JPS58100117A - Laser beam scanning method - Google Patents

Laser beam scanning method

Info

Publication number
JPS58100117A
JPS58100117A JP56199382A JP19938281A JPS58100117A JP S58100117 A JPS58100117 A JP S58100117A JP 56199382 A JP56199382 A JP 56199382A JP 19938281 A JP19938281 A JP 19938281A JP S58100117 A JPS58100117 A JP S58100117A
Authority
JP
Japan
Prior art keywords
angle
laser beam
mirror
scanning
polygon mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56199382A
Other languages
Japanese (ja)
Other versions
JPH0381134B2 (en
Inventor
Masaharu Shiyudo
首藤 正治
Yuichi Akanabe
祐一 茜部
Hiroaki Ikeda
弘昭 池田
Shinsuke Funaki
信介 舟木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP56199382A priority Critical patent/JPS58100117A/en
Publication of JPS58100117A publication Critical patent/JPS58100117A/en
Publication of JPH0381134B2 publication Critical patent/JPH0381134B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors
    • G02B26/125Details of the optical system between the polygonal mirror and the image plane
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/0005Optical objectives specially designed for the purposes specified below having F-Theta characteristic

Abstract

PURPOSE:To correct a curved scan to a linear scan by varying control over an angle of beam incidence for the inclination correction of a rotary polygon mirror during a scanning period. CONSTITUTION:The deflection angle of the mirror 22 of an electrostrictive strain device 2 which performs deflection by the output of a controller 8 corresponding to the angle of inclination of each mirror surface of a rotary polygon mirror 3 corresponding to the optical axis 91 of an f.theta lens 9 is corrected for every scanning line by an extent corresponding to the amount of curvature DELTA=2phi.f.{cos(alpha-theta)-cosalpha}/cos2theta, thus correcting the angle of inclination. In practice, the correction is made enough in the form of DELTA=ktheta approximately (k: constant depending upon (f), phi, and alpha). Instead of the electrostrictive strain device, an acoustooptic element may be used to correct the angle of beam incidence to the rotary polygon mirror.

Description

【発明の詳細な説明】 本発明は、回転多面鏡にレーザビームを入射し、その反
射ビームを像保持体へ照射してレーザ記録を行う場合に
、或いは、上記反)1ビームを原稿へ照射してレーザ読
取を行う場合に、回転多面鏡の倒れ角に起因する走査線
ピップむらを自動的に修正するレーザビーム走査り法に
関し、更に詳しくは、このような走査線ピップむら補正
の際に生ずる湾曲状走査を直線状の走査に補正すること
のできるレーザビーム走Ah法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention can be used when performing laser recording by injecting a laser beam into a rotating polygon mirror and irradiating the reflected beam onto an image carrier, or when performing laser recording by irradiating one beam onto a document. Regarding a laser beam scanning method that automatically corrects scanning line pip unevenness caused by the inclination angle of a rotating polygon mirror when performing laser reading with The present invention relates to a laser beam scanning Ah method that can correct the resulting curved scan into a straight scan.

