JPH1199148A - Transmission ct device - Google Patents
Transmission ct deviceInfo
- Publication number
- JPH1199148A JPH1199148A JP9278200A JP27820097A JPH1199148A JP H1199148 A JPH1199148 A JP H1199148A JP 9278200 A JP9278200 A JP 9278200A JP 27820097 A JP27820097 A JP 27820097A JP H1199148 A JPH1199148 A JP H1199148A
- Authority
- JP
- Japan
- Prior art keywords
- radiation
- scattered light
- scattered
- radiation source
- energy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005540 biological transmission Effects 0.000 title claims description 12
- 230000005855 radiation Effects 0.000 claims abstract description 94
- 238000010521 absorption reaction Methods 0.000 claims abstract description 10
- 238000001514 detection method Methods 0.000 abstract description 3
- 238000012937 correction Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000013170 computed tomography imaging Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 230000005251 gamma ray Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000009206 nuclear medicine Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/42—Arrangements for detecting radiation specially adapted for radiation diagnosis
- A61B6/4208—Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
- A61B6/4258—Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector for detecting non x-ray radiation, e.g. gamma radiation
Landscapes
- Apparatus For Radiation Diagnosis (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、核医学診断装置
に関し、とくにトランスミッションCT装置に関する。The present invention relates to a nuclear medicine diagnostic apparatus, and more particularly to a transmission CT apparatus.
【0002】[0002]
【従来の技術】トランスミッションCT装置は、被検体
の外部に配置した放射線源からの放射線を被検体に透過
させてその透過データを収集し、被検体内での放射線吸
収係数の分布像(吸収マップ)を再構成するものであ
る。こうして得られた吸収マップはエミッションCT装
置における吸収補正などに使用される。トランスミッシ
ョンCT装置とエミッションCT装置とは、外部に放射
線源を置くか置かないかにおいて違いがあるにすぎない
ので、装置の構成としては兼用されることが多い。2. Description of the Related Art A transmission CT apparatus transmits radiation from a radiation source disposed outside a subject, collects transmission data of the radiation, and obtains a distribution image (absorption map) of a radiation absorption coefficient in the subject. ) Is reconstructed. The absorption map thus obtained is used for absorption correction in the emission CT apparatus. The transmission CT device and the emission CT device merely differ in whether or not a radiation source is placed outside, and therefore are often used as the configuration of the device.
【0003】トランスミッションCT装置における放射
線源としては、従来では、エミッションCT撮影時に使
用するTc−99m(144keV)やI−123(1
59keV)などの核種のエネルギーに近いという理由
で、エネルギーが比較的低い、Co−57(122ke
V)やGd−153(100keV)などが用いられて
いる。Conventionally, as a radiation source in a transmission CT apparatus, Tc-99m (144 keV) or I-123 (1
Co-57 (122 ke) whose energy is relatively low because it is close to the energy of a nuclide such as 59 keV).
V) and Gd-153 (100 keV).
【0004】[0004]
【発明が解決しようとする課題】しかしながら、従来使
われている放射線源は、Co−57については272
日、Gd−153については240日と半減期が比較的
短く、臨床において使用するにはランニングコストがか
かりすぎる、という問題がある。However, conventionally used radiation sources are 272 for Co-57.
The half-life of Gd-153 is relatively short, 240 days, and there is a problem that running costs are too high for clinical use.
【0005】この発明は、上記に鑑み、費用の点から、
放射線源を半永久的に使えるように改善した、トランス
ミッションCT装置を提供することを目的とする。[0005] In view of the above, the present invention, in view of cost,
It is an object of the present invention to provide a transmission CT apparatus in which a radiation source is improved to be used semipermanently.
