JPS58100669A - Coating method - Google Patents

Coating method

Info

Publication number
JPS58100669A
JPS58100669A JP19761481A JP19761481A JPS58100669A JP S58100669 A JPS58100669 A JP S58100669A JP 19761481 A JP19761481 A JP 19761481A JP 19761481 A JP19761481 A JP 19761481A JP S58100669 A JPS58100669 A JP S58100669A
Authority
JP
Japan
Prior art keywords
gas
substrate
furnace
gaseous
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19761481A
Other languages
Japanese (ja)
Inventor
「峰」岸 知弘
Tomohiro Minegishi
Keiichi Terajima
慶一 寺島
Atsushi Hitai
比田井 厚志
Yasuhiro Kato
泰弘 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Tungsten Co Ltd
Original Assignee
Tokyo Tungsten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Tungsten Co Ltd filed Critical Tokyo Tungsten Co Ltd
Priority to JP19761481A priority Critical patent/JPS58100669A/en
Publication of JPS58100669A publication Critical patent/JPS58100669A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/08Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal halides

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To permit uniform vapor deposition in an unevacuated state without using uneconomical halides as a starting raw material in chemical vapor deposition of layers of >=2 kinds among W, Mo, Re, by chlorinating these materials and reducing the materials on substrates. CONSTITUTION:A chemical vapor depositiing device is provided with a chlorinating furnace section 2 which extends in a quartz pipe 1 and is mounted at the left end of the pipe 1 and a reaction furnace 3 on the right side thereof. W chips 4 which is a starting raw materal put in an alumina boat are disposed in the section 2 and a substrate 5 is disposed on the susceptor 6 in the furnace 3. An inert gas is introudced into the section 2 and the furnace 3 through an inlet 7 and is heated with heaters 8, 9. Gaseous chlorine is introudced through an inlet 10 into the section 2, and the chips 4 are fed together with the above-described inert gas as a carrier gas and the gaseous H2 as a reducing gas through an inlet 12 in the form of WCl6 through an ejection port 11 into the furnace 3. As a result, the gaseous mixture of the gaseous WCl6 and the gaseous H2 reacts on the substrate 5 and the metallic film of W is formed on the substrate 5.

Description

【発明の詳細な説明】 ステン、モリブデン、及びレニウムの難溶融性金属膜並
びにこれらの合金膜を生成する被覆方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a coating method for producing refractory metal films of stainless steel, molybdenum, and rhenium, and alloy films thereof.

一般に、化学蒸着とは、基体上に析出、被覆すべき元素
を含む揮発性化合物の蒸気あるいはガスを加熱した基体
上あるいは基体付近で、熱分解するか、又は他の蒸気あ
るいはガスとの間で化学反応させることによって、基体
上に不揮発性の反応生成物を気相から析出、被覆させる
方法である。
In general, chemical vapor deposition is a process in which vapor or gas of a volatile compound containing the element to be deposited or coated on a substrate is thermally decomposed or mixed with other vapors or gases on or near a heated substrate. This is a method in which a nonvolatile reaction product is precipitated from a gas phase and coated on a substrate by a chemical reaction.

従来、上述した化学蒸着を行なう場合、被覆すぐ・ べき元素を含む揮発性化合物の蒸気ちるいはガスを発生
させるために、ノ・ログン化合物が使用されている0他
のガスとの化学反応、特に、水素ガスとの還元反応を考
慮した場合、ノ・ログン化合物のうちでも、塩化物の方
がフッ化物よりも還元反応が速いため、塩化物が化学蒸
着の際の出発原料として多用される傾向にある。
Traditionally, when carrying out the chemical vapor deposition described above, a chemical reaction with another gas is used to generate a vapor or gas of a volatile compound containing the element to be coated. In particular, when considering the reduction reaction with hydrogen gas, chloride has a faster reduction reaction than fluoride, so chloride is often used as a starting material for chemical vapor deposition. There is a tendency.

