JPS61235782A - Emission ct device - Google Patents

Emission ct device

Info

Publication number
JPS61235782A
JPS61235782A JP7803085A JP7803085A JPS61235782A JP S61235782 A JPS61235782 A JP S61235782A JP 7803085 A JP7803085 A JP 7803085A JP 7803085 A JP7803085 A JP 7803085A JP S61235782 A JPS61235782 A JP S61235782A
Authority
JP
Japan
Prior art keywords
absorption
subject
detector
absorption coefficient
detectors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7803085A
Other languages
Japanese (ja)
Inventor
Takashi Ichihara
隆 市原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP7803085A priority Critical patent/JPS61235782A/en
Publication of JPS61235782A publication Critical patent/JPS61235782A/en
Pending legal-status Critical Current

Links

Landscapes

  • Nuclear Medicine (AREA)

Abstract

PURPOSE:To obtain a tomographic image which is quantitative by fitting a surface ray source having a nuclide different from RI (radioisotope) in a body to be detected to the 1st detector, calculating the coefficient of absorption of gamma rays on the basis of the gamma rays from the surface ray source which are detected by the 1st and the 2nd detectors, and correcting the absorption of the tomographic image of the object body by using the coefficient of absorption. CONSTITUTION:The surface ray source 10 having a nuclide different from the RI in the object body is fitted to the 1st detector 5. The gamma rays radiated by this surface source 10 are incident on the detector 5 through a parallel hole collimator 9 and also incident on the 2nd detector 6 through a parallel hole collimator 11, the object body P, and a collimator 12. The outputs of the detectors 5 and 6 are inputted to a data collection part 14, whose output is inputted to an arithmetic processing part 16 through a memory 15. This processing part 16 calculates the coefficient of absorption of the gamma rays by the object body P on the basis of the gamma rays radiated by the surface source 10 and corrects the tomographic image of the object body P by using the coefficient of absorption, so that the reconstitution result is displayed 18 through a memory 17.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は放射同位元素(以下rRIJという)を投与し
た被検体の回りに検出器を回転させることにより、放射
されるγ線を収集し、R1の体内分布の断層像を得るエ
ミッションCT装置に関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention collects emitted γ-rays by rotating a detector around a subject to whom a radioisotope (hereinafter referred to as rRIJ) has been administered. The present invention relates to an emission CT device that obtains tomographic images of the distribution in the body.

[発明の技術的背蹟とその問題点] 従来のエミッションCT装置は、例えばアンガー型のガ
ンマカメラを放射−線の検出器として使用し、この検出
器を被検体の周囲に段階的にあるいは連続的に回転して
、被検体から検出器の四転面におけるあらゆる方向に放
射されるγ線をこの検出器により検出、収集し、得られ
るすべての検出データを処理して被検体内の三次元的イ
メージを得ている。
[Technical background of the invention and its problems] Conventional emission CT devices use, for example, an Anger-type gamma camera as a radiation detector, and move this detector around the subject stepwise or continuously. This detector detects and collects gamma rays emitted from the object in all directions on the quadrature plane of the detector, and processes all the obtained detection data to detect the 3D image inside the object. I am getting a good image.

第4図はエミッションCT装置において投影データを得
る原理説明図である。
FIG. 4 is an explanatory diagram of the principle of obtaining projection data in an emission CT apparatus.

三次元的イメージを得るためのγ線の収集は、検出器3
と被検体Pとの間に平行孔コリメータ3を配置すること
により、検出面に垂直に入射するγ線だけを選択的に検
出している。これによって得られた投影像P (X、θ
)は次式で表される。
Collection of gamma rays to obtain a three-dimensional image is carried out by the detector 3.
By arranging the parallel hole collimator 3 between the object P and the subject P, only the gamma rays incident perpendicularly to the detection surface are selectively detected. The projection image P (X, θ
) is expressed by the following formula.

