JPH11968A - Rubber molded form - Google Patents
Rubber molded formInfo
- Publication number
- JPH11968A JPH11968A JP15700597A JP15700597A JPH11968A JP H11968 A JPH11968 A JP H11968A JP 15700597 A JP15700597 A JP 15700597A JP 15700597 A JP15700597 A JP 15700597A JP H11968 A JPH11968 A JP H11968A
- Authority
- JP
- Japan
- Prior art keywords
- rubber
- ethylene
- propylene
- molded product
- insulating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Laminated Bodies (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、電力ケーブルの中
間接続部や終端接続部を形成する、絶縁層と導電層のよ
うな2層以上の複合一体化構造を有するゴム成形品(ゴ
ムモールド)に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rubber molded article (rubber mold) having a composite integrated structure of two or more layers, such as an insulating layer and a conductive layer, for forming an intermediate connection portion and a terminal connection portion of a power cable. About.
【0002】[0002]
【従来の技術】電力ケーブルの中間接続部や終端接続部
には、接続部材としてゴムモールド接続部品が用いられ
る。この部品に用いられるゴム成形品の例としては、接
続部品の型などによって異なるが、例えば、ストレスコ
ーン、絶縁筒、π型もしくはT型成形品等がある。これ
を図面に基づいて説明すると、図1はストレスコーン、
図2は絶縁筒、図3はπ型のゴム成形品であり、それぞ
れ断面図で示してある。図1において、1は導電層、2
は絶縁層を示す。図2及び3において、11が内部導電
層、12が絶縁層、13が外部導電層である。図1〜3
において4は接続するケーブル又はシースを剥いたケー
ブルの貫挿孔である。図1〜3のいずれのゴム成形品に
おいても、導電性ゴムよりなる導電層と絶縁性ゴムより
なる絶縁層は複合一体化した構造を有している。2. Description of the Related Art Rubber-moulded connection parts are used as connection members in intermediate connection portions and terminal connection portions of power cables. Examples of the rubber molded product used for this component are different depending on the type of the connection component, and include, for example, a stress cone, an insulating cylinder, a π-type or T-type molded product, and the like. This will be described with reference to the drawings. FIG. 1 shows a stress cone,
FIG. 2 shows an insulating cylinder, and FIG. 3 shows a π-type rubber molded product, each of which is shown in a sectional view. In FIG. 1, 1 is a conductive layer, 2
Indicates an insulating layer. 2 and 3, reference numeral 11 denotes an internal conductive layer, 12 denotes an insulating layer, and 13 denotes an external conductive layer. Figures 1-3
Is a through hole for a cable to be connected or a cable with a sheath removed. In any of the rubber molded products shown in FIGS. 1 to 3, the conductive layer made of conductive rubber and the insulating layer made of insulating rubber have a composite integrated structure.
【0003】このようなゴム成形品においては、ベース
ゴムとして非極性で電気絶縁性に優れているエチレン・
プロピレン共重合体(EPM)またはエチレン・プロピ
レン・ジエン共重合体(EPDM)が用いられている。
このベースゴムに、導電性物質又は絶縁性物質を添加し
て導電ゴム又は絶縁ゴムとして用いられている。このゴ
ム成形品においては前記のように導電層と絶縁層とが複
合一体化していることが必要であり、引張強度などの強
度などばかりでなく両層間の接着性が重要である。両層
間の接着が弱く、剥離が生じると、その部分に電界が集
中し、接続部品に破壊を生じる。この問題はゴム成形品
に屈折部を有するπ型もしくはT型成形品(分岐部を有
する成形品)の場合は特に顕著となる。例えば図3に示
す成形品において、内部導電層、絶縁層及び外部導電層
は、A部で90°に屈曲した状態で各層が積層されてお
り、この部分にはゴム架橋成形時の成形圧力がかかりに
くい。そのため、各層間の接着力が弱く、層間の界面剥
離を生じやすくなり、この部分から破壊を生じやすい。
しかし、このような問題に対して、従来のゴム材料は十
分対応できなかった。例えば、EPMをベースゴムとし
た導電ゴム又は絶縁ゴム材料を用いた場合、絶縁ゴム層
と導電ゴム層間の接着は非常に強固であるが、絶縁ゴム
材料の引張強度が低く、電力ケーブルの接続部品材料と
して必要な引張強度を満足しないという問題があった。
一方、EPDMをベースゴムとした導電ゴム又は絶縁ゴ
ムの材料を用いた場合、引張強度は高く、電力ケーブル
の接続部品材料として必要な基準は十分に満足するが、
絶縁ゴム層と導電ゴム層間の接着力が低く、両層界面で
剥離を生じるという問題があった。[0003] In such a rubber molded product, ethylene rubber which is non-polar and has excellent electrical insulation properties is used as a base rubber.
Propylene copolymer (EPM) or ethylene propylene diene copolymer (EPDM) is used.
A conductive substance or an insulating substance is added to this base rubber to be used as a conductive rubber or an insulating rubber. In this rubber molded product, it is necessary that the conductive layer and the insulating layer are combined and integrated as described above, and not only the strength such as tensile strength but also the adhesiveness between both layers are important. If the adhesion between the two layers is weak and the separation occurs, the electric field concentrates on that portion, and the connection component is broken. This problem is particularly remarkable in the case of a π-type or T-type molded product having a bent portion in a rubber molded product (a molded product having a branched portion). For example, in the molded product shown in FIG. 3, the inner conductive layer, the insulating layer, and the outer conductive layer are laminated in a state in which the layers are bent at 90 ° at the portion A, and the molding pressure at the time of rubber crosslinking molding is applied to this portion. It is hard to take. Therefore, the adhesive strength between the layers is weak, and the interface between the layers is apt to be peeled off.
