JPH1198840A - Pwm cyclo-converter and its drive method - Google Patents

Pwm cyclo-converter and its drive method

Info

Publication number
JPH1198840A
JPH1198840A JP25251797A JP25251797A JPH1198840A JP H1198840 A JPH1198840 A JP H1198840A JP 25251797 A JP25251797 A JP 25251797A JP 25251797 A JP25251797 A JP 25251797A JP H1198840 A JPH1198840 A JP H1198840A
Authority
JP
Japan
Prior art keywords
power supply
voltage
output
circuit
pwm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25251797A
Other languages
Japanese (ja)
Other versions
JP3824189B2 (en
Inventor
Sadao Ishii
佐田夫 石井
Giyoujiyuu Ka
暁戎 夏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP25251797A priority Critical patent/JP3824189B2/en
Publication of JPH1198840A publication Critical patent/JPH1198840A/en
Application granted granted Critical
Publication of JP3824189B2 publication Critical patent/JP3824189B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ac-Ac Conversion (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cyclo-converter which is free of mis-commutation in the case that detection precision and time delay of a voltage comparison circuit, or waveform distortion in a power source voltage are present. SOLUTION: In this converter, each phase of an AC power source 1 is connected directly with each phase of the output side, by using bilateral switches 10-18 having self arc-extinguishing capability, an AC power source voltage is PWM-controlled in accordance with an output voltage command, and an arbitrary AC voltage and DC voltage are outputted. Each of the bilateral switches 10-18 is constituted by combining two single-direction semiconductor switches, and can be turned on and off independently of each other. A current direction detecting circuit 7 discriminates the direction of currents flowing in the bilateral switches 10-18. A commutation sequence switching circuit 5 changes over the arc-extinguishing sequence of the switches 10-18, in such a manner that the power source short-circuit and output opening are not generated, on the basis of the outputs of the current direction detecting circuit 7, a PWM command, and the logic state of other gate signals driving the forward direction semiconductor switches in the same output phase.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、交流電源の各相と
出力側の各々の相を自己消弧能力をもつ双方向スイッチ
で直接接続し、出力電圧指令に応じて交流電源電圧をP
WM制御し、任意の交流及び直流電圧を出力するPWM
サイクロコンバータおよびその駆動方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a direct connection between each phase of an AC power supply and each phase on the output side by a bidirectional switch having a self-extinguishing ability, and to change an AC power supply voltage to P in accordance with an output voltage command.
PWM that performs WM control and outputs arbitrary AC and DC voltages
The present invention relates to a cycloconverter and a driving method thereof.

【0002】[0002]

【従来の技術】第1の従来のPWMサイクロコンバータ
を図6に基づいて説明する。図中1は交流電源、2は交
流ラインフィルタ、3は電源電圧検出回路群、4はゲー
トドライブ回路、5は転流シーケンス切り替え回路群、
6はコントローラ、8は交流電動機、9は双方向スイッ
チモジュール、10〜18は双方向スイッチ、19は電
源電圧比較回路である。コントローラ6は出力電圧指令
を受けると、電源電圧を検出しながらどの双方向スイッ
チを点弧するか判断してPWM指令を転流シーケンス切
り替え回路群5に渡す。このとき、理想的に双方向スイ
ッチ10〜18のスイッチングが同時に行われれば、電
流スパイクや電圧スパイクは発生しないが、実際には双
方向スイッチのばらつきなどがあり同時にスイッチング
されることはない。そこで電源電圧比較器19により、
各々の相電圧の大小関係を比較し、最大電圧、中間電
圧、最小電圧に分類して、転流シーケンス切り替え回路
群5にその情報を送る。転流シーケンス切り替え回路群
5はPWM指令と電圧比較情報より電源電圧の大きい相
から小さい相への転流(モード1)であるか、電源電圧
の小さい相から大きい相への転流(モード2)であるか
の判別を行い、各々のモードにおける転流シーケンスで
ゲート信号を発生する。ゲートドライバはゲート信号を
受け取り、双方向スイッチ10〜18に前記ゲート信号
と絶縁された信号を送り双方向スイッチ10〜18を駆
動する。各々のモードでの転流シーケンスを図7に示
す。
2. Description of the Related Art A first conventional PWM cycloconverter will be described with reference to FIG. In the figure, 1 is an AC power supply, 2 is an AC line filter, 3 is a power supply voltage detection circuit group, 4 is a gate drive circuit, 5 is a commutation sequence switching circuit group,
6 is a controller, 8 is an AC motor, 9 is a bidirectional switch module, 10 to 18 are bidirectional switches, and 19 is a power supply voltage comparison circuit. When receiving the output voltage command, the controller 6 determines which bidirectional switch is to be fired while detecting the power supply voltage, and passes the PWM command to the commutation sequence switching circuit group 5. At this time, if the switching of the bidirectional switches 10 to 18 is performed at the same time, current spikes and voltage spikes do not occur. However, the switching is not actually performed at the same time due to variations in the bidirectional switches. Therefore, the power supply voltage comparator 19
The magnitude relation of each phase voltage is compared, classified into the maximum voltage, the intermediate voltage, and the minimum voltage, and the information is sent to the commutation sequence switching circuit group 5. According to the PWM command and the voltage comparison information, the commutation sequence switching circuit group 5 performs commutation from a phase with a large power supply voltage to a small phase (mode 1) or commutation from a phase with a small power supply voltage to a large phase (mode 2) ), And a gate signal is generated in the commutation sequence in each mode. The gate driver receives the gate signal and sends a signal insulated from the gate signal to the bidirectional switches 10 to 18 to drive the bidirectional switches 10 to 18. FIG. 7 shows a commutation sequence in each mode.