P(X。θ) =fA(x、 y)e  ”’ Y)d
Y・・・(1) (1)式において、 foe  ” ” Y)d Y      、(2)の
項を分離し、 P (X、θ) ”F f A(x、 y)d Y =
C・[3)とすべくμ(x、y)−一定とみなし、再構
成像全体に対して補正テーブルC(x、y)を求める。
P(X.θ) = fA(x, y)e ”' Y)d
Y... (1) In formula (1), separate the term foe `` '' Y) d Y , (2) and write P (X, θ) '' F f A (x, y) d Y =
In order to obtain C.[3], μ(x, y) is assumed to be constant, and a correction table C(x, y) is determined for the entire reconstructed image.

C(X、V)は次式のように表わされる。C(X, V) is expressed as shown below.

C(X、 V)−1/ (1/ (2π) f、exp(−μm12θ)dθ)
・・・(4) そして、このC(x、y)を用い、次式により吸収補正
したECT像(断層像)を得ている。
C(X, V)-1/ (1/ (2π) f, exp(-μm12θ) dθ)
(4) Then, using this C(x, y), an ECT image (tomographic image) is obtained which is absorption-corrected according to the following equation.

f (x、 V”) −f o (x、 V) ・C(
x、 V)    =(5)fo:吸収補正前の断層像 f :吸収補正後の断層像 しかしながら、前(5)式による吸収補正を行っても、
被検体P内での吸収係数の分布が一定でないことから、
適切なる吸収補正を行うことができず、このため、定量
性あるECI像が得られないという問題点がある。
f (x, V”) −f o (x, V) ・C(
x, V) = (5) fo: tomographic image before absorption correction f: tomographic image after absorption correction However, even if absorption correction is performed using equation (5),
Since the distribution of the absorption coefficient within the subject P is not constant,
There is a problem in that appropriate absorption correction cannot be performed, and therefore quantitative ECI images cannot be obtained.

[発明の目的] 本発明は上記事情に鑑みて成されたものであり、適切な
る吸収補正を行うことによって定量性あるECT像を得
ることができるエミッタ1ンCT装置の提供を目的とす
るものである。
[Object of the Invention] The present invention has been made in view of the above circumstances, and its purpose is to provide an emitter CT device that can obtain quantitative ECT images by performing appropriate absorption correction. It is.

[発明の概要] 上記目的を達成するための本発明の概要は、被検体を介
して相対向しつつ被検体の回りを回動すると共に、被検
体に投与された放射性同位元素より放射されるγ線を検
出可能な第1.第2の検出器を備え、この第1.第2の
検出器によって収集されたγ線情報を基に被検体の断層
像を得るエミッションCT装置において、前記被検体内
の放射性同位元素と異なる核種より成り、かつ、前記第
1の検出器前面に取り付けられた面線源と、前記第1.
第2の検出器によって検出されたところの前記面線源よ
りのγ線を基にγ線の吸収係数を棹出する吸収係数算出
手段と、この吸収係数算出手段によって算出された吸収
係数を用いて前記被検体の断層像の吸収補正を行う吸収
補正手段とを具備することを特徴とするものである。
[Summary of the Invention] The outline of the present invention for achieving the above object is to rotate around the subject while facing each other through the subject, and emit radiation from a radioactive isotope administered to the subject. The first one that can detect gamma rays. a second detector; In an emission CT device that obtains a tomographic image of a subject based on gamma ray information collected by a second detector, the first detector is made of a nuclide different from a radioisotope in the subject, and a surface radiation source attached to the first ray source;
Absorption coefficient calculation means for calculating the absorption coefficient of γ-rays based on the γ-rays from the surface ray source detected by the second detector, and using the absorption coefficient calculated by the absorption coefficient calculation means. and absorption correction means for performing absorption correction of the tomographic image of the subject.

[発明の実施例1 以下、本発明を実施例により具体的に説明する。[Embodiment 1 of the invention Hereinafter, the present invention will be specifically explained with reference to Examples.