【0006】[0006]
【課題を解決するための手段】上記の目的を達成するた
め、この発明によるトランスミッションCT装置におい
ては、放射線源と、該放射線源からの放射線を散乱させ
る散乱体と、該散乱線のみが外部に放出され直接線は放
出されないように上記放射線源を覆う放射線遮蔽体とか
らなる散乱線発生器が備えられており、該散乱線発生器
を被検体を挟んで放射線検出器と対向配置し、該放射線
検出器から得られる信号より上記被検体を透過した散乱
線による透過データを収集して演算装置によって吸収マ
ップを作成することが特徴となっている。In order to achieve the above object, in a transmission CT apparatus according to the present invention, only a radiation source, a scatterer that scatters radiation from the radiation source, and only the scattered radiation are externally provided. A scattered radiation generator comprising a radiation shield covering the radiation source so that emitted direct rays are not emitted is provided, and the scattered radiation generator is arranged to face the radiation detector with the subject interposed therebetween, and It is characterized in that transmission data based on scattered radiation transmitted through the subject is collected from a signal obtained from a radiation detector and an arithmetic unit creates an absorption map.
【0007】被検体には放射線源からの直接線は照射さ
れず、散乱線のみが照射され、この被検体を透過した散
乱線によるデータが収集される。放射線が散乱すると直
接線に対してエネルギーが低い成分を持ったスペクトル
となる。そこで、たとえば半減期が30年と長いCs−
137等の放射線源を使用することができるようにな
る。すなわち、このCs−137は放出エネルギーのピ
ークが662keVと高いが、散乱させることにより1
50keV〜300keV程度の低いエネルギーの散乱
線を得ることができる。そこで、この散乱線を利用する
ことにより、放出エネルギーが高いが半減期の長い適当
な放射線源を使用することができるようになって、同一
の放射線源を半永久的に使用できるようになり、ランニ
ングコストを下げることができる。[0007] The subject is not irradiated with direct rays from the radiation source, but is irradiated with only scattered rays, and data based on the scattered rays transmitted through the subject is collected. When the radiation is scattered, it becomes a spectrum having a component whose energy is lower than that of a direct ray. Therefore, for example, Cs-
137 etc. can be used. That is, this Cs-137 has a high emission energy peak of 662 keV,
Scattered radiation having a low energy of about 50 keV to 300 keV can be obtained. Therefore, by utilizing this scattered radiation, it becomes possible to use an appropriate radiation source having a high emission energy but a long half-life, and the same radiation source can be used semi-permanently. Costs can be reduced.
【0008】[0008]
【発明の実施の形態】つぎに、この発明の実施の形態に
ついて図面を参照しながら詳細に説明する。図1におい
て、散乱線発生器10は被検体20に対して後方散乱線
11を照射するものとなっている。被検体20を透過し
た散乱線はファンビームコリメータ31を通って検出器
30に入射する。ファンビームコリメータ31の焦点位
置に散乱線発生器10が配置される。検出器30はガン
マカメラの検出部であり、放射線が入射すると、その位
置を表す位置信号とその入射放射線のエネルギーに対応
したエネルギー信号とを出力する。Next, embodiments of the present invention will be described in detail with reference to the drawings. In FIG. 1, a scattered ray generator 10 irradiates a subject 20 with backscattered rays 11. The scattered radiation transmitted through the subject 20 enters the detector 30 through the fan beam collimator 31. The scattered radiation generator 10 is arranged at the focal position of the fan beam collimator 31. The detector 30 is a detection unit of a gamma camera, and outputs a position signal indicating the position and an energy signal corresponding to the energy of the incident radiation when the radiation enters.
【0009】散乱線発生器10は、図2および図3に示
すように、ライン状の密封放射線源12と、これからの
放射線を散乱させる散乱体13と、放射線源12からの
直接線が被検体20の方向に放出されないように遮蔽す
る放射線遮蔽体14とからなる。この放射線源12はた
とえばCs−137からなる。放射線遮蔽体14は、鉛
などの放射線遮蔽性の材料で直方体形状に作られてお
り、この場合は遮蔽体としての機能とともに、ライン状
の密封放射線源12を保持する機能も持たされている。
すなわち、このライン状の密封放射線源12が直方体形
状の放射線遮蔽体14の一面に固定されている。As shown in FIGS. 2 and 3, the scattered radiation generator 10 includes a linear sealed radiation source 12, a scatterer 13 for scattering radiation from the radiation source, and a direct radiation from the radiation source 12. And a radiation shield 14 that shields the radiation so as not to be emitted in the direction of 20. This radiation source 12 is made of, for example, Cs-137. The radiation shield 14 is made of a radiation shielding material such as lead in a rectangular parallelepiped shape. In this case, the radiation shield 14 has a function as a shield and a function of holding the linear sealed radiation source 12.