【0003】次に、第2の従来例としては特公平4−1
0312号公報に記載されたサイクロコンバータがあ
る。これは、交流電源の各相に、アノードが交流電源に
接続された第1半導体制御素子およびアノードが前記第
1半導体制御素子のカソードに接続された第1ダイオー
ドからなる第1直列回路と、カソードが前記交流電源に
接続された第2半導体制御素子およびカソードが前記第
2半導体制御素子のアノードに接続された第2ダイオー
ドからなり前記第1直列回路に逆方向に並列に設けられ
た第2直列回路とを設け、かつ、各相の前記第1ダイオ
ードのカソードに受電端が接続された負荷と、各相の前
記両ダイオードの両端電圧を検出し前記負荷を流れる各
相それぞれの電流の極性反転時に発生する電圧パルスを
検知して検知信号を出力する検出部と、各相の前記検知
信号により各相それぞれの前記両半導体制御素子の導通
を交互に切り換える切換部とを備えたものである。
Next, as a second conventional example, Japanese Patent Publication No.
There is a cycloconverter described in JP-A-0312. This includes a first series circuit including, for each phase of the AC power supply, a first semiconductor control element having an anode connected to the AC power supply and a first diode having an anode connected to the cathode of the first semiconductor control element; A second series connected to the AC power supply and a second diode having a cathode connected to the anode of the second semiconductor control element and provided in parallel with the first series circuit in a reverse direction. And a load having a power receiving end connected to the cathode of the first diode of each phase, and a polarity inversion of a current of each phase flowing through the load by detecting a voltage across both diodes of each phase. A detection unit that detects a voltage pulse generated at the time and outputs a detection signal, and a switching unit that alternately switches the conduction of the two semiconductor control elements of each phase by the detection signal of each phase. It is obtained by a part.

【0004】[0004]

【発明が解決しようとする課題】ところが、第1の従来
例では電圧比較回路の検出精度や時間遅れなどのため、
特に電源電圧が負から正へ切り替わるところで転流の失
敗を起こしやすかった。また、電源電圧が歪み波形であ
る場合も同様に転流の失敗を引き起こす。また第2の従
来例においては、素子に流れる電流の方向が必要なPW
Mサイクロコンバータについては適用できない。そこで
本発明は、電圧比較回路の検出精度や時間遅れ、あるい
は電源電圧が歪み波形である場合にも転流の失敗がな
く、さらに素子に流れる電流の方向が必要なサイクロコ
ンバータにおいても適用できるサイクロコンバータおよ
びその駆動方法を提供することを目的とする。
However, in the first conventional example, the detection accuracy of the voltage comparison circuit and the time delay are disadvantageous.
In particular, commutation failure was likely to occur when the power supply voltage switched from negative to positive. In addition, commutation failure also occurs when the power supply voltage has a distorted waveform. Also, in the second conventional example, the direction of the current flowing through the element requires a PW
Not applicable for M cycloconverter. Therefore, the present invention can be applied to a cycloconverter which does not fail in commutation even when the detection accuracy and time delay of the voltage comparison circuit or the power supply voltage has a distorted waveform and further requires the direction of the current flowing through the element. It is an object to provide a converter and a driving method thereof.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、交流電源の各相と出力側の各々の相を自
己消弧能力をもつ双方向スイッチで直接接続し、出力電
圧指令に応じて交流電源電圧をPWM制御し、任意の交
流及び直流電圧を出力するPWMサイクロコンバータに
おいて、前記双方向スイッチが、片方向半導体スイッチ
を2個組み合わせた構成で、かつ各々が独立にオン・オ
フできる構成とし、前記双方向スイッチに流れる電流の
方向を判別する電流方向検出回路と、前記電流方向検出
回路の出力と、PWM指令と、同一出力相内の順方向半
導体スイッチを駆動する他のゲート信号を取り込み、こ
れらの信号の論理状態に基づき、電源短絡及び出力開放
が起きないように、前記双方向スイッチの点弧順序を切
り替える転流シーケンス切り替え回路とを備えたもので
ある。上記手段により、スイッチに流れる電流の方向を
直接検出し、転流シーケンスを切り替えるため、誤動作
のない安定したPWMサイクロコンバータによるドライ
ブシステムを実現できる。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention relates to a method in which each phase of an AC power supply and each phase on the output side are directly connected by a bidirectional switch having a self-extinguishing ability, and an output voltage is controlled. In a PWM cycloconverter that performs PWM control of an AC power supply voltage in accordance with a command and outputs an arbitrary AC and DC voltage, the bidirectional switch has a configuration in which two one-way semiconductor switches are combined, and each is independently turned on. A configuration that can be turned off, a current direction detection circuit that determines a direction of a current flowing through the bidirectional switch, an output of the current direction detection circuit, a PWM command, and driving of a forward semiconductor switch in the same output phase. And a commutation switch for switching the firing order of the bidirectional switches based on the logic state of these signals so that power supply short circuit and output opening do not occur. It is obtained by a Nsu switching circuit. By the means described above, the direction of the current flowing through the switch is directly detected and the commutation sequence is switched, so that a drive system using a stable PWM cycloconverter without malfunction can be realized.