第1図は本発明の一実施例たるエミッションCT装置の
ブロック図である。同図5は第1の検出器、6は第2の
検出器である。この第1.第2の検出器5,6は、被検
体Pを介して相対向しつつ被検体Pの回りを矢印7方向
に回動すると共に、被検体Pに投与されたR1より放射
されるγ線γi、γj等を検出するものであり、ガント
リ8に回動可能に支持されている。
FIG. 1 is a block diagram of an emission CT apparatus which is an embodiment of the present invention. 5 is a first detector, and 6 is a second detector. This first. The second detectors 5 and 6 rotate around the subject P in the direction of the arrow 7 while facing each other through the subject P, and the second detectors 5 and 6 rotate around the subject P in the direction of the arrow 7, and the γ rays γi emitted from the R1 administered to the subject P. , γj, etc., and is rotatably supported by the gantry 8.

前記第1の検出器5の前面には、第1の平行孔コリメー
タ91面線源10.第2の平行孔コリメータ11が取り
付けられている。前記面線源10は、被検体に投与され
るR1とは異なる核種より薄板状に形成されたものであ
る。
In front of the first detector 5, a first parallel hole collimator 91 and a plane radiation source 10. A second parallel hole collimator 11 is attached. The surface radiation source 10 is formed into a thin plate shape using a different nuclide from R1 to be administered to the subject.

この面線源10より放射されたγ線は第1の平行孔コリ
メータ9を介して第1の検出器5に入射し、また、第2
の平行孔コリメータ11.被検体P及び第3の−」リメ
ータ12を介して第2の検出器6に入射するように成っ
ている。
The γ-rays emitted from this surface ray source 10 enter the first detector 5 via the first parallel hole collimator 9, and also enter the first detector 5 through the first parallel hole collimator 9.
Parallel hole collimator 11. The light is made to enter the second detector 6 via the subject P and the third -'' remeter 12.

14は前記第1.第2の検出器5.6の出力すなわち、
X、Yアンプランク及びZ信号(γ線のエネルギに比例
する信@)を取り込むデータ収集部であり、A/D (
アナログ・ディジタル)変換器及び波高分析器を有して
構成されている。波高分析器は所定核種の光電ビークの
みを捕らえ、異なる核種毎に出力するものである。この
データ収集部14の出力は後段に配置されたメモリ15
内に、異なる核種毎に書き込まれるように成っている。
14 is the first. The output of the second detector 5.6, i.e.
This is a data collection unit that takes in the X, Y amplifier blanks and Z signals (signals proportional to the energy of γ-rays), and the A/D (
It consists of an analog/digital) converter and a pulse height analyzer. The pulse height analyzer captures only the photoelectric peak of a predetermined nuclide and outputs an output for each different nuclide. The output of this data collection unit 14 is stored in a memory 15 arranged at a subsequent stage.
It is designed to be written for each different nuclide.

16は前記メモリ15の記憶内容を基にデータのフィル
タ処理、逆投影処理、補正処理等の演算を行う演算処理
部であり、例えばCPLI (中央処理装置)などが適
用される(後に詳述する)。この演算処理部16の出力
は後段に配置されたメモリ17を介して表示部18の断
層像表示に供される。
Reference numeral 16 denotes an arithmetic processing unit that performs calculations such as data filter processing, back projection processing, correction processing, etc. based on the stored contents of the memory 15, and for example, a CPLI (central processing unit) is applied (described in detail later). ). The output of this arithmetic processing section 16 is provided to display a tomographic image on a display section 18 via a memory 17 arranged at a subsequent stage.

次に、前記演算処理部16の詳細について第2図を基に
説明する。
Next, details of the arithmetic processing section 16 will be explained based on FIG. 2.