That is, the linear sealed radiation source 12 is fixed to one surface of the rectangular radiation shield 14.
【0010】散乱体13は、たとえば鉄やアルミニウム
などの原子番号が低く放射線を散乱させる性質のある材
料で直方体の箱状に形成されている。この箱状散乱体1
3の開口側に放射線遮蔽体14が取り付けられる。The scatterer 13 is formed of a material having a low atomic number, such as iron or aluminum, having a property of scattering radiation, and is formed in a rectangular parallelepiped box shape. This box-shaped scatterer 1
The radiation shield 14 is attached to the opening side of the third.
【0011】そこで、放射線源12から放出された放射
線は、散乱体13で散乱させられたものだけが被検体2
0側に照射されることになり、直接被検体20側に向か
う放射線は放射線遮蔽体14によって遮蔽されてしま
う。すなわち、被検体20へ照射される放射線は後方散
乱線のみとなる。The radiation emitted from the radiation source 12 is scattered by the scatterer 13 only.
The radiation is directed to the zero side, and the radiation directed directly toward the subject 20 is blocked by the radiation shield 14. That is, the radiation applied to the subject 20 is only backscattered radiation.
【0012】放射線源12としてCs−137を用いた
場合、放出ガンマ線のエネルギーのピークは662ke
Vであるが、これを散乱させると、エネルギースペクト
ルは図4のようになる。すなわち、散乱線は、エミッシ
ョンCT撮影時に用いる核種のエネルギーに近い、15
0keV〜300keV程度の低いエネルギー成分を有
するものとなる。When Cs-137 is used as the radiation source 12, the emission gamma ray has a peak energy of 662 ke.
V is scattered, and the energy spectrum is as shown in FIG. That is, the scattered radiation is close to the energy of the nuclide used in the emission CT imaging.
It has a low energy component of about 0 keV to 300 keV.
【0013】このような後方散乱線を被検体20に照射
したときの検出器30の出力をエネルギー分析器32に
導いて、入射エネルギーが所定のエネルギーウインドウ
に入っているものだけを取り出し、補正回路33で種々
の補正を施した後、収集メモリ34に格納してデータ収
集する。散乱線発生器10と検出器30とを被検体20
の周りに一体に回転させてこのデータ収集を行う。各方
向・位置のデータが揃ったら、演算装置35において逆
投影などのアルゴリズムで処理することにより、被検体
20の内部での吸収係数の分布マップを作成する。The output of the detector 30 when the object 20 is irradiated with such backscattered radiation is guided to an energy analyzer 32, and only those whose incident energy is within a predetermined energy window are taken out, and a correction circuit is provided. After performing various corrections in 33, the data is stored in the collection memory 34 and collected. The scattered radiation generator 10 and the detector 30 are
This data collection is performed by rotating it around the When the data of each direction and position is prepared, the arithmetic unit 35 performs processing by an algorithm such as back projection to create a distribution map of the absorption coefficient inside the subject 20.
【0014】エミッションCT撮影時には、被検体20
内に放射性核種で標識された薬剤を投与し、その内部の
核種から放出された放射線を検出器30で検出し、上記
と同様に検出器30を回転させてデータ収集し演算装置
35により核種の濃度分布を表す画像を再構成する。そ
の際に、上記の吸収マップを用い、吸収補正などを行な
う。At the time of emission CT imaging, the subject 20
A drug labeled with a radionuclide is administered therein, radiation emitted from the nuclide inside the nuclide is detected by the detector 30, the detector 30 is rotated in the same manner as described above, data is collected, and the nuclide An image representing the density distribution is reconstructed. At this time, absorption correction and the like are performed using the above absorption map.