However, conventional rubber materials could not sufficiently cope with such a problem. For example, when a conductive rubber or an insulating rubber material using EPM as a base rubber is used, the adhesion between the insulating rubber layer and the conductive rubber layer is very strong, but the tensile strength of the insulating rubber material is low, and the connecting parts of the power cable are used. There was a problem that the tensile strength required as a material was not satisfied.
On the other hand, when a material of conductive rubber or insulating rubber using EPDM as a base rubber is used, the tensile strength is high, and the standard required as a connection component material of a power cable is sufficiently satisfied.
There is a problem that the adhesive force between the insulating rubber layer and the conductive rubber layer is low, and separation occurs at the interface between the two layers.
【0004】[0004]
【発明が解決しようとする課題】したがって本発明は、
引張強度が大きく、絶縁ゴム層と導電ゴム層のように2
層以上に複合一体化した場合に、2層間の接着力が大き
いゴム成形品を提供することを目的とする。さらに本発
明は、絶縁ゴム層と導電ゴム層のように2層以上に複合
一体化してなり、2層間の接着力が大きく、両層間の界
面剥離を生じにくく、引張強度が高い、電力ケーブルの
接続部品用として好適なゴム成形品を提供することを目
的とする。Accordingly, the present invention provides
It has high tensile strength.
It is an object of the present invention to provide a rubber molded product having a large adhesive strength between two layers when the composite is integrally formed in layers. Further, the present invention is a composite of a power cable having two or more layers, such as an insulating rubber layer and a conductive rubber layer, having a large adhesive strength between the two layers, hardly causing interface separation between the two layers, and having a high tensile strength. An object of the present invention is to provide a rubber molded product suitable for connection parts.
【0005】[0005]
【課題を解決するための手段】本発明者らは上記の従来
の電力ケーブル接続部品用ゴム成形品の欠点を克服する
ため種々検討を重ねた結果、エチレン・プロピレン共重
合体とエチレン・プロピレン・ジエン共重合体とを所定
の比率で混合してなるベースゴムを用いたゴム組成物を
化学架橋処理して膨潤度を150〜350%としたゴム
材を用いることにより、絶縁ゴム層と導電ゴム層間の接
着を非常に強固にすることができ、上記目的を達成しう
ることを見い出し、この知見に基づき本発明をなすに至
った。すなわち本発明は、(1)エチレン・プロピレン
共重合体70〜98重量%とエチレン・プロピレン・ジ
エン共重合体2〜30重量%とを含有するベースゴムよ
りなるゴム組成物を化学架橋処理して膨潤度を150〜
350%としたゴム材同士を複合一体化してなることを
特徴とするゴム成形品、及び(2)電力ケーブルの中間
接続部ないしは終端接続部品に用いられ、ゴム材が絶縁
層と導電層の複合一体化構造を有することを特徴とする
(1)項記載のゴム成形品を提供するものである。Means for Solving the Problems The inventors of the present invention have conducted various studies to overcome the above-mentioned drawbacks of the conventional rubber molded product for power cable connecting parts, and as a result, have found that ethylene-propylene copolymer and ethylene-propylene By using a rubber material having a swelling degree of 150 to 350% by chemically crosslinking a rubber composition using a base rubber obtained by mixing a diene copolymer with a predetermined ratio, the insulating rubber layer and the conductive rubber It has been found that the adhesion between the layers can be made very strong and the above object can be achieved, and the present invention has been made based on this finding. That is, the present invention provides (1) a rubber composition comprising a base rubber containing 70 to 98% by weight of an ethylene / propylene copolymer and 2 to 30% by weight of an ethylene / propylene / diene copolymer by chemically crosslinking. Swelling degree 150 ~
A rubber molded product characterized by combining and integrating 350% of rubber materials, and (2) a rubber material used for an intermediate connection part or a terminal connection part of a power cable, wherein the rubber material is a composite of an insulating layer and a conductive layer. The present invention provides a rubber molded product according to the above (1), which has an integrated structure.
【0006】本発明において膨潤度は、下記式(1)に
より定められるものである。In the present invention, the degree of swelling is determined by the following equation (1).
【0007】[0007]
【数1】 (Equation 1)
【0008】式中、W1は幅15mm以下、長さ40m
m以下、厚み2mm以下の架橋処理したゴムの試験片を
シクロヘキサン溶剤800mlに浸漬し、常温で48時
間放置した後の試験片の質量であり、W2は次いで前記
試験片を80℃で18時間以上真空乾燥させた後の試験
片の質量である。本発明において「複合一体化する」と
は、ゴム層の2層以上が剥離を起こさないように強固に
接着してゴム成形品を構成していることをいう。In the formula, W1 is 15 mm or less in width and 40 m in length.
m or less, the test piece of the crosslinked rubber having a thickness of 2 mm or less is immersed in 800 ml of cyclohexane solvent, and is the mass of the test piece after being left at room temperature for 48 hours. W2 is the above test piece at 80 ° C. for 18 hours or more. It is the mass of the test piece after vacuum drying. In the present invention, "composite and integral" means that two or more rubber layers are firmly adhered so as not to cause peeling to form a rubber molded product.