第2図は本実施例装置における演算処理部の詳細を示す
ブロック図である。同図に示すようにこの演算処理部1
6は、機能的に、前記面線[10より放射されたγ線に
よる情報のフィルタ処理を行うフィルタ処理手段19と
、被検体P内のRIより放射されたγ線による情報のフ
ィルタ処理を行うフィルタ処理手段20と、前記フィル
タ処理手段19の出力を基にγ線の被検体Pにおける吸
収係数を算出する吸収係数算出手段21と、前記フィル
タ処理手段20の出力を基に逆投影処理を行うことによ
り被検体Pの断層像X(i、j)を再構成する逆投影処
理手段22と、この逆投影処理手段22よりの再構成像
に対して吸収補正を行う吸収補正手段23とを有して構
成される。
FIG. 2 is a block diagram showing details of the arithmetic processing section in the device of this embodiment. As shown in the figure, this arithmetic processing section 1
Functionally, filter processing means 19 performs filter processing of information using γ rays emitted from the plane line [10], and filter processing means 19 performs filter processing of information using γ rays emitted from the RI within the subject P. A filter processing means 20, an absorption coefficient calculation means 21 that calculates the absorption coefficient of the gamma ray in the subject P based on the output of the filter processing means 19, and a back projection process based on the output of the filter processing means 20. The present invention includes a back projection processing means 22 for reconstructing a tomographic image X(i, j) of the subject P, and an absorption correction means 23 for performing absorption correction on the reconstructed image from the back projection processing means 22. It is composed of

ここに、前記吸収係数算出手段21における吸収係数μ
の算出は次式により表される。
Here, the absorption coefficient μ in the absorption coefficient calculation means 21 is
The calculation of is expressed by the following formula.

μ=−j!n  (1/Io  )         
  ・・・(6)(6)式において、Ioは第1図に示
すように、面線源10より放射され、かつ、被検体P透
過前のγ線強度であり、また、Iは被検体P透過後のγ
線強度である。第1.第2の平行孔]リメータ9゜11
の感度比をΔとすれば、 It=Δ・Io         ・・・(刀なる関係
より、面線源10より放射され、かつ、第1の検出器5
によって検出されたγ線強度■1をもって10に代える
ことができる。故にミ前(6)式は次式の如く変形する
ことができる。
μ=-j! n (1/Io)
(6) In equation (6), Io is the intensity of γ-rays emitted from the surface ray source 10 and before passing through the object P, as shown in FIG. γ after passing through P
It is line strength. 1st. Second parallel hole] Remeter 9゜11
If the sensitivity ratio of
The gamma ray intensity detected by 1 can be replaced with 10. Therefore, the equation (6) can be transformed as shown in the following equation.

μ−−1n<Δ・I/11)     ・・・(8)前
記吸収補正手段23は、前記吸収係数算出手段21より
の吸収係数を基に第3図に示すような吸収係数の分布像
M(X、V)を作成する。M(x、y)は次式のように
表される。
μ−1n<Δ·I/11) (8) The absorption correction means 23 calculates an absorption coefficient distribution image M as shown in FIG. 3 based on the absorption coefficient from the absorption coefficient calculation means 21. Create (X, V). M(x, y) is expressed as in the following equation.

M (X、 V>−1/ (1/ (2π) feXp(−μ(X、 V)・Jl
o ) dθ)・・・(9) そして、作成された分布像M(x、y)より吸収係t′
XlマトリクスM(i、j)を作成し、このM(i、j
)により、前記逆投影処理手段22よりの再構成像の吸
収補正を行う。吸収補正は次式によって表される。
M (X, V>-1/ (1/ (2π) feXp(-μ(X, V)・Jl
o) dθ)...(9) Then, from the created distribution image M(x, y), the absorption coefficient t'
Create an Xl matrix M(i,j), and this M(i,j
), the absorption correction of the reconstructed image from the back projection processing means 22 is performed. The absorption correction is expressed by the following equation.