【0006】[0006]

【発明の実施の形態】以下、本発明の実施例を図に基づ
いて説明する。図1は本発明を示すブロック図である。
図中1は交流電源、2は交流ラインフィルタ、3は電源
電圧検出回路、4はゲートドライブ回路、5は転流シー
ケンス切り替え回路群、6はコントローラ、7は電流方
向検出回路群、8は交流電動機、9は双方向スイッチモ
ジュール、10〜18は双方向スイッチである。本実施
例は、交流電源1の各相と出力側の各々の相を自己消弧
能力をもつ双方向スイッチ10〜18で直接接続し、出
力電圧指令に応じて交流電源電圧をPWM制御し、任意
の交流及び直流電圧を出力するPWMサイクロコンバー
タであり、片方向半導体スイッチTr1〜Tr9とこれ
らと逆接続されたダイオードD1〜D9および片方向半
導体スイッチTr1’〜Tr9’とこれらと逆接続され
たダイオードD1’〜D9’を対向直列に接続した双方
向スイッチ10〜18を有する。本実施例では、双方向
スイッチの構成を以上のようにしたが、図2(a)のよ
うに、2つのトランジスタを単に逆接続したもの、図2
(b)のように逆流阻止ダイオードを接続したもの、あ
るいは図2(c)に示すようにトランジスタ保護ダイオ
ードをエミッタ・コレクタ間に接続したものなどを使用
することもできる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing the present invention.
In the figure, 1 is an AC power supply, 2 is an AC line filter, 3 is a power supply voltage detection circuit, 4 is a gate drive circuit, 5 is a commutation sequence switching circuit group, 6 is a controller, 7 is a current direction detection circuit group, and 8 is AC. An electric motor, 9 is a bidirectional switch module, and 10 to 18 are bidirectional switches. In this embodiment, each phase of the AC power supply 1 and each phase on the output side are directly connected by the bidirectional switches 10 to 18 having self-extinguishing ability, and the AC power supply voltage is PWM-controlled according to the output voltage command. This is a PWM cycloconverter that outputs arbitrary AC and DC voltages, and is one-way semiconductor switches Tr1 to Tr9, diodes D1 to D9 reversely connected thereto, and one-way semiconductor switches Tr1 ′ to Tr9 ′ and reversely connected thereto. It has bidirectional switches 10 to 18 in which diodes D1 'to D9' are connected in opposing series. In the present embodiment, the configuration of the bidirectional switch is as described above. However, as shown in FIG.
As shown in FIG. 2B, a diode having a reverse current blocking diode connected thereto, or a transistor having a transistor protection diode connected between an emitter and a collector as shown in FIG. 2C can also be used.

【0007】図1に示す双方向スイッチ10〜18に
は、双方向スイッチ10〜18に流れる電流の方向を判
別する電流方向検出回路群7が接続され、また、電流方
向検出回路群7の出力と、PWM指令と同一出力相内の
順方向半導体スイッチを駆動する他のゲート信号を取り
込み、電流方向検出回路群7と前記PWM指令と前記同
一出力相内の順方向半導体スイッチを駆動する他のゲー
ト信号の状態により、双方向スイッチ10〜18の点弧
順序を切り替える転流シーケンス切り替え回路5とを備
えている。前記電流方向検出回路群7は、図3に示すよ
うに電流方向検出回路21a〜21c・・・からなって
おり、双方向スイッチ10〜18の両端に第1、第2の
ダイオード30のカソード側を接続し、前記第1、第2
のダイオード30のアノード側は抵抗R1,R2を介し
て、絶縁された直流電源Bの+側を接続し、第1のダイ
オード30のアノードと第2のダイオード30のアノー
ドの電位差を検出し、双方向スイッチ10〜18に流れ
る電流の方向を判別する。
The bidirectional switches 10 to 18 shown in FIG. 1 are connected to a current direction detection circuit group 7 for determining the direction of the current flowing through the bidirectional switches 10 to 18. And another gate signal for driving the forward direction semiconductor switch in the same output phase as the PWM command, and the current direction detection circuit group 7 and another signal for driving the forward direction semiconductor switch in the same output phase as the PWM command. A commutation sequence switching circuit 5 that switches the firing order of the bidirectional switches 10 to 18 according to the state of the gate signal. The current direction detection circuit group 7 includes current direction detection circuits 21a to 21c... As shown in FIG. And the first and second
The anode side of the diode 30 is connected to the + side of the insulated DC power supply B via the resistors R1 and R2, and the potential difference between the anode of the first diode 30 and the anode of the second diode 30 is detected. The direction of the current flowing through the direction switches 10 to 18 is determined.