【0015】このように、エネルギーが低い散乱線を利
用することにより半減期が30年と長いCs−137を
放射線源12として用いることができるようになり、放
射線源12は半永久的に使用できるようになるため、ラ
ンニングコスト削減の点で非常に効果的である。As described above, by utilizing scattered radiation having low energy, Cs-137 having a long half-life of 30 years can be used as the radiation source 12, and the radiation source 12 can be used semipermanently. Therefore, it is very effective in reducing running costs.
【0016】なお、散乱体13で散乱させることにより
エネルギーの低い散乱線を利用するようにしているた
め、他の、放出エネルギーが高くても半減期の長い、入
手し易い適当な核種を使用することもできる。また、散
乱体13や放射線遮蔽体14の形状・材質などは他のも
のとすることも可能である。ファンビームコリメータ3
1でなくて平行コリメータを用いることも可能である
が、その場合は散乱線発生器10を移動させる機構を設
けて被検体20の全面にスキャンさせるようにする。そ
の他、この発明の趣旨を逸脱しない範囲で種々に変更可
能である。Since low energy scattered radiation is used by scattering by the scatterer 13, other suitable nuclides which have a long half-life even with a high emission energy and are easily available are used. You can also. Further, the shape and material of the scatterer 13 and the radiation shield 14 may be different. Fan beam collimator 3
It is also possible to use a parallel collimator instead of 1, but in that case, a mechanism for moving the scattered radiation generator 10 is provided to scan the entire surface of the subject 20. In addition, various changes can be made without departing from the spirit of the present invention.
【0017】[0017]
【発明の効果】以上説明したように、この発明のトラン
スミッションCT装置によれば、エネルギーの低い散乱
線を利用するようにしているため、放出エネルギーは高
いが半減期の長い放射線源を使用できるようになる。す
なわち、放射線源は半永久的に使用できるようになるの
で、ランニングコストの面で非常に効果的である。As described above, according to the transmission CT apparatus of the present invention, since scattered radiation having low energy is used, a radiation source having high emission energy but a long half-life can be used. become. That is, since the radiation source can be used semi-permanently, it is very effective in terms of running cost.
【図1】この発明の実施の形態を示すブロック図。FIG. 1 is a block diagram showing an embodiment of the present invention.
【図2】散乱線発生器を概略的に示す斜視図。FIG. 2 is a perspective view schematically showing a scattered radiation generator.
【図3】図2のA−A線断面図。FIG. 3 is a sectional view taken along line AA of FIG. 2;
【図4】散乱線のエネルギースペクトルを示すグラフ。FIG. 4 is a graph showing an energy spectrum of scattered radiation.
10 散乱線発生器 11 後方散乱線 12 ライン状放射線源 13 箱状散乱体 14 放射線遮蔽体 20 被検体 30 検出器 31 ファンビームコリメータ 32 エネルギー分析器 33 補正回路 34 収集メモリ 35 演算装置 REFERENCE SIGNS LIST 10 scattered ray generator 11 backscattered rays 12 line-shaped radiation source 13 box-shaped scatterer 14 radiation shield 20 subject 30 detector 31 fan beam collimator 32 energy analyzer 33 correction circuit 34 collection memory 35 arithmetic unit
Claims (1)
散乱させる散乱体と、該散乱線のみが外部に放出され直
接線は放出されないように上記放射線源を覆う放射線遮
蔽体とからなる散乱線発生器を備え、該散乱線発生器を
被検体を挟んで放射線検出器と対向配置し、該放射線検
出器から得られる信号より上記被検体を透過した散乱線
による透過データを収集して演算装置によって吸収マッ
プを作成することを特徴とするトランスミッションCT
装置。1. A scatter comprising a radiation source, a scatterer for scattering radiation from the radiation source, and a radiation shield covering the radiation source so that only the scattered radiation is emitted to the outside and no direct radiation is emitted. A radiation generator is provided, and the scattered radiation generator is disposed to face the radiation detector with the subject interposed therebetween, and transmission data by the scattered radiation transmitted through the subject is collected and calculated from a signal obtained from the radiation detector. Transmission CT characterized in that an absorption map is created by an apparatus
apparatus.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9278200A JPH1199148A (en) | 1997-09-25 | 1997-09-25 | Transmission ct device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9278200A JPH1199148A (en) | 1997-09-25 | 1997-09-25 | Transmission ct device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1199148A true JPH1199148A (en) | 1999-04-13 |
Family
ID=17594002