X’ (i、 j)=X(i、 j)・M(i、 j)
   ・・・(ト)X’ (t、 j):吸収補正後の
再構成像以上構成において、第1.第2の検出器5,6
によって検出されたX、Yアンプランク及び2信号は、
データ収集部14により取り込まれ、ディジタル信号に
変換された後、異なる核種毎にメモリ15に書き込まれ
る。面線源10より放射されたγ線による情報は、フィ
ルタ処理手段19を介して吸収係数算出手段21に入力
され、前(8)式の演算実行によりγ線の被検体Pにお
ける吸収係数μの算出に供される。
X' (i, j)=X(i, j)・M(i, j)
... (g) X' (t, j): Reconstructed image after absorption correction In the above configuration, the first. Second detector 5, 6
The X, Y amplifier blanks and 2 signals detected by
The data is captured by the data collection unit 14, converted into a digital signal, and then written into the memory 15 for each different nuclide. Information on the γ-rays emitted from the surface ray source 10 is input to the absorption coefficient calculation means 21 via the filter processing means 19, and the absorption coefficient μ of the γ-rays in the subject P is calculated by executing the calculation of the above equation (8). Provided for calculation.

一方、被検体P内のR1より放射されたγ線による情報
は、フィルタ処理手段20を介して逆投影処理手段22
に入力され、逆投影処理による再構成像X(i、 j)
の作成に供される。
On the other hand, information on the γ rays emitted from R1 in the subject P is transmitted to the back projection processing means 22 via the filter processing means 20.
and reconstructed image X(i, j) by back projection processing.
used for the creation of

前記吸収係数算出手段21によって算出された吸収係数
を基に吸収補正手段23は前(9)式の演算実行により
吸収係数の分布111+M(x、 y)を作成し、作成
した分布像M(x、y)より吸収係数マトリクスM(i
、j)を作成し、前(財)式の演算実行により再構成画
像の吸収補正を行う。吸収補正後の再構成像X’ (i
、 j)はメモリ17を介して表示部18に表示される
Based on the absorption coefficient calculated by the absorption coefficient calculation means 21, the absorption correction means 23 creates an absorption coefficient distribution 111+M(x, y) by executing the calculation of the previous equation (9), and the created distribution image M(x , y), the absorption coefficient matrix M(i
, j), and performs absorption correction on the reconstructed image by executing the calculation of the previous equation. Reconstructed image X' (i
, j) are displayed on the display unit 18 via the memory 17.

このように本実施例装置にあっては、被検体P内のR1
と異なる核種の面線源10を第1の検出器5の前面に取
り付け、この面線源10より放射されたR1を第1の検
出器5で検出すると共に、被検体Pを介して第2の検出
器6で検出し、この検出結果を基にγ線の被検体Pによ
る吸収係数を算出するものであるから、トランスエミッ
ションCTデータの収集時に正しい吸収係数の分布を得
ることができ、再構成像の適切なる吸収補正を行うこと
ができるので、定敞性あるE CT像を得ることができ
る。また、面線源10より放射されたγ線を第2の平行
孔コリメータ11で平行ビームに絞り、この平行ビーム
を被検体Pに向って照射するものであるから、得られた
吸収係数は被検体Pでの散乱線をもある程度加味された
ものとなりこの結果、散乱線の再構成像への影響をも同
時に低減することができる。
In this way, in the device of this embodiment, R1 in the subject P
A surface radiation source 10 of a different nuclide is attached to the front surface of the first detector 5, and R1 emitted from the surface radiation source 10 is detected by the first detector 5, and is also detected by the second detector 5 through the subject P. Since the absorption coefficient of gamma rays by the subject P is calculated based on the detection result, it is possible to obtain the correct distribution of absorption coefficients when collecting transemission CT data, and it is easy to reuse. Since appropriate absorption correction can be performed on the constituent images, a consistent ECT image can be obtained. In addition, since the gamma rays emitted from the surface ray source 10 are focused into a parallel beam by the second parallel hole collimator 11 and the parallel beam is irradiated toward the subject P, the obtained absorption coefficient depends on the subject P. The scattered radiation from the specimen P is also taken into account to some extent, and as a result, the influence of the scattered radiation on the reconstructed image can be reduced at the same time.