【0008】出力1相あたりの回路ブロック図である図
3において、図中20a,20b,20c・・・は転流
シーケンス切り替え回路、21a,21b,21c・・
・は電流方向検出回路、22a,22b,22c・・・
は1スイッチあたりのゲートドライブ回路で、それぞれ
双方向スイッチ10,11,12・・・と同数設ける。
双方向スイッチ10の両端T1,T1’及び双方向スイ
ッチ内トランジスタTr1,Tr1’の接続点E1と電
流方向検出回路21を接続する。電流方向検出回路21
の出力Z1は転流シーケンス切り替え回路20に入力さ
れる。また、転流シーケンス切り替え回路20にはコン
トローラ6からPWM指令C1、同一出力相内の順方向
トランジスタTr1,Tr2,Tr3に入力される他の
スイッチのゲート信号G1,G2,G3も入力され、転
流シーケンスを切り替える。転流シーケンス切り替え回
路20からは、同一双方向スイッチ内の順方向、逆方向
トランジスタTr1,Tr1’を駆動するゲート信号G
1,G1’が出力され双方向スイッチ10を駆動する。
同一出力相内の他の双方向スイッチ11,12も同様な
回路構成となっている。
In FIG. 3 which is a circuit block diagram for one output phase, reference numerals 20a, 20b, 20c... Denote commutation sequence switching circuits, 21a, 21b, 21c,.
.. Are current direction detection circuits, 22a, 22b, 22c,.
Are gate drive circuits per switch, and are provided in the same number as the bidirectional switches 10, 11, 12,.
The current direction detection circuit 21 is connected to both ends T1 and T1 'of the bidirectional switch 10 and a connection point E1 of the transistors Tr1 and Tr1' in the bidirectional switch. Current direction detection circuit 21
Is input to the commutation sequence switching circuit 20. The commutation sequence switching circuit 20 also receives the PWM command C1 from the controller 6 and the gate signals G1, G2, G3 of the other switches input to the forward transistors Tr1, Tr2, Tr3 in the same output phase. Switch the flow sequence. The commutation sequence switching circuit 20 outputs a gate signal G for driving the forward and reverse transistors Tr1 and Tr1 'in the same bidirectional switch.
1, G1 'is output to drive the bidirectional switch 10.
The other bidirectional switches 11 and 12 in the same output phase have the same circuit configuration.

【0009】次に、必要となる転流シーケンスを図5に
基づいて説明する。電流が電源電圧1から交流電動機8
に流れている場合には図5(a)のシーケンス、電流が
交流電動機8から電源電圧1に流れている場合には図5
(b)のシーケンスを選択する。このとき、双方向スイ
ッチ10をONする場合は同一出力相内の他の双方向ス
イッチ11,12の電流方向、双方向スイッチ10をO
FFする場合にはOFFしようとする双方向スイッチ1
0の電流方向に対する情報が必要であることがわかる。
具体的には、交流電源1より交流電動機8に電流が流れ
ている場合(図5(a))にはまずTr1’を「OF
F」とする。このとき、交流電動機8に流れる電流はT
r1を通して流れているので電流を遮断することはな
い。次にTr2を「ON」とする。このとき電源電圧が
V1>V2の場合にはTr1を介した実線のループを電
流が流れ、V2>V1の場合にはTr2を介した破線の
ループを電流が流れTr1からTr2へ転流する。次に
Tr1を「ON」とするが、V1>V2のときはこの時
点でTr1からTr2への転流が起きる。最後にTr
2’を「ON」として転流を完了する。次に、交流電動
機8より交流電源1に電流が流れている場合(図5
(b))にはまずTr1を「OFF」とする。このと
き、交流電動機8に流れる電流はTr1’を通して流れ
ているので電流を遮断することはない。次にTr2’を
「OFF」とする。このとき電源電圧がV1<V2の場
合にはTr1’を介した実線のループを電流が流れ、V
2<V1の場合にはTr2’を介した破線のループを電
流が流れTr1からTr2へ転流する。次にTr1を
「OFF」とするが、V1<V2のときはこの時点でT
r1からTr2への転流が起きる。最後にTr2を「O
N」として転流を完了する。以上の転流シーケンスを用
いることで、電流を遮断することなく、かつ、電源短絡
を起こさないで、転流することができる。
Next, a necessary commutation sequence will be described with reference to FIG. The current is changed from the power supply voltage 1 to the AC motor 8
5A when the current is flowing from the AC motor 8 to the power supply voltage 1 when the current is flowing from the AC motor 8 to the power supply voltage 1.
(B) The sequence is selected. At this time, when turning on the bidirectional switch 10, the current directions of the other bidirectional switches 11 and 12 in the same output phase and the bidirectional switch 10
Bi-directional switch 1 to be turned off when flipping
It can be seen that information on the current direction of 0 is required.
Specifically, when a current is flowing from the AC power supply 1 to the AC motor 8 (FIG. 5A), Tr1 'is first set to "OF".
F ". At this time, the current flowing through AC motor 8 is T
Since the current flows through r1, the current is not interrupted. Next, Tr2 is turned “ON”. At this time, when the power supply voltage is V1> V2, a current flows through a solid loop through Tr1, and when V2> V1, a current flows through a broken loop through Tr2, and commutates from Tr1 to Tr2. Next, Tr1 is turned “ON”. When V1> V2, commutation from Tr1 to Tr2 occurs at this time. Finally Tr
The commutation is completed by setting 2 ′ to “ON”. Next, when a current flows from the AC motor 8 to the AC power supply 1 (FIG. 5).
In (b)), Tr1 is first turned “OFF”. At this time, since the current flowing through the AC motor 8 flows through Tr1 ', the current is not interrupted. Next, Tr2 'is set to "OFF". At this time, if the power supply voltage is V1 <V2, a current flows through a solid line loop via Tr1 ′, and
When 2 <V1, a current flows through a loop indicated by a broken line via Tr2 ′ and commutates from Tr1 to Tr2. Next, Tr1 is set to “OFF”. When V1 <V2, T1 is set at this time.
A commutation from r1 to Tr2 occurs. Finally, change Tr2 to "O
N ”to complete the commutation. By using the above commutation sequence, commutation can be performed without interrupting a current and without causing a power supply short circuit.