【0009】[0009]
【発明の実施の形態】本発明においてはエチレン・プロ
ピレン共重合体(EPM)とエチレン・プロピレン・ジ
エン共重合体(EPDM)の混合ゴムを用いる。エチレ
ン・プロピレン共重合体は単独では、エチレン・プロピ
レン・ジエン共重合体に比して架橋密度が低く、架橋さ
せたゴム材料の膨潤度は350%を越える。一方、エチ
レン・プロピレン・ジエン共重合体が単独では、架橋さ
せた場合は架橋密度が高く、膨潤度が150%未満とな
るため、上記の混合物を用いる。また、本発明に用いる
EPMとしては、エチレン成分含有量が45〜60重量
%のものが好ましく、EPDMとしては、エチレン成分
含有量が55〜70重量%のものが好ましい。エチレン
成分含有量がこれらの範囲にあるものを使用すると機械
特性、成形性等の諸特性のバランスがより良くなる。DETAILED DESCRIPTION OF THE INVENTION In the present invention, a mixed rubber of an ethylene / propylene copolymer (EPM) and an ethylene / propylene / diene copolymer (EPDM) is used. The ethylene / propylene copolymer alone has a lower crosslink density than the ethylene / propylene / diene copolymer, and the degree of swelling of the crosslinked rubber material exceeds 350%. On the other hand, when the ethylene-propylene-diene copolymer is used alone, the cross-linking density is high and the swelling degree is less than 150% when cross-linked, so the above mixture is used. The EPM used in the present invention preferably has an ethylene component content of 45 to 60% by weight, and the EPDM preferably has an ethylene component content of 55 to 70% by weight. When the ethylene component content is within these ranges, the balance of various properties such as mechanical properties and moldability becomes better.
【0010】本発明に用いられるエチレン・プロピレン
ゴム組成物は、エチレン・プロピレン共重合体が70〜
98重量%、好ましくは75〜95重量%であり、エチ
レン・プロピレン・ジエン共重合体が2〜30重量%、
好ましくは5〜25重量%である。エチレン・プロピレ
ン共重合体が98重量%を越え、エチレン・プロピレン
・ジエン共重合体が2重量%未満のベースポリマーを絶
縁ゴム材料に用いると、その引張強度が電力ケーブル接
続部品材料に必要な引張強度に対し余裕のないもの、又
は不十分になる。また、エチレン・プロピレン共重合体
が70重量%未満でエチレン・プロピレン・ジエン共重
合体が30重量%を越えると、2層(絶縁層と導電層)
の接着力が低いものとなるためである。エチレン・プロ
ピレン・ジエン共重合体のジエン成分としては、ジシク
ロペンタジエン(DCPD)、エチリデンノルボルネン
(ENB)、1,4−ヘキサジエン等が挙げられる。The ethylene / propylene rubber composition used in the present invention has an ethylene / propylene copolymer of 70 to 70%.
98% by weight, preferably 75 to 95% by weight, the ethylene / propylene / diene copolymer is 2 to 30% by weight,
Preferably it is 5 to 25% by weight. When a base polymer containing more than 98% by weight of ethylene / propylene copolymer and less than 2% by weight of ethylene / propylene / diene copolymer is used as the insulating rubber material, the tensile strength of the base material required for the power cable connection component material is reduced. Insufficient or insufficient strength. If the ethylene / propylene copolymer is less than 70% by weight and the ethylene / propylene / diene copolymer exceeds 30% by weight, two layers (insulating layer and conductive layer)
This is because the adhesive strength becomes low. Examples of the diene component of the ethylene / propylene / diene copolymer include dicyclopentadiene (DCPD), ethylidene norbornene (ENB), and 1,4-hexadiene.
【0011】本発明においては上記ゴム組成物を化学架
橋処理して膨潤度150〜350%としたゴム材料とす
る。化学架橋の処理方法自体は従来公知の方法により行
うことができる。例えばゴム組成物に有機過酸化物を所
定量添加したものを120〜150℃で1時間以上架橋
反応させて行うことができる。本発明において上記ゴム
組成物の架橋剤として配合される有機過酸化物として
は、例えば1,3−ビス(t−ブチルパーオキシイソプ
ロピル)ベンゼンやジクミルパーオキサイドなどのジア
ルキルパーオキサイド類、1,1−ビス(t−ブチルパ
ーオキシ)−3,3,5−トリメチルシクロヘキサンな
どのパーオキシケタール類等が挙げられる。これらの架
橋剤は膨潤度が150〜350%となる範囲で用いれば
よく、通常、使用量はゴム組成物に対し2〜5重量%の
範囲である。In the present invention, a rubber material having a swelling degree of 150 to 350% is obtained by subjecting the rubber composition to a chemical crosslinking treatment. The chemical crosslinking treatment method itself can be performed by a conventionally known method. For example, it can be carried out by subjecting a rubber composition to a predetermined amount of an organic peroxide to a crosslinking reaction at 120 to 150 ° C. for 1 hour or more. Examples of the organic peroxide compounded as a crosslinking agent in the rubber composition in the present invention include dialkyl peroxides such as 1,3-bis (t-butylperoxyisopropyl) benzene and dicumyl peroxide; Peroxy ketals such as 1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane are exemplified. These crosslinking agents may be used in a range where the degree of swelling is in the range of 150 to 350%, and the amount of use is usually in the range of 2 to 5% by weight based on the rubber composition.
