIN FILM REQUIRING ELECTRICAL POLARING
JP2007134499A (en) Short-circuit gate position detection method for mos semiconductor element
JP3149940B2 (en) Apparatus and method for detecting vertically propagated defects in integrated circuits
JPS61120031A (en) Replacement sensor of electronic thermometer
JPH0541440A (en) Measuring method for contact area of contact hole
JP3167596B2 (en) Simulated wiring pattern for semiconductor device evaluation test and evaluation test method using the same
JPS63257062A (en) System for computing resistance of circuit wiring
JPS6148927A (en) Semiconductor device
JPS63172969A (en) Resistance value measuring method for chip resistor
CN105448761B (en) The test method and device of semiconductor technology harmomegathus value
JPS6286741A (en) Method for evaluating pattern position displacement quantity
KR100248207B1 (en) Test pattern for semiconductor device