一方、m溶融性金属のうち、タングステン、モリブテン
、及びレニウム等の少数の金属元素の膜を化学蒸着によ
り生成する場合には、フッ化物が出発原料として用いら
れている。これは例示した難溶融性金属のフッ化物の沸
点が低く気体輸送が容易であり、且つ、均一な膜が得や
すいためである。しかしながら、出発原料としてフッ化
物を使用することは上記した難溶融性金属のフッ化物が
高価であるため、経済性の面で非常に不利である。
On the other hand, when a film of a small number of metal elements such as tungsten, molybdenum, and rhenium among m-fusible metals is produced by chemical vapor deposition, fluoride is used as a starting material. This is because the boiling point of the exemplified refractory metal fluoride is low, gas transport is easy, and a uniform film is easily obtained. However, the use of fluoride as a starting material is very disadvantageous from an economic point of view, since the fluoride of the above-mentioned refractory metal is expensive.

また、前述した難溶融性金属の塩化物を出発原料線 とすることも考えられるが、これらの塩化物怖不安定で
あシ、且つ増り扱いが難しい0 いずれにしても、化学蒸着の際、難溶融性金属のハロゲ
ン化物を出発原料として使用することは経済性及び膜の
均一性の点で、好ましい方法とは言い難い0 更に、上述した難溶融性金属の化学蒸着はいずれの出発
原料を用いる場合にも、数Torrから数百7’orr
の減圧下で行なわれている。減圧下での化学蒸着におい
ては9表面反応が律速過程であることから、均一な被覆
を形成するためには1表面反応を一定の減圧雰囲気で行
なわせる必要がある。しかしながら、減圧雰囲気を一定
に維持するためには、気体ガス供給部、その制御回路、
及び反応部に特別の工夫を施さ゛なければならない。
It is also possible to use the chlorides of the refractory metals mentioned above as the starting material wire, but these chlorides are unstable and difficult to handle. However, using a halide of a refractory metal as a starting material is not a desirable method in terms of economy and film uniformity. Even when using
This is done under reduced pressure. In chemical vapor deposition under reduced pressure, the 9-surface reaction is the rate-determining process, so in order to form a uniform coating, it is necessary to carry out the 1-surface reaction in a constant reduced pressure atmosphere. However, in order to maintain a constant reduced pressure atmosphere, the gas supply unit, its control circuit,
Also, special measures must be taken for the reaction section.

本発明の目的は出発原料としてノ・ロダン化合物を使用
しないで化学蒸着を行なうことができる経済的な被覆方
法を提供することである。
It is an object of the present invention to provide an economical coating process that allows chemical vapor deposition to be carried out without using rhodan compounds as starting materials.

本発明の他の目的は減圧しない状態で均一な厚さを有す
るタングステン、モリブデン、及びレー斤つム等の難溶
融性金属膜を生成できる被覆方法を提供することである
Another object of the present invention is to provide a coating method capable of producing a film of refractory metals such as tungsten, molybdenum, and reticulum having a uniform thickness without reducing the pressure.

本発明のよシ他の目的は上述した難溶融性金属の合金膜
をも生成できる被覆方法を提供することである。
Another object of the present invention is to provide a coating method capable of producing an alloy film of the above-mentioned refractory metal.

本発明によれば、タングステン、モリブデン。According to the invention, tungsten, molybdenum.

及びレニウムの群から選ばれた少なくとも一種類の材料
の層を基体上に形成する被覆方法において。
and a coating method comprising forming a layer of at least one material selected from the group of rhenium on a substrate.

選択された材料を所定の気圧の下に配置した状態で、塩
素ガスを用いて塩素化し、この塩素化によって生成され
た塩化物を同一の反応系内に、所定の気圧と実質的に同
じ気圧に保持された基体上に還元ガスと共に導き、塩化
物と還元ガスとの還元反応により選択された材料の層を
基体上に生成する被覆方法が得られる。
While the selected material is placed under a given atmospheric pressure, it is chlorinated using chlorine gas, and the chloride produced by this chlorination is placed in the same reaction system at a pressure substantially equal to the given atmospheric pressure. A coating method is obtained in which a reducing gas is introduced onto a substrate held in a substrate, and a layer of the selected material is produced on the substrate by a reduction reaction between the chloride and the reducing gas.