例えば、ビーム走査型のレーザプリンタでは、その回転
多面鏡の角度誤差(各反射鏡面と回転軸とのなす角の誤
差及び回転軸の傾斜に起囚暖る角rlL誤差)により、
主走査方向に対して直角の方向におけるビームスポット
の偏位いわゆる走査線ピッチむらが生ずる。このピッチ
むらを画像等に不都合な影響が出ない程度に抑える装置
として、本願出願人は、第1図に示すような、回転多面
鏡の倒れ角を補正するレーザビーム走査装置を、本願と
同日に出願している。第1図において、1はレーザダイ
オードを内部に有した半導体レーザ装置、2は電歪装置
である。この電歪装[2は、印加される電圧に応じて図
の矢印方向に撓むピエゾバイモルフ素子21を使用し、
その先端部側面にミラー22を設け、且つ下端部が保持
部材23に固設されてなるものである。3は回転多面鏡
で、主走査方向Xにレーザビームを走査させるために図
の矢印方向に一定速度で回転するものである。4は副走
査方向Yに回転する円筒状の像保持体(感光体ドラム)
で、この円筒表面は帯電器5により一様に帯電された後
レーザビームの照射により静電潜像が形成される。そし
てこの静電潜像は図示しない現像器、熱定着器−の助け
を借りてハードコピー化されるようになっている。7は
画情報に基づいて半導体レーザ装置1に変調された駆動
電流を与えるなどの種々の機能を有したレーザダイオー
ド駆【装置である。6は走査開始端のレーザビームを検
知し、その出力信号を主走査方向の同期信号としてレー
ザダイオード駆動装置7に与える光検出装置である。こ
の同期信号は各主走査での画情報出り開始点を一定に揃
えるために役立つ信号である。8は回転多面鏡3の各鏡
面の倒れ角に対応した電気信号(1@月)を発生し、電
歪装@2を駆動する制御a装置ぐある。9はレーザビー
ムを像保持体4の表面」−に結像させるためのf・θレ
ンズである。尚、12は半導体レーザ装[1からミラー
22に向かうレーザビーム11の光路上に配置されたレ
ンズ系である。
For example, in a beam scanning laser printer, due to the angle error of the rotating polygon mirror (the error in the angle between each reflecting mirror surface and the rotation axis, and the angle rlL error caused by the inclination of the rotation axis),
A deviation of the beam spot in a direction perpendicular to the main scanning direction causes so-called scanning line pitch unevenness. As a device for suppressing this pitch unevenness to the extent that it does not adversely affect images, the applicant of the present application developed a laser beam scanning device that corrects the tilt angle of a rotating polygon mirror as shown in FIG. has applied. In FIG. 1, 1 is a semiconductor laser device having a laser diode inside, and 2 is an electrostrictive device. This electrostrictive device [2 uses a piezo bimorph element 21 that bends in the direction of the arrow in the figure according to the applied voltage,
A mirror 22 is provided on the side surface of the tip, and the lower end is fixed to a holding member 23. Reference numeral 3 denotes a rotating polygon mirror, which rotates at a constant speed in the direction of the arrow in the figure in order to scan the laser beam in the main scanning direction X. 4 is a cylindrical image holder (photosensitive drum) that rotates in the sub-scanning direction Y;
After the cylindrical surface is uniformly charged by the charger 5, an electrostatic latent image is formed by laser beam irradiation. This electrostatic latent image is converted into a hard copy with the help of a developing device and a heat fixing device (not shown). Reference numeral 7 denotes a laser diode driver having various functions such as providing a modulated drive current to the semiconductor laser device 1 based on image information. Reference numeral 6 denotes a photodetector that detects the laser beam at the scanning start end and supplies its output signal to the laser diode drive device 7 as a synchronization signal in the main scanning direction. This synchronization signal is a signal useful for aligning the starting points of image information in each main scan. Reference numeral 8 denotes a control device a which generates an electric signal (1@moon) corresponding to the inclination angle of each mirror surface of the rotating polygon mirror 3 and drives the electrostrictive device@2. Reference numeral 9 denotes an f.theta. lens for focusing the laser beam on the surface of the image holder 4. Note that 12 is a lens system disposed on the optical path of the laser beam 11 traveling from the semiconductor laser device [1 to the mirror 22.

このような構成において、半導体レーザ装置1より出た
レーザビーム11は、レンズ系12を通過して電歪装置
2のミラー22に入射し、ここで反射した後、回転多面
13に入射づる。
In such a configuration, the laser beam 11 emitted from the semiconductor laser device 1 passes through the lens system 12, enters the mirror 22 of the electrostrictive device 2, is reflected there, and then enters the rotating polygon 13.

多面11!3での反射ビームは、f・θレンズ9を通っ
て像保持体4の表面に結像する。この結像スポットは画
情報に応じてON・OFF変調させたものであり、この
ON・OFF!f調ビームがX方向に走査され、像保持
体4上に画情報に基づいた静電潜像が形成される。この
場合、制御装置8は電歪装置2のミラー22が第2図に
示すように当該走査鏡面31の倒れ角φと同じ角度に傾
くように当該走査期間中一定の電圧で電歪装置2を駆動
する。そのため、当該走査鏡面31での反射ビームは、
はぼ光軸と平行して「・θレンズ9に入射し、像保持体
4の軸と平行な走査@L上に結像することとなる。
The reflected beam from the multifaceted surface 11!3 passes through the f·θ lens 9 and forms an image on the surface of the image carrier 4. This imaging spot is modulated ON/OFF according to the image information, and this ON/OFF! The f-tuned beam is scanned in the X direction, and an electrostatic latent image is formed on the image carrier 4 based on image information. In this case, the control device 8 operates the electrostrictive device 2 at a constant voltage during the scanning period so that the mirror 22 of the electrostrictive device 2 is tilted at the same angle as the inclination angle φ of the scanning mirror surface 31 as shown in FIG. Drive. Therefore, the reflected beam at the scanning mirror surface 31 is
The light enters the .theta. lens 9 parallel to the optical axis, and is imaged on the scanning @L parallel to the axis of the image carrier 4.