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9278200A Pending JPH1199148A (en) | 1997-09-25 | 1997-09-25 | Transmission ct device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1199148A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003522576A (en) * | 2000-02-18 | 2003-07-29 | ウィリアム・ボーモント・ホスピタル | Cone beam computed tomography apparatus with flat panel imaging device |
US9192786B2 (en) | 2006-05-25 | 2015-11-24 | William Beaumont Hospital | Real-time, on-line and offline treatment dose tracking and feedback process for volumetric image guided adaptive radiotherapy |
US9498167B2 (en) | 2005-04-29 | 2016-11-22 | Varian Medical Systems, Inc. | System and methods for treating patients using radiation |
US9630025B2 (en) | 2005-07-25 | 2017-04-25 | Varian Medical Systems International Ag | Methods and apparatus for the planning and delivery of radiation treatments |
US9901750B2 (en) | 2002-12-18 | 2018-02-27 | Varian Medical Systems, Inc. | Multi-mode cone beam CT radiotherapy simulator and treatment machine with a flat panel imager |
US10004650B2 (en) | 2005-04-29 | 2018-06-26 | Varian Medical Systems, Inc. | Dynamic patient positioning system |
USRE46953E1 (en) | 2007-04-20 | 2018-07-17 | University Of Maryland, Baltimore | Single-arc dose painting for precision radiation therapy |
US10773101B2 (en) | 2010-06-22 | 2020-09-15 | Varian Medical Systems International Ag | System and method for estimating and manipulating estimated radiation dose |
-
1997
- 1997-09-25 JP JP9278200A patent/JPH1199148A/en active Pending
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8135111B2 (en) | 2000-02-18 | 2012-03-13 | William Beaumont Hospital | Cone beam computed tomography with a flat panel imager |
JP2013146637A (en) * | 2000-02-18 | 2013-08-01 | William Beaumont Hospital | Imaging system |
JP2003522576A (en) * | 2000-02-18 | 2003-07-29 | ウィリアム・ボーモント・ホスピタル | Cone beam computed tomography apparatus with flat panel imaging device |
US9901750B2 (en) | 2002-12-18 | 2018-02-27 | Varian Medical Systems, Inc. | Multi-mode cone beam CT radiotherapy simulator and treatment machine with a flat panel imager |
US11344748B2 (en) | 2002-12-18 | 2022-05-31 | Varian Medical Systems, Inc. | Multi-mode cone beam CT radiotherapy simulator and treatment machine with a flat panel imager |
US9498167B2 (en) | 2005-04-29 | 2016-11-22 | Varian Medical Systems, Inc. | System and methods for treating patients using radiation |
US10004650B2 (en) | 2005-04-29 | 2018-06-26 | Varian Medical Systems, Inc. | Dynamic patient positioning system |
US9974494B2 (en) | 2005-04-29 | 2018-05-22 | Varian Medical Systems, Inc. | System and methods for treating patients using radiation |
US9630025B2 (en) | 2005-07-25 | 2017-04-25 | Varian Medical Systems International Ag | Methods and apparatus for the planning and delivery of radiation treatments |
US9687678B2 (en) | 2005-07-25 | 2017-06-27 | Varian Medical Systems International Ag | Methods and apparatus for the planning and delivery of radiation treatments |
US9687673B2 (en) | 2005-07-25 | 2017-06-27 | Varian Medical Systems International Ag | Methods and apparatus for the planning and delivery of radiation treatments |
US9687677B2 (en) | 2005-07-25 | 2017-06-27 | Varian Medical Systems International Ag | Methods and apparatus for the planning and delivery of radiation treatments |
US9764159B2 (en) | 2005-07-25 | 2017-09-19 | Varian Medical Systems International Ag | Methods and apparatus for the planning and delivery of radiation treatments |
US9788783B2 (en) | 2005-07-25 | 2017-10-17 | Varian Medical Systems International Ag | Methods and apparatus for the planning and delivery of radiation treatments |
US9687676B2 (en) | 2005-07-25 | 2017-06-27 | Varian Medical Systems International Ag | Methods and apparatus for the planning and delivery of radiation treatments |