本発明では、タングステン、モリブデン、及びレニウム
の金属被膜又はこれらの合金膜を化学的に安定な純金属
を出発原料として用いると共に。
In the present invention, a chemically stable pure metal is used as a starting material for the metal coating of tungsten, molybdenum, and rhenium, or an alloy coating thereof.

操作が容易な圧力雰囲気9例えば、大気圧下で。Pressure atmosphere 9 for easy operation, for example under atmospheric pressure.

塩素化し、生成された塩化物ガスを直接還元ガスと一緒
に、上述した圧力雰囲気に保たれた基体上に導く。この
方法においては、塩素ガス及び還元ガスの導入法、導入
の際のガス流量、並びに塩化物ガスの噴出端と基体との
幾何学的配置を選択することによって、均−且つ緻密で
、密着性の優れた膜を生成することができた。
The chloride gas produced by chlorination is directly introduced together with a reducing gas onto the substrate maintained in the above-mentioned pressure atmosphere. In this method, by selecting the method of introducing chlorine gas and reducing gas, the gas flow rate during introduction, and the geometrical arrangement of the chloride gas ejection end and the substrate, uniform, dense, and adhesive properties can be achieved. We were able to produce an excellent film.

以下1図面を参照して9本発明の詳細な説明する。Hereinafter, the present invention will be described in detail with reference to one drawing.

以下余日 実施例1 図を参照すると9本発明の実施例に使用される化学蒸着
装置は石英管1の内部に延在するように。
Embodiment 1 Below, referring to FIG. 9, a chemical vapor deposition apparatus used in an embodiment of the present invention extends inside a quartz tube 1.

石英管1の左端に気密に取り付けられた塩素化炉部2と
、塩素化炉部2の右側に位置付けられた反応炉3とを備
えている。塩素化炉部2内には、アルミナボートに入れ
たタングステンチッゾ4が配置されており、他方5反応
炉3内には、被覆されるべき基体5がグラファイト製の
支持台6上に設置されている。
It includes a chlorination furnace section 2 airtightly attached to the left end of a quartz tube 1, and a reaction furnace 3 positioned on the right side of the chlorination furnace section 2. In the chlorination furnace section 2, a tungsten chizo 4 placed in an alumina boat is placed, and in the reactor 3, a substrate 5 to be coated is placed on a graphite support 6. ing.

塩素化炉部2及び反応炉3内には、アルゴン等の不活性
ガスが導入ロアを介して導入され、不活性ガスが塩素化
炉部2及び反応炉3内に行き渡った状態で、ヒータ8及
び9が駆動され、塩素化炉部2及び反応炉3の温度を8
00℃及び550℃にそれぞれ保持する。
An inert gas such as argon is introduced into the chlorination furnace section 2 and the reaction furnace 3 through the introduction lower, and with the inert gas spread throughout the chlorination furnace section 2 and the reaction furnace 3, the heater 8 and 9 are driven, and the temperature of the chlorination furnace section 2 and the reactor 3 is set to 8.
00°C and 550°C, respectively.

次に、塩素化炉部2の左端に設けられた導入口10から
塩素ガスが所定の流量(例えば、30Cφin)で塩素
化炉部2内に導入される。この塩素ガスによシ、タング
ステンチッゾ4は炉部2内で塩素化され、タングステン
塩化物(WCZ6)の形で、塩素化炉部2の右端に設け
られた噴出口IIを通して。
Next, chlorine gas is introduced into the chlorination furnace section 2 from the inlet 10 provided at the left end of the chlorination furnace section 2 at a predetermined flow rate (for example, 30 Cφin). With this chlorine gas, the tungsten titanium 4 is chlorinated in the furnace section 2 and passed through the spout II provided at the right end of the chlorination furnace section 2 in the form of tungsten chloride (WCZ6).

反応炉3内に導かれる。噴出口11の近傍には。It is guided into the reactor 3. Near the spout 11.

導入口12が設けられており、この導入口12を介して
還元ガスとして水素ガスが導かれている。
An inlet 12 is provided, and hydrogen gas is introduced as a reducing gas through the inlet 12.