しかしながら、回転多面鏡3の回転に対して、多面鏡の
一面内においてはミラー22の位置は固定であるため、
像保持体4上では走査ビームは、例えば第3図に示すよ
うに主走査方向と平行でなく、はぼ円弧状の湾曲走査(
点線L’ )となる。例えば、回転多面1i3のある回
転位置での走査ビームが[・θレンズ9の光軸91上に
一致するようにミラー22の倒れ角を定めたとする。そ
して、当該走査鏡面31の倒れ角をφ、回転多面鏡3に
入射するビームとf・θレンズ9の光軸91とのなす角
をα、f・θレンズ9の焦点距離をfとすると、回転多
面113が前記回転位置より回転角θだけ回転したとき
のビームスポットの走査線りからのずれ量Δは次のよう
に表わされる。
However, with respect to the rotation of the rotating polygon mirror 3, the position of the mirror 22 within one surface of the polygon mirror is fixed;
On the image holder 4, the scanning beam is not parallel to the main scanning direction as shown in FIG.
Dotted line L'). For example, assume that the inclination angle of the mirror 22 is determined so that the scanning beam at a certain rotational position of the rotating polygon 1i3 coincides with the optical axis 91 of the [.theta. lens 9. Then, if the inclination angle of the scanning mirror surface 31 is φ, the angle between the beam incident on the rotating polygon mirror 3 and the optical axis 91 of the f/θ lens 9 is α, and the focal length of the f/θ lens 9 is f, then The amount of deviation Δ of the beam spot from the scanning line when the rotating polygon 113 is rotated by a rotation angle θ from the rotational position is expressed as follows.

Δ−2・f ・φ (COS(α−0>  −cos 
 α)/cos  2 θ・・・・・・ (1)一般に
光学系部品配置上の問題から、αは90度と設定するの
が通常であるので、例えばα−90’ とし、f−25
0mmとすれば、φ・・10秒120秒、30秒の場合
にお番プる回転角θ(度)に対するずれ量Δ(μm)は
、第4図に示すようになる。このずれ量Δはビームスポ
ット径(例えば約100μ霧)に比べ無視できない大き
さで鳴り、記録像が歪んでしまうという問題があった。
Δ−2・f・φ (COS(α−0> −cos
α)/cos 2 θ・・・・・・ (1) Generally, due to problems in the arrangement of optical system components, α is usually set to 90 degrees, so for example, α-90', f-25
If it is 0 mm, the deviation amount Δ (μm) with respect to the rotation angle θ (degrees) in the case of φ...10 seconds, 120 seconds, and 30 seconds is as shown in FIG. This deviation amount Δ is too large to be ignored compared to the beam spot diameter (for example, about 100 μm fog), and there is a problem that the recorded image is distorted.

本発明はこのような点に鑑みてなされたもの・で、その
目的とするところは、このビームスポットの走査1i1
Lからのずれ量を除去できるレーザビーム走査方法を提
供することにある。
The present invention has been made in view of these points, and its purpose is to scan the beam spot 1i1.
An object of the present invention is to provide a laser beam scanning method that can eliminate the amount of deviation from L.

この目的を達成する本発明方法は、当該走査鏡面へ入射
するレーザビームの入射角度を当該走査期間中に適宜に
変化させ、像保持体上でレーザビームを直線状に走査す
るようにしたことを特徴とするものである。
The method of the present invention that achieves this objective includes changing the incident angle of the laser beam incident on the scanning mirror surface appropriately during the scanning period, so that the laser beam scans the image carrier in a straight line. This is a characteristic feature.

以下図面を参照して本発明の詳細な説明する。The present invention will be described in detail below with reference to the drawings.

例えば、t・θレンズ9の光軸91に対する回転多面1
13の各鏡面の倒れ角が、それぞれ第5図の(イ)に示
すような角度であったとする。
For example, the rotating polygon 1 with respect to the optical axis 91 of the t/θ lens 9
It is assumed that the angles of inclination of each of the 13 mirror surfaces are as shown in FIG. 5(A).