尚、被検体P内のRIより放射されたγ線を第1の検出
器5によって検出する場合に、面線源10によるγ線の
吸収を無視できる程度に少な(するため、面線源10の
厚みはできる限り薄くするのが好ましく、また、第2の
平行孔コリメータ11として、第1.第3の平行孔コリ
メータ9.12に比して感度の十分大きいものを適用す
れば、被検体P内のR1より放射されたγ線に対する第
1、第2の検出器5.6の感度差を十分小さくすること
ができる。
Note that when the first detector 5 detects γ-rays emitted from the RI in the subject P, the absorption of γ-rays by the surface ray source 10 is negligibly small (so that the surface ray source 10 It is preferable to make the thickness as thin as possible, and if the second parallel hole collimator 11 has sufficiently higher sensitivity than the first and third parallel hole collimators 9 and 12, it is possible to The difference in sensitivity between the first and second detectors 5.6 for the γ-rays emitted from R1 in P can be made sufficiently small.

以上、本発明の一実施例について説明したが、本発明は
上記実施例に限定されるものではなく、本発明の要旨の
範囲内で適宜に変形実施が可能であるのはいうまでもな
い。
Although one embodiment of the present invention has been described above, it goes without saying that the present invention is not limited to the above-mentioned embodiment, and can be modified as appropriate within the scope of the gist of the present invention.

[発明の効果] 以上詳述したように本発明によれば、適切なる吸収補正
を行うことによって定量性あるECT像を得ることがで
きるエミッションCT装置を提供することができる。
[Effects of the Invention] As detailed above, according to the present invention, it is possible to provide an emission CT apparatus that can obtain quantitative ECT images by performing appropriate absorption correction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例たるエミッションCT装置の
ブロック図、第2図は本実施例装置における演算処理部
の詳細を示すブロック図、第3図は本実施例装置におけ
る吸収係数の分布像を示す説明図、第4図はエミッショ
ンCT装置において投影データを得る原理説明図である
。 5・・・第1の検出器、6・・・第2の検出器、10・
・・面線源、 21・・・吸収係数算出手段、23・・
・吸収補正手段、P・・・被検体。 \、 −二″
FIG. 1 is a block diagram of an emission CT device that is an embodiment of the present invention, FIG. 2 is a block diagram showing details of the arithmetic processing section in the device of this embodiment, and FIG. 3 is a distribution of absorption coefficients in the device of this embodiment. FIG. 4 is a diagram explaining the principle of obtaining projection data in an emission CT apparatus. 5... first detector, 6... second detector, 10.
... Surface radiation source, 21 ... Absorption coefficient calculation means, 23 ...
- Absorption correction means, P...subject. \, -2″

Claims (1)

【特許請求の範囲】[Claims] 被検体を介して相対向しつつ被検体の回りを回動すると
共に、被検体に投与された放射性同位元素より放射され
るγ線を検出可能な第1、第2の検出器を備え、この第
1、第2の検出器によって収集されたγ線情報を基に被
検体の断層像を得るエミッションCT装置において、前
記被検体内の放射性同位元素と異なる核種より成り、か
つ、前記第1の検出器前面に取り付けられた面線源と、
前記第1、第2の検出器によって検出されたところの前
記面線源よりのγ線を基にγ線の吸収係数を算出する吸
収係数算出手段と、この吸収係数算出手段によって算出
された吸収係数を用いて前記被検体の断層像の吸収補正
を行う吸収補正手段とを具備することを特徴とするエミ
ッションCT装置。
The first and second detectors are equipped with first and second detectors that rotate around the subject while facing each other through the subject and are capable of detecting gamma rays emitted from a radioactive isotope administered to the subject. In an emission CT apparatus that obtains a tomographic image of a subject based on gamma ray information collected by first and second detectors, the first A surface radiation source attached to the front of the detector,
absorption coefficient calculation means for calculating an absorption coefficient of γ-rays based on the γ-rays from the surface ray source detected by the first and second detectors; and absorption coefficient calculation means calculated by the absorption coefficient calculation means. An emission CT apparatus comprising: absorption correction means for performing absorption correction of the tomographic image of the subject using coefficients.
JP7803085A 1985-04-11 1985-04-11 Emission ct device Pending JPS61235782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7803085A JPS61235782A (en) 1985-04-11 1985-04-11 Emission ct device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7803085A JPS61235782A (en) 1985-04-11 1985-04-11 Emission ct device