したがって、噴出口11からの塩化物はキャリアガスと
しての不活性ガスと還元ガスとしての水素ガスと共に反
応炉3内へ送シ出される。この結果。
Therefore, the chloride from the ejection port 11 is sent into the reactor 3 together with the inert gas as the carrier gas and the hydrogen gas as the reducing gas. As a result.

タングステン塩化物ガスと水素ガスとの混合ガスは基体
5上で反応し、タングステンの金属被膜が基体5上に形
成される。
The mixed gas of tungsten chloride gas and hydrogen gas reacts on the substrate 5, and a tungsten metal coating is formed on the substrate 5.

図からも明らかなとおり9反応炉3内の圧力は塩素化炉
部2内と同じ圧力(例えば、大気圧)に維持されている
As is clear from the figure, the pressure inside the 9-reactor 3 is maintained at the same pressure as the inside of the chlorination furnace section 2 (for example, atmospheric pressure).

一般に、大気圧下での化学蒸着による反応では。Generally, in reactions by chemical vapor deposition under atmospheric pressure.

気相中において不均一核生成が生じやすく、シたがって
、良質の被膜が得られ難く、且つ、気相中において物質
輸送が律速過程となるので、成長速度の速い被覆ができ
ないとされている。
It is said that heterogeneous nucleation tends to occur in the gas phase, making it difficult to obtain a high-quality coating.Moreover, mass transport is the rate-limiting process in the gas phase, making it impossible to form a coating with a high growth rate. .

しかしながら、前述した化学蒸着装置を用いだ場合、迅
速且つ良質のタングステン金属膜を得ることができた。
However, when the chemical vapor deposition apparatus described above was used, a tungsten metal film of good quality could be obtained quickly.

これは化学蒸着装置の幾何学的な形状並びに各導入ロア
、10.12から導入されるガスの流量を選択したため
と考えられる。より具体的に述べると、第1図に示した
化学蒸着装置では、塩素ガスの経路がキャリアガスとし
ての不活性ガス(アルゴンガス)の経路及び水素ガスの
経路と分離されており、且つ、水素ガスの導入口12は
塩化物ガスの噴出口11と基体5の間に設けられている
。このように、塩素ガスの経路を分離することによシ、
塩素化を促進できると共に。
This is believed to be due to the selection of the geometry of the chemical vapor deposition apparatus and the flow rate of the gas introduced from each introduction lower, 10.12. More specifically, in the chemical vapor deposition apparatus shown in FIG. 1, the path for chlorine gas is separated from the path for inert gas (argon gas) as a carrier gas and the path for hydrogen gas. The gas inlet 12 is provided between the chloride gas outlet 11 and the base 5 . In this way, by separating the chlorine gas path,
Along with being able to promote chlorination.

塩化物ガスと水素ガスとの混合を良くすることができる
。更に、塩化物ガスは噴出口11近傍でまず、キャリア
ガスと接触した後、基体5の近傍で水素ガスと接触する
。このため、塩化物ガスと水素とは基体5に隣接した領
域で混合され、塩化物噴出口11の近くにおける急激な
還元反応を防止することができる。
Mixing of chloride gas and hydrogen gas can be improved. Furthermore, the chloride gas first comes into contact with the carrier gas near the ejection port 11, and then comes into contact with hydrogen gas near the base 5. Therefore, the chloride gas and hydrogen are mixed in the region adjacent to the substrate 5, and a rapid reduction reaction near the chloride spout 11 can be prevented.

次に、塩化物ガスの噴出口11と基体5間の距離は通常
のハロゲン化合物を出発原料とする化学蒸着装置におけ
る出発原料と基体5間の距離よシも短くシ、基体5上に
到達する前に、還元反応が進行するのを防止している。
Next, the distance between the chloride gas outlet 11 and the substrate 5 is shorter than the distance between the starting material and the substrate 5 in a chemical vapor deposition apparatus using a normal halogen compound as the starting material, and the gas reaches the substrate 5. This prevents the reduction reaction from proceeding.