【0010】次に電流方向検出回路21と転流シーケン
ス切り替え回路20について、図4を用いて説明する。
電流方向検出回路21内の28は制御側電源と主回路と
を絶縁するためのフォトカプラ、29は比較器、30は
第1、第2のダイオード、31は絶縁電源である。第
1、第2のダイオード30のカソードは双方向スイッチ
10の両端T1,T1’に接続される。また、絶縁電源
31の中点は双方向スイッチ内トランジスタの接続点E
1に接続される。第1、第2のダイオード30のアノー
ド側は抵抗を介して絶縁電源31の+側及び、比較器2
9の入力に接続される。比較器29の出力はフォトカプ
ラ28内の発光ダイオードのカソードに接続され、比較
器29の出力がLO(ローレベル)のときフォトカプラ
28のトランジスタは導通状態で電流方向検出器21の
出力Z1はLOとなる。動作について説明すると、双方
向スイッチ10が開のときは、第1、第2のダイオード
30のアノードの電位は絶縁電源31の+側電位に固定
され、第1、第2のダイオード30のアノード電位差は
ゼロである。このとき、電流方向検出器21の出力Z1
はHI(ハイレベル)である。双方向スイッチ10が閉
のときは第1,第2のダイオード30のアノード電位は
それぞれのカソードが接続されている端子の電位(双方
向スイッチの両端T1,T1’の電位)に固定される。
電流の流れる方向でアノード電位差の極性が変化するた
め、電流方向検出器21の出力Z1はHIまたは、LO
となり電流方向を検出できる。電流方向検出器21の出
力Z1は電流が電源電圧1から交流電動機8に流れると
きLO、逆に、交流電動機8から電源側に電流が流れる
とき及び、双方向スイッチ10が開のときHIとなる。
Next, the current direction detecting circuit 21 and the commutation sequence switching circuit 20 will be described with reference to FIG.
Reference numeral 28 in the current direction detection circuit 21 denotes a photocoupler for insulating the control-side power supply from the main circuit, 29 denotes a comparator, 30 denotes first and second diodes, and 31 denotes an insulated power supply. The cathodes of the first and second diodes 30 are connected to both ends T1 and T1 'of the bidirectional switch 10. The middle point of the insulated power supply 31 is the connection point E of the transistor in the bidirectional switch.
Connected to 1. The anode side of the first and second diodes 30 is connected to the + side of the insulated power supply 31 and the comparator 2 via a resistor.
9 inputs. The output of the comparator 29 is connected to the cathode of the light emitting diode in the photocoupler 28. When the output of the comparator 29 is LO (low level), the transistor of the photocoupler 28 is conductive and the output Z1 of the current direction detector 21 is It becomes LO. In operation, when the bidirectional switch 10 is open, the potentials of the anodes of the first and second diodes 30 are fixed to the positive potential of the insulated power supply 31, and the potential difference between the anodes of the first and second diodes 30 is set. Is zero. At this time, the output Z1 of the current direction detector 21
Is HI (high level). When the bidirectional switch 10 is closed, the anode potentials of the first and second diodes 30 are fixed to the potentials of the terminals to which the respective cathodes are connected (the potentials at both ends T1 and T1 'of the bidirectional switch).
Since the polarity of the anode potential difference changes in the direction in which the current flows, the output Z1 of the current direction detector 21 becomes HI or LO.
And the current direction can be detected. The output Z1 of the current direction detector 21 becomes LO when the current flows from the power supply voltage 1 to the AC motor 8, and becomes HI when the current flows from the AC motor 8 to the power supply side and when the bidirectional switch 10 is opened. .