US9687675B2 (en) | 2005-07-25 | 2017-06-27 | Varian Medical Systems International Ag | Methods and apparatus for the planning and delivery of radiation treatments |
US9687674B2 (en) | 2005-07-25 | 2017-06-27 | Varian Medical Systems International Ag | Methods and apparatus for the planning and delivery of radiation treatments |
US11642027B2 (en) | 2005-07-25 | 2023-05-09 | Siemens Healthineers International Ag | Methods and apparatus for the planning and delivery of radiation treatments |
US10595774B2 (en) | 2005-07-25 | 2020-03-24 | Varian Medical Systems International | Methods and apparatus for the planning and delivery of radiation treatments |
US9192786B2 (en) | 2006-05-25 | 2015-11-24 | William Beaumont Hospital | Real-time, on-line and offline treatment dose tracking and feedback process for volumetric image guided adaptive radiotherapy |
USRE46953E1 (en) | 2007-04-20 | 2018-07-17 | University Of Maryland, Baltimore | Single-arc dose painting for precision radiation therapy |
US10773101B2 (en) | 2010-06-22 | 2020-09-15 | Varian Medical Systems International Ag | System and method for estimating and manipulating estimated radiation dose |
US11986671B2 (en) | 2010-06-22 | 2024-05-21 | Siemens Healthineers International Ag | System and method for estimating and manipulating estimated radiation dose |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4124804A (en) | Compton scatter scintillation camera system | |
Haidekker | Medical imaging technology | |
US3790785A (en) | Radiographic imaging | |
O'Malley et al. | Nuclear Medicine and Molecular Imaging: The Requisites E-Book: Nuclear Medicine and Molecular Imaging: The Requisites E-Book | |
CN101090668B (en) | X-ray imaging device | |
US7253416B2 (en) | Radiation detector and detection method, and medical diagnostic apparatus employing same | |
EP0106267A2 (en) | Apparatus for the diagnosis of body structures into which a gamma-emitting radioactive isotope has been introduced | |
JP5016180B2 (en) | X-ray image acquisition device | |
JP2004294114A (en) | Radiographic equipment | |
US8384015B2 (en) | Calibration source and methods for calibrating a nuclear medicine imaging system | |
JPH1199148A (en) | Transmission ct device | |
EP1645868A4 (en) | Gamma radiation imaging system for non-destructive inspection of the luggage | |
US6803580B2 (en) | Pet and spect systems with attenuation correction | |
Sawant et al. | Theoretical analysis and experimental evaluation of a CsI (Tl) based electronic portal imaging system | |
JP2006284346A (en) | Radiation tomographic device | |
JP3311043B2 (en) | Gamma camera | |
JP4003978B2 (en) | Positron emission tomography apparatus and control method for attenuation correction of emission data in positron emission tomography apparatus | |
CA2399289A1 (en) | A gamma-ray source for use in radiography | |
US20080013683A1 (en) | X-ray radiographing apparatus | |
JPH0457986B2 (en) | ||
JP3075647B2 (en) | Design method of X-ray inspection apparatus and X-ray inspection apparatus | |
US20040159791A1 (en) | Pet/spect nuclear scanner | |
JPH10319122A (en) | Radiation image pick-up device | |
US12025760B2 (en) | Radiation imaging apparatus and radiation imaging system | |
JPS61235782A (en) | Emission ct device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040420 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20050401 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20050401 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20050405 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20050406 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20050405 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050609 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20050609 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070226 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070515 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20071002 |