【0012】本発明においてゴム材料の膨潤度を150
〜350%、好ましくは200〜300%とする。膨潤
度が大きい場合、それだけ溶剤を吸収して膨潤すること
からゴム材料の架橋密度は小さく、一方、上記膨潤度が
小さい場合はそれだけ溶剤を吸収せず膨潤しないことか
らゴム材料の架橋密度が大きいことを示す。この膨潤度
が150%未満の場合、ゴム材の架橋密度は高く、材料
強度は高くなるが、エチレン・プロピレンゴムのポリマ
ーセグメントの運動が不活発となるため、架橋成形時の
接着した絶縁層と導電層のような2層間のゴムポリマー
鎖がからみにくく、接着力が低下する。また、膨潤度が
350%を越える場合には、ゴム材の架橋密度が低く、
エチレン・プロピレンゴムのポリマーセグメントが活発
に運動することから、架橋成形時の2層間のゴムポリマ
ー鎖のからみが増加し接着力は強固になる。しかし、架
橋密度が低いため材料強度が低く、絶縁ゴム材料の場
合、電力ケーブル接続部品に必要な引張強度を満足でき
ない。In the present invention, the swelling degree of the rubber material is set to 150.
To 350%, preferably 200 to 300%. When the degree of swelling is large, the cross-linking density of the rubber material is small because it absorbs the solvent and swells.On the other hand, when the degree of swelling is small, the cross-linking density of the rubber material is large because it does not absorb the solvent and does not swell. Indicates that When the degree of swelling is less than 150%, the crosslink density of the rubber material is high and the material strength is high, but the movement of the polymer segment of ethylene / propylene rubber becomes inactive, so that the rubber layer and the insulating layer adhered at the time of cross-linking molding become The rubber polymer chains between the two layers such as the conductive layer are hardly entangled, and the adhesive strength is reduced. When the degree of swelling exceeds 350%, the crosslinking density of the rubber material is low,
Since the polymer segment of the ethylene / propylene rubber actively moves, the entanglement of the rubber polymer chain between the two layers at the time of cross-linking molding increases, and the adhesive strength becomes strong. However, since the crosslink density is low, the material strength is low, and in the case of an insulating rubber material, the tensile strength required for a power cable connection component cannot be satisfied.
【0013】本発明に用いられるゴム材には、種々の充
填剤もしくは添加剤を添加することができる。ゴム材に
カーボンブラックを所定量添加することで導電ゴム材と
することができ、炭酸カルシウム、焼成クレーなどの充
填剤を添加することで絶縁ゴム材とすることができる。
すなわち、本発明で用いるゴム材には必要に応じて種々
の充填剤(例えばタルク、クレー、炭酸カルシウム、シ
リカ等)、カーボンブラック(例えばサーマルブラッ
ク、アセチレンブラック、ファーネスブラック等)、架
橋助剤(例えば硫黄、キノンジオキシム等)、架橋促進
剤(例えばアルデヒドアンモニア類、アルデヒドアミン
類、チオウレア類、グアニジン類、チアゾール類、スル
フェンアミド類、チウラム類、ジチオカルバミン酸塩
類、キサントゲン酸塩類等)、老化防止剤(例えばアミ
ノケトン類、芳香族第二級アミン類、モノフェノール
類、ビスフェノール類、ポリフェノール類、ベンツイミ
ダゾール類等)、潤滑剤(例えばステアリン酸、ステア
リン酸塩、パラフィン等)、軟化剤(例えばパラフィン
系、ナフテン系又はアロマ系のプロセスオイル、炭化水
素系のオリゴマー等)、カップリング剤(例えばシラン
系、チタネート系等)、金属酸化物(例えば酸化亜鉛、
酸化マグネシウム等)、難燃剤(例えば水酸化アルミニ
ウム、水酸化マグネシウム、塩素系又は臭素系の難燃剤
等)、難燃助剤(例えば三酸化アンチモン等)を配合し
てもよい。本発明において好ましいのはカーボンブラッ
ク、充填剤の配合等により、導電ゴム材、絶縁ゴム材の
いずれかにすることである。また、本発明のゴム材に
は、吸湿による電気特性低下の問題のない焼成クレー等
を充填剤として用いることもでき、必要な引張強度を得
ることができる。導電ゴム材とする時のカーボンブラッ
クの含有量は通常20〜30重量%の範囲である。充填
剤の配合量は、所望の引張強度を達成でき、かつ、ゴム
材がもろくならない範囲で、充填剤の種類に応じて最適
量を選択でき、特に制限はないが通常、30〜50重量
%である。他の配合剤についても、ゴム材の性質を損な
わずに目的の効果が発揮できる配合量を選択することが
できる。Various fillers or additives can be added to the rubber material used in the present invention. A conductive rubber material can be obtained by adding a predetermined amount of carbon black to the rubber material, and an insulating rubber material can be obtained by adding a filler such as calcium carbonate or calcined clay.
That is, in the rubber material used in the present invention, various fillers (for example, talc, clay, calcium carbonate, silica, etc.), carbon black (for example, thermal black, acetylene black, furnace black, etc.), a crosslinking aid (for example, For example, sulfur, quinone dioxime, etc.), crosslinking accelerators (eg, aldehyde ammonias, aldehyde amines, thioureas, guanidines, thiazoles, sulfenamides, thiurams, dithiocarbamates, xanthates, etc.), aging Inhibitors (eg, aminoketones, aromatic secondary amines, monophenols, bisphenols, polyphenols, benzimidazoles, etc.), lubricants (eg, stearic acid, stearates, paraffins, etc.), softeners (eg, Paraffin, naphthenic or allo System process oils, etc. oligomer hydrocarbon), coupling agent (e.g. a silane, titanate, etc.), metal oxides (e.g. zinc oxide,
You may mix | blend a flame retardant (for example, aluminum hydroxide, magnesium hydroxide, a chlorine-type or a bromine-type flame retardant, etc.), and a flame-retardant auxiliary agent (for example, antimony trioxide etc.). In the present invention, it is preferable to use either a conductive rubber material or an insulating rubber material by mixing carbon black and a filler. In addition, the rubber material of the present invention can use a calcined clay or the like which does not have a problem of a decrease in electric characteristics due to moisture absorption as a filler, and can obtain a necessary tensile strength. The carbon black content of the conductive rubber material is usually in the range of 20 to 30% by weight. The amount of the filler can be selected in accordance with the type of the filler as long as the desired tensile strength can be achieved and the rubber material does not become brittle. The amount is not particularly limited, but is usually 30 to 50% by weight. It is. With respect to other compounding agents, the compounding amount can be selected so that the desired effect can be exhibited without impairing the properties of the rubber material.