上述した距離の最適長は化学反応装置の大きさ、形状、
各導入口からのガスの流量によっても異なるが1本発明
者等の実験によれば、従来使用されている化学蒸着装置
の出発原料と基体間の距離を6割程度短縮すればよいこ
とが確認された。尚、噴出口11の大きさは25簡であ
った。
The optimal length of the distance mentioned above depends on the size, shape, and size of the chemical reaction device.
Although it varies depending on the flow rate of gas from each inlet, the inventors' experiments have confirmed that it is sufficient to shorten the distance between the starting material and the substrate in conventional chemical vapor deposition equipment by about 60%. It was done. Incidentally, the size of the spout 11 was 25 mm.

更に、水素ガスの流量を10〜50 ccAnin程度
の低流量に選択し、塩素ガスと水素ガスとのモル比を1
:2にした時、タングステン金属膜の成長速度は100
μrr1/1′1rであり、この成長速度は減圧下で多
量の水素ガスを流して行なう従来の化学蒸着装置におけ
る成長速度とほぼ同様であった。このことから9本発明
における化学蒸着装置では。
Furthermore, the flow rate of hydrogen gas was selected to be as low as 10 to 50 ccAnin, and the molar ratio of chlorine gas to hydrogen gas was set to 1.
: When set to 2, the growth rate of the tungsten metal film is 100
μrr1/1'1r, and this growth rate was almost the same as the growth rate in a conventional chemical vapor deposition apparatus in which a large amount of hydrogen gas is flowed under reduced pressure. From this, 9 in the chemical vapor deposition apparatus of the present invention.

還元反応が有効に行なわれていることがわかる。It can be seen that the reduction reaction is carried out effectively.

尚、上述した条件の下に得られたタングステン膜は緻密
で密着性の点で優れており、且つ、結晶の配向性は(1
00)及び(211)であることが判明した。
The tungsten film obtained under the above conditions is dense and has excellent adhesion, and the crystal orientation is (1).
00) and (211).

実施例2 第1図に示した化学蒸着装置を用いて、タングステン−
レニウムの合金被膜を形成する場合にづいて説明する。
Example 2 Tungsten was deposited using the chemical vapor deposition apparatus shown in FIG.
The case of forming a rhenium alloy film will be explained.

。この場合、90重重量タングステン粉末と10重重量
レニウム粉末を圧粉成形した後、水素気流中で焼成する
ことによって得られたタングステン−レニウム合金にレ
ットを出発原料4として塩素化炉部2内に配置する。次
に、ヒータ8及び9を動作させて、塩素化炉部2及び反
応炉3の温度をそれぞれ700℃及び1000℃に保持
する。この状態で、塩素化炉部2内に塩素ガスを導入し
て9合金にレットを塩素化しタングステン塩化物及びレ
ニウム塩化物を噴出口11からガスの形で噴出させる。
. In this case, after compacting 90wt tungsten powder and 10wt rhenium powder, the tungsten-rhenium alloy obtained by firing in a hydrogen stream was added to the tungsten-rhenium alloy as starting material 4 in the chlorination furnace section 2. Deploy. Next, heaters 8 and 9 are operated to maintain the temperatures of chlorination furnace section 2 and reaction furnace 3 at 700°C and 1000°C, respectively. In this state, chlorine gas is introduced into the chlorination furnace section 2 to chlorinate Ret to the 9 alloy, and tungsten chloride and rhenium chloride are ejected from the ejection port 11 in the form of gas.