【0011】次に、転流シーケンス切り替え回路20に
ついて説明する。転流シーケンス切り替え回路20内の
25はゲート信号選択回路、26はモード切替回路、2
7は遅延信号発生回路である。モード切替回路26には
同一出力相内の双方向スイッチ10,11,12の順方
向トランジスタTr1,Tr2,Tr3のゲート信号G
1,G2,G3、電流方向検出信号Z1、PWM指令C
1が入力される。出力同一相内の双方向スイッチ10,
11,12の順方向トランジスタTr1,Tr2,Tr
3のゲート信号G1,G2,G3の状態から出力同一相
内の双方向スイッチ10,11,12の電流方向を判断
する。PWM指令C1がHIのとき電流方向信号Pは出
力同一相内の双方向スイッチ10,11,12の順方向
トランジスタTr1,Tr2,Tr3のゲート信号G
1,G2,G3の論理和Gを選択し、PWM指令C1が
LOのとき電流方向検出信号Z1を選択する。次に、遅
延信号発生回路27にはPWM指令C1が入力され、出
力として第1、第2のゲート信号A,Bを発生する。第
1のゲート信号Aは立ち上がり時PWM指令C1に対し
て3ΔTだけ遅れ、立ち下がり時には、PWM指令C1
と同期する。また、第2のゲート信号Bは立ち上がり時
PWM指令C1に対してΔTだけ遅れ、立ち下がり時2
ΔTだけ遅れる。ゲート信号選択回路25には第1、第
2のゲート信号A、B及びモード切替信号Pが入力さ
れ、順方向側トランジスタTr1のゲート信号G1、及
び逆方向側トランジスタTr1’のゲート信号G1’を
出力する。モード切り替え信号Pによって、順方向側ト
ランジスタTr1のゲート信号G1、及び逆方向側トラ
ンジスタTr1’のゲート信号G1’を第1のゲート信
号Aとするか、第2のゲート信号Bとするかを選択す
る。以上のようにして、転流シーケンスを決定する。こ
のような転流シーケンスを用いることで、電流を遮断す
ることなく、かつ、電源短絡を起こさないで、転流する
ことができる。
Next, the commutation sequence switching circuit 20 will be described. 25 in the commutation sequence switching circuit 20 is a gate signal selection circuit, 26 is a mode switching circuit,
7 is a delay signal generation circuit. The mode switching circuit 26 has a gate signal G of the forward transistors Tr1, Tr2, Tr3 of the bidirectional switches 10, 11, 12 in the same output phase.
1, G2, G3, current direction detection signal Z1, PWM command C
1 is input. Bidirectional switch 10 in the same output phase,
11, 12 forward transistors Tr1, Tr2, Tr
The current direction of the bidirectional switches 10, 11, and 12 in the same output phase is determined from the states of the gate signals G1, G2, and G3 of the third. When the PWM command C1 is HI, the current direction signal P is the gate signal G of the forward transistors Tr1, Tr2, Tr3 of the bidirectional switches 10, 11, 12 in the same output phase.
The logical sum G of 1, G2 and G3 is selected, and the current direction detection signal Z1 is selected when the PWM command C1 is LO. Next, the PWM command C1 is input to the delay signal generation circuit 27, and first and second gate signals A and B are generated as outputs. The first gate signal A is delayed by 3ΔT from the PWM command C1 at the time of rising, and the PWM command C1 is delayed at the time of falling.
Sync with Also, the second gate signal B is delayed by ΔT from the PWM command C1 at the time of rising,
Delay by ΔT. The first and second gate signals A and B and the mode switching signal P are input to the gate signal selection circuit 25, and the gate signal selection circuit 25 converts the gate signal G1 of the forward transistor Tr1 and the gate signal G1 'of the reverse transistor Tr1'. Output. The mode switching signal P selects whether the gate signal G1 of the forward transistor Tr1 and the gate signal G1 ′ of the reverse transistor Tr1 ′ are the first gate signal A or the second gate signal B. I do. The commutation sequence is determined as described above. By using such a commutation sequence, commutation can be performed without interrupting a current and without causing a power supply short circuit.

【0012】[0012]

【発明の効果】以上述べたように、本発明によれば、双
方向スイッチに流れる電流の方向を直接検出し、転流シ
ーケンスを切り替えるため、誤動作のない安定したPW
Mサイクロコンバータによるドライブシステムを実現で
きる。
As described above, according to the present invention, since the direction of the current flowing through the bidirectional switch is directly detected and the commutation sequence is switched, a stable PW without malfunction is provided.
A drive system using an M cyclo converter can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施例を示すブロック図である。FIG. 1 is a block diagram showing an embodiment of the present invention.

【図2】 双方向スイッチの各種例を示す回路図であ
る。
FIG. 2 is a circuit diagram showing various examples of a bidirectional switch.

【図3】 本発明の実施例を示すブロック図である。FIG. 3 is a block diagram showing an embodiment of the present invention.

【図4】 本発明の実施例を示す回路図である。FIG. 4 is a circuit diagram showing an embodiment of the present invention.

【図5】 転流シーケンスを示す動作原理図である。FIG. 5 is an operation principle diagram showing a commutation sequence.

【図6】 従来の実施例を示すブロック図である。FIG. 6 is a block diagram showing a conventional example.

【図7】 従来の転流シーケンス動作原理図である。FIG. 7 is a diagram illustrating the principle of operation of a conventional commutation sequence.