【0014】本発明に係るゴム成形品の製造は常法に従
って行うことができる。例えば、まずエチレン・プロピ
レン共重合体及びエチレン・プロピレン・ジエン共重合
体の混合物と架橋剤を除く配合剤をバンバリーミキサー
等で混合した後、オープンロール等で所定量の架橋剤を
混合することにより、未架橋のゴム材を得る。このゴム
材より架橋ゴム成形品を得るには、例えば製品形状が彫
り込まれている金型の中空部分にあらかじめ未架橋ゴム
材を配置し、プレス機により所定時間、所定の温度で所
定の圧力をかけた後、金型から取り出す圧縮成形法によ
ることができる。また、前記した軟化剤を必要量配合し
て粘度を下げた未架橋ゴム材を、製品形状が彫り込まれ
ている金型の中空部分に圧入し、同様に所定時間、所定
温度で所定の圧力をかけ、金型から取り出して架橋成形
品を得るトランスファー成形法または射出成形法も実施
することができる。The production of the rubber molded product according to the present invention can be carried out according to a conventional method. For example, first, a mixture of the ethylene-propylene copolymer and the ethylene-propylene-diene copolymer and a compounding agent excluding the crosslinking agent are mixed with a Banbury mixer or the like, and then a predetermined amount of the crosslinking agent is mixed with an open roll or the like. To obtain an uncrosslinked rubber material. In order to obtain a crosslinked rubber molded product from this rubber material, for example, an uncrosslinked rubber material is placed in advance in a hollow portion of a mold in which the product shape is engraved, and a predetermined pressure is applied at a predetermined temperature at a predetermined temperature by a press machine. After applying, it can be performed by a compression molding method of taking out from a mold. Further, the uncrosslinked rubber material whose viscosity has been reduced by blending the necessary amount of the above-described softener is pressed into the hollow portion of the mold in which the product shape is engraved, and a predetermined pressure is similarly applied at a predetermined temperature for a predetermined time. A transfer molding method or an injection molding method in which a crosslinked molded product is obtained by taking out from a die and obtaining a crosslinked molded product can also be carried out.
【0015】本発明のゴム成形品は、電力ケーブルの中
間接続部や終端接続部を形成する、絶縁層と導電層の複
合一体化構造を有するゴムモールド接続部品に用いるの
が好ましい。この場合、電力ケーブル接続部品の形状は
特に制限はなく、T型、π型、ストレスコーン型、絶縁
筒型等のいずれにも用いることができるが、本発明のゴ
ム成形品は2層間の接着性が高いため、成形圧力のかか
りにくい部分を有する形状、例えば90°折れ曲がり部
分を有するT型やπ型等の形状の接続部品にも好適に用
いることができる。本発明のゴム成形品を電力ケーブル
接続部品に適用した例を図面に従って説明するが、本発
明はこれに限定されるものではない。図4は図2の絶縁
筒を適用した例を示す一部断面図であり、ケーブル21
のシースを剥いた状態で一方のケーブル外導14に絶縁
筒15を挿入しておき、接続するケーブル導体16、1
6同士を導電スリーブ17で電気的に完全に接続させた
のち、ケーブル導体を接続したその接続部18に絶縁筒
15をスライドさせるものである。図中、19がケーブ
ル絶縁、20が導電テープである。図5は図3のπ型成
形品を適用した例を示す一部断面図であり、この接続部
品は嵌合接続具22を、接続部のそれぞれに有する導体
23を内部に有し、2本のケーブルを接続するだけでな
く、4本のケーブルを同時に接続しうること以外は図4
のものと同様である。ここで図3及び図4と同符号は同
じものを示す。The rubber molded product of the present invention is preferably used for a rubber molded connection part having a composite integrated structure of an insulating layer and a conductive layer, which forms an intermediate connection portion and a terminal connection portion of a power cable. In this case, the shape of the power cable connection component is not particularly limited, and it can be used in any of a T-type, a π-type, a stress cone type, an insulating cylindrical type, and the like. Because of its high performance, it can be suitably used for connection parts having a shape to which a molding pressure is not easily applied, for example, a T-shaped or π-shaped shape having a 90 ° bend. An example in which the rubber molded product of the present invention is applied to a power cable connection component will be described with reference to the drawings, but the present invention is not limited to this. FIG. 4 is a partial cross-sectional view showing an example in which the insulating cylinder of FIG.
With the sheath stripped off, the insulating tube 15 is inserted into one of the cable outer conductors 14 to connect the cable conductors 16 and 1 to be connected.