噴出口11からの塩化物ガスは導入ロアからのアルゴン
ガス及び導入口12からの水素ガスと共に、加熱された
基体5上に送られ、基体5上に、金属光沢を有する被膜
が得られた。この被膜はレニウムを20係含有するタン
グステン−レニウム合金膜であシ、その成長速度は50
μrrv’hrであったO ここで、レニウム粉末の塩素化率はタングステン粉末に
比べて、同一温度、同一塩素流量の条件下で、2.5倍
高い。このことを考慮して、塩素化温度及び基体加熱温
度を一定にした状態で9合金ペレットの組成及び塩素ガ
スの流量を選定することにより、安定な組成比を有する
合金被膜が得られたO 上に述べた実施例2では1合金ペレットを出発原料とし
て使用した場合について述べたが1合金を形成する個々
の材料からなるにレット又は粉末を塩素化炉部2内に別
々に配置してもよいO実施例3 上述した実施例では水素ガスとの水素還元反応により、
被膜を生成する場合について説明したが。
The chloride gas from the ejection port 11 was sent onto the heated substrate 5 together with the argon gas from the introduction lower and the hydrogen gas from the introduction port 12, and a coating with metallic luster was obtained on the substrate 5. This film is a tungsten-rhenium alloy film containing 20% rhenium, and its growth rate is 50% rhenium.
Here, the chlorination rate of rhenium powder is 2.5 times higher than that of tungsten powder under the same temperature and same chlorine flow rate conditions. Taking this into consideration, by selecting the composition of the 9 alloy pellets and the flow rate of chlorine gas while keeping the chlorination temperature and substrate heating temperature constant, an alloy film with a stable composition ratio was obtained. In Example 2 described in 2, the case was described in which 1 alloy pellets were used as the starting material, but pellets or powders made of individual materials forming 1 alloy may be placed separately in the chlorination furnace section 2. O Example 3 In the above example, due to the hydrogen reduction reaction with hydrogen gas,
The case where a film is generated has been explained.

塩化物ガスを熱分解することによっても、被膜を生成す
ることができた。具体的に述べると、レニウム粉末を塩
素化炉部2内に配置して850℃に加熱すると共に、基
体5を950℃に加熱しておく。次に、塩素ガスを流量
20 cc/fnjnで塩素化炉部2内に導いて、レニ
ウム粉末を塩素化する。生成されたレニウム塩化物をキ
ャリアガスのアルゴンと共に、基体5上に導いた。この
結果、 20 ury’hrの成長速度でレニウム被膜
が形成された。
Films could also be produced by thermally decomposing chloride gas. Specifically, rhenium powder is placed in the chlorination furnace section 2 and heated to 850°C, and the base 5 is heated to 950°C. Next, chlorine gas is introduced into the chlorination furnace section 2 at a flow rate of 20 cc/fnjn to chlorinate the rhenium powder. The generated rhenium chloride was introduced onto the substrate 5 together with argon as a carrier gas. As a result, a rhenium film was formed at a growth rate of 20 ury'hr.

本発明は上記した単一の金属膜あるいは合金膜を生成す
る場合だけでなく、出発原料を取シ換え。
The present invention is applicable not only to the production of the above-mentioned single metal film or alloy film, but also to the replacement of starting materials.

上述した操作を繰り返すことにより、多層膜を形成する
ことも可能である。
It is also possible to form a multilayer film by repeating the above-mentioned operations.

本発明の化学蒸着法は、X線管用ター’r’ y )を
製作する際、グラファイト等の基体上にタングステン被
膜を形成するのに有効である。
The chemical vapor deposition method of the present invention is effective for forming a tungsten coating on a substrate such as graphite when manufacturing a tar'r'y for an X-ray tube.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の実施例に使用される化学蒸着装置を示す断
面図でちる。 1・・・石英管、2・・・塩素化炉部、3・・・反応炉
、4・・・出発原料、5・・・基体、6・・・支持台、
7・・・キャリアガス導入口、8,9・・・ヒータ、1
0・・・塩素ガス導入口、11・・・塩化物ガス噴出口
、12・・・水素ガス導入口〇
The figure is a sectional view showing a chemical vapor deposition apparatus used in an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Quartz tube, 2... Chlorination furnace part, 3... Reactor, 4... Starting raw material, 5... Substrate, 6... Support stand,
7...Carrier gas inlet, 8, 9...Heater, 1
0...Chlorine gas inlet, 11...Chloride gas outlet, 12...Hydrogen gas inlet 〇

Claims (1)