【符号の説明】[Explanation of symbols]

1 交流電源、2 交流ラインフイルタ、3 電源電圧
検出回路、4 ゲートドライバ、5 転流シーケンス切
り替え回路群、6 コントローラ、7 電流方向検出回
路群、8 交流電動機、9 双方向スイッチモジュー
ル、10〜18 双方向スイッチ、19 電源電圧比較
回路、20 転流シーケンス切り替え回路、21 電流
方向検出回路、22 1スイッチあたりのゲートドライ
ブ回路、23遅延回路(2ΔT)、24 遅延回路(Δ
T)、25 ゲート信号選択回路、26 モード切替回
路、27 遅延信号発生回路、28 フォトカプラ、2
9比較器、30 第1,第2ダイオード、31 絶縁電
源、Tr1〜Tr3 順方向トランジスタ、Tr1’〜
Tr3’ 逆方向トランジスタ、T1−T3 双方向ス
イッチの電源側端子、T1’〜T3’ 双方向スイッチ
の負荷側端子、E1〜E3 順方向及び逆方向トランジ
スタの接続点、P モード切替信号、Z1〜Z3 電流
方向検出信号、G1〜G3 順方向トランジスタのゲー
ト信号、G1’〜G3’ 逆方向トランジスタのゲート
信号、C1〜C3 PWM指令、G同一出力相内順方向
トランジスタのゲート信号の論理和、A 第1のゲート
信号、B 第2のゲート信号
REFERENCE SIGNS LIST 1 AC power supply, 2 AC line filter, 3 power supply voltage detection circuit, 4 gate driver, 5 commutation sequence switching circuit group, 6 controller, 7 current direction detection circuit group, 8 AC motor, 9 bidirectional switch module, 10 to 18 Bidirectional switch, 19 power supply voltage comparison circuit, 20 commutation sequence switching circuit, 21 current direction detection circuit, 22 gate drive circuit per switch, 23 delay circuit (2ΔT), 24 delay circuit (Δ
T), 25 gate signal selection circuit, 26 mode switching circuit, 27 delay signal generation circuit, 28 photocoupler, 2
9 comparators, 30 first and second diodes, 31 insulated power supply, Tr1 to Tr3 forward transistors, Tr1 'to
Tr3 'Reverse transistor, T1-T3 Power supply side terminal of bidirectional switch, T1'-T3' Load side terminal of bidirectional switch, E1-E3 Connection point of forward and reverse transistors, P mode switching signal, Z1 Z3 current direction detection signal, G1 to G3 forward transistor gate signal, G1 'to G3' reverse transistor gate signal, C1 to C3 PWM command, GOR of gate signals of forward transistors in the same output phase, A First gate signal, B Second gate signal

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 交流電源の各相と出力側の各々の相を自
己消弧能力をもつ双方向スイッチで直接接続し、出力電
圧指令に応じて交流電源電圧をPWM制御し、任意の交
流及び直流電圧を出力するPWMサイクロコンバータに
おいて、 前記双方向スイッチが、片方向半導体スイッチを2個組
み合わせた構成で、かつ各々が独立にオン・オフできる
構成とし、 前記双方向スイッチに流れる電流の方向を判別する電流
方向検出回路と、 前記電流方向検出回路の出力と、PWM指令と、同一出
力相内の順方向半導体スイッチを駆動する他のゲート信
号を取り込み、これらの信号の論理状態に基づき、電源
短絡及び出力開放が起きないように、前記双方向スイッ
チの点弧順序を切り替える転流シーケンス切り替え回路
とを備えたことを特徴とするPWMサイクロコンバー
タ。
An AC power supply is directly connected to each phase of an AC power supply with a bidirectional switch having a self-extinguishing ability, and the AC power supply voltage is PWM-controlled according to an output voltage command. In a PWM cycloconverter that outputs a DC voltage, the bidirectional switch has a configuration in which two one-way semiconductor switches are combined, and each of the bidirectional switches can be turned on and off independently. A current direction detection circuit for determining, an output of the current direction detection circuit, a PWM command, and another gate signal for driving a forward semiconductor switch in the same output phase; A commutation sequence switching circuit for switching a firing order of the bidirectional switch so that a short circuit and an output open do not occur. Cyclo converter.
【請求項2】 交流電源の各相と出力側の各々の相を自
己消弧能力をもつ双方向スイッチで直接接続し、出力電
圧指令に応じて交流電源電圧をPWM制御し、任意の交
流及び直流電圧を出力するPWMサイクロコンバータの
駆動方法において、 前記PWMサイクロコンバータに、片方向半導体スイッ
チを2個組み合わせ、かつ独立にオン・オフできる構成
の双方向スイッチと、前記双方向スイッチに流れる電流
の方向を判別する電流方向検出回路とを備え、 前記電流方向検出回路の出力とPWM指令と同一出力相
内の順方向半導体スイッチを駆動する他のゲート信号を
取り込み、これらの信号の論理状態に基づき、電源短絡
及び出力開放が起きないように、前記双方向スイッチの
点弧順序を切り替えることを特徴とするPWMサイクロ
コンバータの駆動方法。
2. An AC power supply and each phase on the output side are directly connected by a bidirectional switch having a self-extinguishing ability, and the AC power supply voltage is PWM-controlled in accordance with an output voltage command. A method of driving a PWM cycloconverter that outputs a DC voltage, comprising: a bidirectional switch configured to combine two unidirectional semiconductor switches with the PWM cycloconverter and to be able to be turned on and off independently; A current direction detection circuit for discriminating the direction, taking in the output of the current direction detection circuit and another gate signal for driving the forward direction semiconductor switch in the same output phase as the PWM command, based on the logic state of these signals. Cycloconverter for switching the firing order of the bidirectional switch so that power supply short-circuit and output opening do not occur. Method of driving a motor.
JP25251797A 1997-09-17 1997-09-17 PWM cycloconverter and driving method thereof Expired - Lifetime JP3824189B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25251797A JP3824189B2 (en) 1997-09-17 1997-09-17 PWM cycloconverter and driving method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25251797A JP3824189B2 (en) 1997-09-17 1997-09-17 PWM cycloconverter and driving method thereof