After electrically connecting the cable conductors 6 completely with each other with the conductive sleeve 17, the insulating cylinder 15 is slid to the connection portion 18 to which the cable conductor is connected. In the figure, 19 is a cable insulation, and 20 is a conductive tape. FIG. 5 is a partial cross-sectional view showing an example in which the π-shaped molded product of FIG. 3 is applied. This connecting part has a fitting 23 and a conductor 23 inside each connecting part. 4 except that four cables can be connected simultaneously.
It is similar to that of Here, the same symbols as those in FIGS. 3 and 4 indicate the same components.
【0016】[0016]
【実施例】次に、本発明を実施例に基づいてさらに詳細
に説明する。 実施例1〜6、比較例1〜4 表1及び表2に示す組成のゴム組成物をバンバリーミキ
サーにより混練し、実施例1〜3、比較例1及び2につ
いては150℃で15分、実施例4〜6、比較例3及び
4については150℃で10分間架橋処理し、シート又
は接続部品に成形した。なお、表1及び2の組成の単位
は重量%であり、それぞれエチレン・プロピレン共重合
体とエチレン・プロピレン・ジエン共重合体の合計を1
00としたときの値である。エチレン・プロピレン共重
合体は三井EPT0045(商品名、三井石油化学社
製)、エチレン・プロピレン・ジエン共重合体は三井E
PT1045(商品名、三井石油化学社製)を用いた。
このようにして得られた絶縁ゴム(実施例1〜3、比較
例1及び2)及び導電ゴム(実施例4〜6、比較例3及
び4)の成形品について、下記の試験を行い、評価し
た。結果を表1及び表2に示した。Next, the present invention will be described in more detail with reference to examples. Examples 1 to 6 and Comparative Examples 1 to 4 The rubber compositions having the compositions shown in Tables 1 and 2 were kneaded using a Banbury mixer, and Examples 1 to 3 and Comparative Examples 1 and 2 were each run at 150 ° C. for 15 minutes. Examples 4 to 6 and Comparative Examples 3 and 4 were subjected to a crosslinking treatment at 150 ° C. for 10 minutes and formed into sheets or connection parts. The units of the compositions in Tables 1 and 2 are% by weight, and the total of the ethylene / propylene copolymer and the ethylene / propylene / diene copolymer is 1%, respectively.
This is the value when 00 is set. The ethylene / propylene copolymer is Mitsui EPT0045 (trade name, manufactured by Mitsui Petrochemical Co., Ltd.), and the ethylene / propylene / diene copolymer is Mitsui E
PT1045 (trade name, manufactured by Mitsui Petrochemical Co., Ltd.) was used.
The following tests were performed on the molded articles of the insulating rubber (Examples 1 to 3 and Comparative Examples 1 and 2) and the conductive rubber (Examples 4 to 6 and Comparative Examples 3 and 4) thus obtained, and evaluated. did. The results are shown in Tables 1 and 2.
【0017】引張強度 厚さ2mmのシートを用い、JIS K 6301に準
拠し、引張試験を行った。 膨潤度 と同じシートより、縦40mm、横15mm、厚み2
mmの試験片を作成し、この試験片をシクロヘキサン溶
液800mlに浸漬させ、常温で48時間放置後の質量
(W1)を測定し、次いでこの試験片を18時間以上真
空乾燥した後の質量(W2)を測定して、前記の式
(1)に従って膨潤度を求めた。Tensile Strength A tensile test was performed using a sheet having a thickness of 2 mm in accordance with JIS K6301. From the same sheet as swelling degree, length 40mm, width 15mm, thickness 2
mm, a test piece was immersed in 800 ml of a cyclohexane solution, the mass (W1) after standing at room temperature for 48 hours was measured, and then the test piece was vacuum-dried for 18 hours or more (W2). ) Was measured, and the degree of swelling was determined according to the above equation (1).
【0018】接着試験1 実施例1〜3、比較例1及び2の絶縁ゴムの厚さ4mm
のシート上に、実施例1〜3には実施例4〜6の未架橋
導電ゴムを、比較例1、2には比較例3又は4の未架橋
導電ゴムをのせ、150℃、10分で架橋させ、幅15
mm、長さ100mm、厚み6mm(絶縁層4mm、導
電層2mm)の接着性試験片を作成した。この試験片の
断面図を図6に示した。図6中、2は絶縁層、1は導電
層であり、1、2、それぞれの一端部を引張試験機によ
り引張り、下記の式(2)により接着強度を算出した。
また、そのときの剥離状態を観察した。Adhesion test 1 The thickness of the insulating rubber of Examples 1 to 3 and Comparative Examples 1 and 2 was 4 mm.
The uncrosslinked conductive rubbers of Examples 4 to 6 are placed on Examples 1 to 3 and the uncrosslinked conductive rubbers of Comparative Examples 3 and 4 are placed on Comparative Examples 1 and 2 at 150 ° C. for 10 minutes. Cross-linked, width 15
An adhesive test specimen having a thickness of 100 mm, a length of 100 mm, and a thickness of 6 mm (insulating layer 4 mm, conductive layer 2 mm) was prepared. FIG. 6 shows a cross-sectional view of this test piece. In FIG. 6, 2 is an insulating layer, 1 is a conductive layer, and one end of each of 1, 2 was pulled by a tensile tester, and the adhesive strength was calculated by the following equation (2).
Further, the peeled state at that time was observed.