第1図に示した装置によれば、Ill III装置8の
出力によって偏向する電歪装置12のミラー22の偏向
角(倒れ角)は、第5図の(D)に示すように、同図(
イ)の鏡面の倒れ角と1対1に対応するように駆動され
る。本発明の方法を実施するための装置の概念的構成は
第1図と同じであるが、本発明による制御装置8は、各
走査ごとに前記(1)式で表わされるずれ量Δに対応し
た電圧を発生するように構成した点で、第1図のものと
は異なる。このような制御装置の出力電圧で電歪装置2
を駆動すれば、そのミラー22は、第5図の(ハ)に示
すように、各走査ごとに回転多面113の回転に追従し
て、即ち回転角θに対応して、その偏向角の大きさが減
少するように偏向され、結果としてレーザビームの直線
状走査を得ることができる。第3図及び第4図に示した
走査線L′の一位においては、前記偏向角の大きさは減
少するが、光学系によっては偏向角の大きさを、鏡面の
回転に従い、増大するよう制御する場合もある。
According to the device shown in FIG. 1, the deflection angle (inclination angle) of the mirror 22 of the electrostrictive device 12 that is deflected by the output of the Ill III device 8 is as shown in FIG. (
It is driven in a one-to-one correspondence with the inclination angle of the mirror surface in (b). The conceptual configuration of the device for carrying out the method of the present invention is the same as that shown in FIG. It differs from the one shown in FIG. 1 in that it is configured to generate a voltage. With the output voltage of such a control device, the electrostrictive device 2
As shown in FIG. 5C, the mirror 22 follows the rotation of the rotating polygon 113 for each scan, that is, the deflection angle changes in accordance with the rotation angle θ. The laser beam is deflected in such a way that the laser beam is reduced, resulting in a linear scan of the laser beam. At the first position of the scanning line L' shown in FIGS. 3 and 4, the magnitude of the deflection angle decreases, but depending on the optical system, the magnitude of the deflection angle increases as the mirror surface rotates. Sometimes it is controlled.

尚、(1)式の回転角θに対するずれ崩へは実際には非
線形であり、これに対応する非線形の出力電圧を発生す
るためには制御装置が極めて複雑な構成となる。実用上
は(1)式に代えて、Δakθ(但し、kはf、φ、α
で決まる定数)の近似式を用いてもよい。第6図は、こ
のような近似式で表わされるビームスポットの主走査線
りからのずれ量Δに対応する電圧を発生するためのtl
lJ御装置の出力段回路構成図であるd同図において、
61は積分器、63は加算増幅器であるン積分器61は
走査開始時点に当該走査鏡面の倒れ角に対応して選択さ
れた電圧E1を積分し、積分電圧E1− (−Ei /
CR)・t (但し、CRは積分器の時定数、tは積分
時間)を出力する。又、積分器61は各走査が終わるご
とにスイッチ62により出力電圧がリセットされるよう
になっている。加算増幅器63は、このような積分電圧
E1と前記電圧Eiとを加算・増幅するもので、各抵抗
の定数を同一に定めることにより Eo −Ei  (1−t /CR) で示される出力電圧EOを、得るものである。
Incidentally, the shift collapse with respect to the rotation angle θ in equation (1) is actually nonlinear, and in order to generate a nonlinear output voltage corresponding to this, the control device requires an extremely complicated configuration. In practice, instead of formula (1), Δakθ (where k is f, φ, α
You may use an approximation formula of the constant determined by . FIG. 6 shows the tl for generating the voltage corresponding to the amount of deviation Δ of the beam spot from the main scanning line expressed by such an approximation formula.
lJ control device output stage circuit configuration diagram d In the same figure,
61 is an integrator, and 63 is a summing amplifier.The integrator 61 integrates the voltage E1 selected corresponding to the inclination angle of the scanning mirror surface at the start of scanning, and calculates the integrated voltage E1- (-Ei /
CR)·t (where CR is the time constant of the integrator and t is the integration time). Further, the output voltage of the integrator 61 is reset by a switch 62 every time each scan is completed. The summing amplifier 63 adds and amplifies the integrated voltage E1 and the voltage Ei, and by setting the constant of each resistor to be the same, the output voltage EO expressed as Eo - Ei (1-t /CR) is obtained. This is what you get.