Publications (2)

Publication Number Publication Date
JPH1198840A true JPH1198840A (en) 1999-04-09
JP3824189B2 JP3824189B2 (en) 2006-09-20

Family

ID=17238479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25251797A Expired - Lifetime JP3824189B2 (en) 1997-09-17 1997-09-17 PWM cycloconverter and driving method thereof

Country Status (1)

Country Link
JP (1) JP3824189B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005304130A (en) * 2004-04-08 2005-10-27 Fuji Electric Holdings Co Ltd Controller of direct converter
JP2005348479A (en) * 2004-06-01 2005-12-15 Yaskawa Electric Corp Pwm cycloconverter and its control method
JP2006014550A (en) * 2004-06-29 2006-01-12 Fuji Electric Holdings Co Ltd Controller of ac/ac direct converter
JP2006158063A (en) * 2004-11-29 2006-06-15 Yaskawa Electric Corp Pwm cycloconverter and control method therefor
JP2006280063A (en) * 2005-03-29 2006-10-12 Fuji Electric Holdings Co Ltd Controller of ac/ac direct power converter
US7577009B2 (en) 2004-06-01 2009-08-18 Kabushiki Kaisha Yaskawa Denki PWM cycloconverter and control method for PWM cycloconverter
JP2013013224A (en) * 2011-06-29 2013-01-17 Sumitomo Electric Ind Ltd Bidirectional switch

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005304130A (en) * 2004-04-08 2005-10-27 Fuji Electric Holdings Co Ltd Controller of direct converter
JP2005348479A (en) * 2004-06-01 2005-12-15 Yaskawa Electric Corp Pwm cycloconverter and its control method
US7577009B2 (en) 2004-06-01 2009-08-18 Kabushiki Kaisha Yaskawa Denki PWM cycloconverter and control method for PWM cycloconverter
JP4604557B2 (en) * 2004-06-01 2011-01-05 株式会社安川電機 PWM cycloconverter and control method thereof
JP2006014550A (en) * 2004-06-29 2006-01-12 Fuji Electric Holdings Co Ltd Controller of ac/ac direct converter
JP4600731B2 (en) * 2004-06-29 2010-12-15 富士電機ホールディングス株式会社 Control device for AC / AC direct conversion device
JP2006158063A (en) * 2004-11-29 2006-06-15 Yaskawa Electric Corp Pwm cycloconverter and control method therefor
JP4591761B2 (en) * 2004-11-29 2010-12-01 株式会社安川電機 PWM cycloconverter and control method thereof
JP2006280063A (en) * 2005-03-29 2006-10-12 Fuji Electric Holdings Co Ltd Controller of ac/ac direct power converter
JP4724844B2 (en) * 2005-03-29 2011-07-13 富士電機株式会社 AC / AC direct power converter controller
JP2013013224A (en) * 2011-06-29 2013-01-17 Sumitomo Electric Ind Ltd Bidirectional switch

Also Published As

Publication number Publication date
JP3824189B2 (en) 2006-09-20

Similar Documents

Publication Publication Date Title
JP3681374B2 (en) Current detection device and PWM inverter using the same
US20190363706A1 (en) Transistor drive circuit and motor drive control apparatus
US6535406B1 (en) Three-level inverter controller reducing commutation loop inductance
JP2002526013A (en) Step-down choke converter
US4890009A (en) Monolithic integrated circuit device
JP2717542B2 (en) Circuit and method for controlling a MOS transistor bridge
JP2011041467A (en) Method for correcting voltage balance of power storage system, and power storage system
US20050122754A1 (en) Half-bridge driver and power conversion system with such driver
JP2000312143A (en) Switching device
US6909620B2 (en) Inverter configurations with shoot-through immunity
CN111313734B (en) Active neutral point clamped three-level converter, operating method and control device thereof
WO2015064222A1 (en) Semiconductor device
JPH0923664A (en) Inverter device
JP4687839B2 (en) 3-phase power supply phase loss detection circuit
JPH1198840A (en) Pwm cyclo-converter and its drive method
US7586352B2 (en) Converter having a time-delay circuit for PWM signals
CN116667713B (en) Motor pre-driving circuit and motor control system
JP2001061276A (en) Pwm cyclo-converter, and breaker circuit and method
CN111106742B (en) Driving circuit for switch
CN110299696B (en) T-shaped three-level converter and short-circuit protection circuit thereof
US6208541B1 (en) PWM inverter apparatus
JPH0715949A (en) Gate driving circuit for power converter
US20200412235A1 (en) Voltage source converters
JP2004096826A (en) Switching power supply
JP3226084B2 (en) Power transistor overcurrent limiting circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060622

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130707

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140707

Year of fee payment: 8

EXPY Cancellation because of completion of term