【0019】[0019]
【数2】 (Equation 2)
【0020】接着試験2 図5に示すようなπ型の接続部品を作製し、導電層と絶
縁層の接着性を評価した。接続部品は、まず導体上に実
施例4〜6、比較例3又は4の導電ゴム層を125℃で
1時間架橋させて作製し、その上に実施例4〜6につい
ては実施例1〜3の未架橋絶縁ゴムを、比較例3又は4
については比較例1又は2の未架橋絶縁ゴムを巻きつ
け、135℃で1時間架橋処理して得た(厚み:導電層
5mm、絶縁層3mm)。これを輪切りにし、特に90
°折れ曲がり部分の接着性を目視で評価した。Adhesion Test 2 A π-type connection part as shown in FIG. 5 was prepared, and the adhesion between the conductive layer and the insulating layer was evaluated. The connecting parts were prepared by first crosslinking the conductive rubber layers of Examples 4 to 6 and Comparative Examples 3 and 4 at 125 ° C. for 1 hour on a conductor, and then working Examples 1 to 3 for Examples 4 to 6. Of Comparative Example 3 or 4
Was obtained by winding the uncrosslinked insulating rubber of Comparative Example 1 or 2 at 135 ° C. for 1 hour (thickness: conductive layer 5 mm, insulating layer 3 mm). Cut this into slices, especially 90
° The adhesiveness of the bent portion was visually evaluated.
【0021】[0021]
【表1】 [Table 1]
【0022】[0022]
【表2】 [Table 2]
【0023】電力ケーブル接続部品材料に必要な引張強
度として、いわゆる電力規格値(電力会社等で規定して
いる規格値)として規定されている値は3.9MPaで
ある。エチレン・プロピレン共重合体単独でベースゴム
とし、膨潤度が350%を越える比較例1及び3は、絶
縁層と導電層の接着性については絶縁層が切断するほど
強固であるが、引張強度がこの規定の3.9MPaに満
たない。また、エチレン・プロピレン・ジエン共重合体
単独で、膨潤度が150%未満の比較例2及び4につい
ては、引張強度は3.9MPaを越えているが、絶縁層
と導電層の接着性が低く、界面で剥離しており、図5に
示したような曲線部を有する形状の接続部品には適用で
きないことがわかる。これに対し、本発明のゴム成形品
である実施例1〜6は引張強度の規格値を満足してお
り、かつ、導電層と絶縁層の両層界面に剥離が生じやす
い90°折れ曲がり部においても両層が剥離せず強固に
接着しており、引張強度と接着性の双方をバランス良く
満足するものが得られていることがわかる。The value specified as a so-called electric power standard value (standard value specified by an electric power company or the like) as a tensile strength required for a power cable connecting component material is 3.9 MPa. In Comparative Examples 1 and 3 in which the ethylene / propylene copolymer alone was used as the base rubber and the degree of swelling exceeded 350%, the adhesiveness between the insulating layer and the conductive layer was so strong that the insulating layer was cut, but the tensile strength was low. It is less than 3.9 MPa of this regulation. Further, in Comparative Examples 2 and 4 in which the ethylene-propylene-diene copolymer alone had a swelling degree of less than 150%, the tensile strength exceeded 3.9 MPa, but the adhesion between the insulating layer and the conductive layer was low. It can be seen that it cannot be applied to a connection part having a shape having a curved portion as shown in FIG. On the other hand, Examples 1 to 6 which are the rubber molded products of the present invention satisfy the standard value of the tensile strength, and have a 90 ° bending portion where peeling is likely to occur at both interfaces between the conductive layer and the insulating layer. Also, it can be seen that both layers are firmly adhered without peeling, and that both tensile strength and adhesiveness are satisfied in a well-balanced manner.
【0024】[0024]
【発明の効果】本発明のゴム成形品は、電力ケーブル接
続部品に必要な引張強度を満足し、かつ、絶縁層と導電
層として複合一体化させた場合に両層が非常に強固に接
着し剥離しないため、高品質の電力ケーブル接続部品を
得ることができる。特に、π型やT型の接続部品の90
°に折れ曲がった部分においては通常、架橋成形時の成
形圧力がかかりにくいために層同士の接着力が弱く剥離
が生じやすいが、本発明のゴム成形品によればこのよう
な成形圧力のかかりにくい部分でも接着性が高く剥離し
ないので、π型やT型の電力ケーブル接続部品にも好適
に用いることができるという優れた効果を奏する。The rubber molded product of the present invention satisfies the tensile strength required for power cable connection parts, and when combined as an insulating layer and a conductive layer, both layers adhere very strongly. Since it does not peel off, a high quality power cable connection component can be obtained. In particular, 90% of π-type and T-type connection parts are used.
In the part bent at °, usually, the molding pressure at the time of cross-linking molding is less likely to be applied, so the adhesion between the layers is weak and peeling is likely to occur, but according to the rubber molded product of the present invention, such molding pressure is less likely to be applied Since the adhesiveness is high even at the part and does not peel off, there is an excellent effect that it can be suitably used for a π-type or T-type power cable connection part.
【図1】ストレスコーンの断面図である。FIG. 1 is a sectional view of a stress cone.
【図2】絶縁筒の断面図である。FIG. 2 is a sectional view of an insulating cylinder.
【図3】π型成形品の断面図である。FIG. 3 is a sectional view of a π-shaped molded product.
【図4】絶縁筒を適用した電力ケーブル接続部品の使用
状態を示す一部断面図である。FIG. 4 is a partial cross-sectional view showing a use state of a power cable connecting part to which an insulating tube is applied.
【図5】π型成形品を適用した電力ケーブル接続部品の
使用状態を示す一部断面図である。FIG. 5 is a partial cross-sectional view showing a use state of a power cable connection component to which a π-shaped molded product is applied.
【図6】実施例で作成した接着性試験片の断面図であ
る。FIG. 6 is a sectional view of an adhesive test piece prepared in an example.