【特許請求の範囲】 1、 タングステン、モリブデン、及びレニウムの群か
ら選ばれた少なくとも二種類の材料の層を予め定められ
た基体上に形成する方法において。 前記選択された材料を所定の気圧の下で塩素化し。 この塩素化によって生成された塩化物を前記所定の気圧
と実質的に同じ気圧の下に置かれた同一の反応系内の基
体上に導き、前記基体上で前記塩化物を反応させること
によシ、前記材料の層を前記基体上に形成することを特
徴とする被覆方法。 2、特許請求の範囲第1項において、前記材料として前
記群から二種類以上の材料を選択し、これらの材料の合
金層を前記材料の層として形成することを特徴とする被
覆方法。 3、特許請求の範囲第1項又は第2項において。 前記塩化物との反応を前記群内の材料に関し、複数回行
なうことによって、複数層を材料層を前記基体上に形成
することを特徴とする被覆方法。
Claims: 1. A method for forming layers of at least two materials selected from the group of tungsten, molybdenum, and rhenium on a predetermined substrate. Chlorinating the selected material under a predetermined atmospheric pressure. The chloride produced by this chlorination is introduced onto a substrate in the same reaction system placed under substantially the same pressure as the predetermined pressure, and the chloride is reacted on the substrate. B. A coating method comprising forming a layer of the material on the substrate. 2. The coating method according to claim 1, characterized in that two or more types of materials are selected from the group as the material, and an alloy layer of these materials is formed as the layer of the material. 3. In claim 1 or 2. A coating method characterized in that a plurality of layers of material are formed on the substrate by carrying out the reaction with the chloride a plurality of times with respect to a material in the group.
JP19761481A 1981-12-10 1981-12-10 Coating method Pending JPS58100669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19761481A JPS58100669A (en) 1981-12-10 1981-12-10 Coating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19761481A JPS58100669A (en) 1981-12-10 1981-12-10 Coating method

Publications (1)

Publication Number Publication Date
JPS58100669A true JPS58100669A (en) 1983-06-15

Family

ID=16377398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19761481A Pending JPS58100669A (en) 1981-12-10 1981-12-10 Coating method

Country Status (1)

Country Link
JP (1) JPS58100669A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013083016A1 (en) * 2011-12-07 2013-06-13 无锡华润华晶微电子有限公司 Low-pressure chemical vapor deposition apparatus and thin-film deposition method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013083016A1 (en) * 2011-12-07 2013-06-13 无锡华润华晶微电子有限公司 Low-pressure chemical vapor deposition apparatus and thin-film deposition method thereof
US9478440B2 (en) 2011-12-07 2016-10-25 University Of Utah Research Foundation Low-pressure chemical vapor deposition apparatus and thin-film deposition method thereof

Similar Documents

Publication Publication Date Title
JP5438142B2 (en) Supply device
EP1230421A1 (en) Method of modifying source chemicals in an ald process
JPS5891100A (en) Synthesizing method for diamond
JPH04304290A (en) Phosphor and its manufacture
US7955569B2 (en) Metal halide reactor for CVD and method
EP0687753B1 (en) A synthesis process of diamond, synthesis apparatus and synthetic diamond
JP2023134421A (en) Method for depositing tungsten or molybdenum layer in presence of reducing co-reactant
US5136978A (en) Heat pipe susceptor for epitaxy
US3399980A (en) Metallic carbides and a process of producing the same
EP0401602B1 (en) Method and apparatus for forming coatings of finegrated and/or equiaxed grain structure and articles resulting therefrom.
US4890574A (en) Internal reactor for chemical vapor deposition
JPS58100669A (en) Coating method
US20030121365A1 (en) Method of producing fine tungsten powder from tungsten oxides
JP4486794B2 (en) Method for generating vapor from solid precursor, substrate processing system and mixture
US5108490A (en) Method of refining high purity titanium
JPH0115592B2 (en)
JP3442077B2 (en) Method for producing CVD silicon nitride
US5232485A (en) Method for obtaining high purity titanium
EP0443659B1 (en) A process for applying a coating on powdery particles and a process for the production of metallic objects by using these particles
RU2696179C1 (en) Method for gas-phase deposition of tantalum on the surface of a steel article
JPS58174568A (en) Formation of film of metal compound
US5840367A (en) Process for preparing a two phase HFB2 -SIB4 material
JPH03285076A (en) Method and device for producing tungsten parts
KR20210023661A (en) Cracking device and deposition apparatus including the same
JPS62278195A (en) Method for diamond synthesis