Publications (1)

Publication Number Publication Date
JPS61235782A true JPS61235782A (en) 1986-10-21

Family

ID=13650410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7803085A Pending JPS61235782A (en) 1985-04-11 1985-04-11 Emission ct device

Country Status (1)

Country Link
JP (1) JPS61235782A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5600145A (en) * 1995-01-19 1997-02-04 Picker International, Inc. Emission/transmission device for use with a dual head nuclear medicine gamma camera with the transmission source located behind the emission collimator
US5834780A (en) * 1996-05-29 1998-11-10 Picker International, Inc. Scanning line source for gamma camera
WO2001022120A1 (en) * 1999-09-17 2001-03-29 Cti Pet Systems, Inc. Transmission attenuation correction method for pet and spect
US6329657B1 (en) * 1998-05-01 2001-12-11 Cti Pet Systems, Inc. Coincidence transmission source

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5600145A (en) * 1995-01-19 1997-02-04 Picker International, Inc. Emission/transmission device for use with a dual head nuclear medicine gamma camera with the transmission source located behind the emission collimator
US5834780A (en) * 1996-05-29 1998-11-10 Picker International, Inc. Scanning line source for gamma camera
US6060712A (en) * 1996-05-29 2000-05-09 Picker International, Inc. Scanning line source for gamma camera
US6329657B1 (en) * 1998-05-01 2001-12-11 Cti Pet Systems, Inc. Coincidence transmission source
US6429434B1 (en) * 1998-05-01 2002-08-06 Charles C. Watson Transmission attenuation correction method for PET and SPECT
WO2001022120A1 (en) * 1999-09-17 2001-03-29 Cti Pet Systems, Inc. Transmission attenuation correction method for pet and spect

Similar Documents

Publication Publication Date Title
US8008625B2 (en) Method and apparatus for high-sensitivity single-photon emission computed tomography
Phelps et al. Physics in nuclear medicine
Levin Primer on molecular imaging technology
JP3128634B2 (en) Simultaneous transmission and emission focused tomography
Knoll Single-photon emission computed tomography
EP0106267A2 (en) Apparatus for the diagnosis of body structures into which a gamma-emitting radioactive isotope has been introduced
US7253416B2 (en) Radiation detector and detection method, and medical diagnostic apparatus employing same
US6175116B1 (en) Hybrid collimation and coincidence imager for simultaneous positron and single photon imaging
US20100118027A1 (en) Method and measuring arrangement for producing three-dimensional images of measuring objects by means of invasive radiation
JPH0720245A (en) Positron ct
JPH10268052A (en) Method and device for forming image
JP2535762B2 (en) Simultaneous Scattering Counting Method with Gamma Absorber in Positron Tomography Equipment and Positron Tomography Equipment
EP2783240B1 (en) Gantry-free spect system
JPS5892974A (en) Radiation type computer-aided tomograph
JP2001013251A (en) METHOD AND DEVICE FOR DETERMINING INCIDENCE DIRECTION OF gamma RAY FROM TRACE IMAGE OF BOUNCING ELECTRON BY MSGC
JPS61235782A (en) Emission ct device
JPH1199148A (en) Transmission ct device
JP3313495B2 (en) Nuclear medicine instrument system
JP3881403B2 (en) Nuclear medicine diagnostic equipment
JP4071765B2 (en) Nuclear medicine diagnostic equipment
US20040159791A1 (en) Pet/spect nuclear scanner
JP3610655B2 (en) Positron ECT device
JPH08304309A (en) Method for forming distribution diagram for radiation dose of material body after correction for attenuation caused by material body thereof
JPS6385481A (en) Bed absorption corrector
JP3604470B2 (en) Positron CT apparatus and image reconstruction method thereof