この電圧Eoは各走査ごとに初期値Eiよりその絶対値
が直線的に減少する電圧であって、このような電圧で電
歪装置l12を駆動することにより、ずれ置Δを補正し
、レーザビームを直線状に走査させることができる。
This voltage Eo is a voltage whose absolute value decreases linearly from the initial value Ei for each scan, and by driving the electrostrictive device l12 with such a voltage, the deviation Δ is corrected and the laser beam can be scanned in a straight line.

尚、実施例では、回転多面鏡の倒れ角を補正するための
手段として電歪装置を使用した場合を示したが、電歪装
置に代えて音響光学素子を用いて回転多面鏡への入射ビ
ーム角度を補正することもできる。そして、このような
場合にも当然に本発明方法を適用することができる。
In addition, in the example, a case was shown in which an electrostrictive device was used as a means for correcting the inclination angle of the rotating polygon mirror. You can also correct the angle. Naturally, the method of the present invention can also be applied to such cases.

又、上記説明は、感光体ドラムを用いたレーザプリンタ
についての説明であったが、他のレーザ記録或いはレー
ザ読取についても、本発明方法を適用できる。従って、
本発明方法にお$7る被走査面は、光導電性絶縁体(セ
レン、0()c、7n O,アモルファスシリコン等〉
を(1する感光体に限らず、銀塩感光材料、感光性樹脂
Further, although the above explanation was about a laser printer using a photosensitive drum, the method of the present invention can also be applied to other types of laser recording or laser reading. Therefore,
The surface to be scanned in the method of the present invention is made of a photoconductive insulator (selenium, 0()c, 7nO, amorphous silicon, etc.)
(1) Not limited to photoreceptors, silver salt photosensitive materials, photosensitive resins.

熱可塑性物質等の感熱記録材等、種々のものC・形成さ
れることになる。
Various materials such as thermosensitive recording materials such as thermoplastic materials will be formed.

以上説明したように、本発明によれば、回転多面鏡への
入射ビーム角度を補正する際に結果として生ずるレーザ
ビ・−ムの湾曲状走査を容易に補正して直線状走査とす
ることができる。
As explained above, according to the present invention, it is possible to easily correct the curved scanning of the laser beam that results when correcting the angle of the incident beam on the rotating polygon mirror to convert it into linear scanning. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は回転多面鏡の倒れ角を補正するレーザビーム走
査装置を包含したレーザプリンタの構成図、第2図は走
査鏡面の倒れ角を補正する方法の説明図、第3図は第1
図装置でのレーザビームの走査態様を示す・説明図、第
4図はずれ量Δを示す説明図、第5図は走査鏡面の倒れ
角とミラーの偏向角を示す□説明図、第6図は回転多面
鏡の回転に追従して変化する電圧を発生するための回路
の構成図である。 2・・・電歪装置I    22・・・ミラー3・・・
回転多面14・・・像保持体 8・・・制御装置    9・・・f・θレンズ61・
・・積分器    63・・・加算増幅器特許出願人 
 小西六写真工業株式会社代  理  人   弁理士
  井  島  藤  治′p51図 篤5図 第6図 1
Fig. 1 is a configuration diagram of a laser printer including a laser beam scanning device that corrects the inclination angle of a rotating polygon mirror, Fig. 2 is an explanatory diagram of a method for correcting the inclination angle of a scanning mirror surface, and Fig. 3
Figure 4 is an explanatory diagram showing the scanning mode of the laser beam in the device, Figure 4 is an explanatory diagram showing the deviation amount Δ, Figure 5 is an explanatory diagram showing the inclination angle of the scanning mirror surface and the deflection angle of the mirror, and Figure 6 is an explanatory diagram showing the inclination angle of the scanning mirror surface and the deflection angle of the mirror. FIG. 2 is a configuration diagram of a circuit for generating a voltage that changes in accordance with the rotation of a rotating polygon mirror. 2... Electrostrictive device I 22... Mirror 3...
Rotating polygon 14...image holder 8...control device 9...f/θ lens 61...
...Integrator 63...Summing amplifier patent applicant
Konishi Roku Photo Industry Co., Ltd. Representative Patent Attorney Osamu Ijima Fuji'p51 Atsushi Figure 5 Figure 6 Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1) 回転多面鏡にレーザビームを入射し、その反、
射ビームで走査を行い、前記回転多面鏡の各面へのレー
ザビーム入射角度を制御することによって倒れ商補正を
行うレーザビーム走査方法において、前記入射角度を当
該主走査期間中に変化させ、レーザビームが被走査面上
で直線状の走査となるようにしたことを特徴とするレー
ザビーム走査方法。
(1) A laser beam is incident on a rotating polygon mirror, and the
In a laser beam scanning method that performs scanning with an incident beam and performs tilt quotient correction by controlling the incident angle of the laser beam on each surface of the rotating polygon mirror, the incident angle is changed during the main scanning period, and the laser A laser beam scanning method characterized in that the beam scans in a straight line on a surface to be scanned.
(2) 前記入射角度を回転多面鏡の回転に追従して減
少又は増加するように変化させることを特徴とする特許
請求の範囲第1項記載のレーザビーム走査方法。
(2) A laser beam scanning method according to claim 1, characterized in that the incident angle is changed to decrease or increase following the rotation of a rotating polygon mirror.
JP56199382A 1981-12-09 1981-12-09 Laser beam scanning method Granted JPS58100117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56199382A JPS58100117A (en) 1981-12-09 1981-12-09 Laser beam scanning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56199382A JPS58100117A (en) 1981-12-09 1981-12-09 Laser beam scanning method