1 導電層 2 絶縁層 4 ケーブル貫挿孔 11 内部導電層 12 絶縁層 13 外部導電層 14 ケーブル外導 15 絶縁筒 16 ケーブル導体 17 導電スリーブ 18 接続部 19 ケーブル絶縁 20 導電テープ 21 ケーブル 22 嵌合接続具 23 導体 DESCRIPTION OF SYMBOLS 1 Conductive layer 2 Insulating layer 4 Cable penetration hole 11 Inner conductive layer 12 Insulating layer 13 Outer conductive layer 14 Outer cable 15 Insulation cylinder 16 Cable conductor 17 Conductive sleeve 18 Connection part 19 Cable insulation 20 Conductive tape 21 Cable 22 Fitting connection Tool 23 conductor
Claims (2)
8重量%とエチレン・プロピレン・ジエン共重合体2〜
30重量%とを含有するベースゴムよりなるゴム組成物
を化学架橋処理して膨潤度を150〜350%としたゴ
ム材同士を複合一体化してなることを特徴とするゴム成
形品。An ethylene / propylene copolymer 70 to 9
8% by weight of ethylene / propylene / diene copolymer 2
A rubber molded product characterized in that a rubber composition comprising a base rubber containing 30% by weight and a rubber material having a swelling degree of 150 to 350% are compositely integrated with each other by a chemical crosslinking treatment.
接続部品に用いられ、ゴム材が絶縁層と導電層の複合一
体化構造を有することを特徴とする請求項1記載のゴム
成形品。2. The rubber molded product according to claim 1, wherein the rubber material has a composite integrated structure of an insulating layer and a conductive layer, which is used for an intermediate connecting portion or a terminal connecting component of the power cable.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15700597A JPH11968A (en) | 1997-06-13 | 1997-06-13 | Rubber molded form |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15700597A JPH11968A (en) | 1997-06-13 | 1997-06-13 | Rubber molded form |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11968A true JPH11968A (en) | 1999-01-06 |
Family
ID=15640103
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15700597A Pending JPH11968A (en) | 1997-06-13 | 1997-06-13 | Rubber molded form |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11968A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0517438A2 (en) * | 1991-06-07 | 1992-12-09 | AT&T Corp. | Bipolar fabrication method |
JP2014184608A (en) * | 2013-03-22 | 2014-10-02 | Fujikura Ltd | Rubber product and method of producing rubber product |
JP2015101062A (en) * | 2013-11-27 | 2015-06-04 | 古河電気工業株式会社 | Manufacturing method of rubber molding, rubber molding obtained by manufacturing method and connection article of power cable |
-
1997
- 1997-06-13 JP JP15700597A patent/JPH11968A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0517438A2 (en) * | 1991-06-07 | 1992-12-09 | AT&T Corp. | Bipolar fabrication method |
JP2014184608A (en) * | 2013-03-22 | 2014-10-02 | Fujikura Ltd | Rubber product and method of producing rubber product |
JP2015101062A (en) * | 2013-11-27 | 2015-06-04 | 古河電気工業株式会社 | Manufacturing method of rubber molding, rubber molding obtained by manufacturing method and connection article of power cable |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20100163272A1 (en) | Composition for a flame-retardant silane-crosslinked olefin resin, an insulated wire including the same, and a method for producing a flame-retardant silane-crosslinked olefin resin | |
IE853144L (en) | Insulated cable | |
JP2012074382A (en) | Strippable semiconductive shield and compositions therefor | |
US20060182961A1 (en) | Power cable compositions for strippable adhesion | |
US20170349738A1 (en) | Silane crosslinkable rubber composition and silane crosslinked rubber molded body, method of producing the same, and silane crosslinked rubber molded article | |
JP6776344B2 (en) | Semi-conductive shield composition | |
FI68924C (en) | FOER FARING FOR FRAMSTAELLNING AV EN MEDIABUILD POLYETHYLEN INSULATED CABLE | |
CN112778915B (en) | Elastomer composite adhesive tape and preparation method thereof | |
US20170349737A1 (en) | Silane crosslinkable rubber composition and silane crosslinked rubber molded body, method of producing the same, and silane crosslinked rubber molded article | |
JPH11968A (en) | Rubber molded form | |
JP5503710B2 (en) | Flame retardant insulating waterproof cover for wire connection | |
KR102351547B1 (en) | Halogen-free insulating composition with excellent oil resistance and low-teperature resistance and cable having a dielectric layer formed from the same | |
JP2012016212A (en) | Normal temperature shrinkable tube for cable connecting part and cable connecting part | |
JPH11313434A (en) | Rubber composition for power cable joint and connecting sleeve | |
JPH07105746A (en) | Polyvinyl chloride insulating wire for outdoor use | |
JP2002175730A (en) | Watertight admixture | |
JP7488715B2 (en) | Metal-rubber composite member and its manufacturing method | |
JP2013035965A (en) | Insulating composition and molding | |
JP3777958B2 (en) | Cross-linked polyethylene insulated power cable suitable for recycling | |
JP6023618B2 (en) | Rubber product and method for producing rubber product | |
JP2001093332A (en) | Semiconductive resin admixture and manufacturing method of power cable | |
JPH08127680A (en) | Ethylene-propylene rubber composition | |
JP2013227540A (en) | Ep rubber composition, ep rubber material, cable and connecting part | |
JPH02250213A (en) | Semiconductive composition and peelable external semiconductive layer of electric cable | |
JPS5833641B2 (en) | Vulcanized ethylene-propylene rubber insulated wire |