Publications (2)

Publication Number Publication Date
JPS58100117A true JPS58100117A (en) 1983-06-14
JPH0381134B2 JPH0381134B2 (en) 1991-12-27

Family

ID=16406830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56199382A Granted JPS58100117A (en) 1981-12-09 1981-12-09 Laser beam scanning method

Country Status (1)

Country Link
JP (1) JPS58100117A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01237513A (en) * 1987-05-13 1989-09-22 Dainippon Screen Mfg Co Ltd Method and device for light beam deflecting scan
EP0704738A1 (en) * 1994-09-28 1996-04-03 Scitex Corporation Ltd. A facet inaccuracy compensation unit
JP2009151312A (en) * 2007-12-21 2009-07-09 Palo Alto Research Center Inc Agile beam steering mirror assembly for active raster scan error correction

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56102821A (en) * 1980-01-18 1981-08-17 Dainippon Screen Mfg Co Ltd Correction method for ununiformity of scanning line interval in light beam scanning

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56102821A (en) * 1980-01-18 1981-08-17 Dainippon Screen Mfg Co Ltd Correction method for ununiformity of scanning line interval in light beam scanning

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01237513A (en) * 1987-05-13 1989-09-22 Dainippon Screen Mfg Co Ltd Method and device for light beam deflecting scan
JPH0527086B2 (en) * 1987-05-13 1993-04-20 Dainippon Screen Mfg
EP0704738A1 (en) * 1994-09-28 1996-04-03 Scitex Corporation Ltd. A facet inaccuracy compensation unit
JP2009151312A (en) * 2007-12-21 2009-07-09 Palo Alto Research Center Inc Agile beam steering mirror assembly for active raster scan error correction

Also Published As

Publication number Publication date
JPH0381134B2 (en) 1991-12-27

Similar Documents

Publication Publication Date Title
JP4025522B2 (en) Beam light scanning apparatus and image forming apparatus
US5331343A (en) Optical apparatus with improved lens mounting device
JP2006039573A (en) Electrophotographic imaging device and method of correcting curvature of field
JP3493848B2 (en) Optical scanning device
JP2564815B2 (en) Optical scanning image forming device
JPS58100117A (en) Laser beam scanning method
JPH01302317A (en) Image forming device
JP3315393B2 (en) Image forming apparatus and control method thereof
JPH0519598A (en) Exposing device for electrophotographic device
JPS58100118A (en) Laser beam scanning device
JPH08286135A (en) Optical scanning device
US6144478A (en) Flexible arm piezoelectric lens mover
JP4200030B2 (en) Image forming apparatus
JPH0619494B2 (en) Optical scanning device
JP2603232B2 (en) Scanning optical device
JPH0519186A (en) Scanning optical device
US6278109B1 (en) Facet tracking using wavelength variations and a dispersive element
JP3056229B2 (en) Image forming device
JPS6153616A (en) Scanner
JP2713985B2 (en) Laser beam printer device
JPS62219757A (en) Optical scanning device
JPS6167817A (en) Semiconductor laser light scanner
JP2861443B2 (en) Exposure equipment
JPS6378167A (en) Recorder
JPH10324019A (en) Image-forming apparatus