JPH1195826A - Acceleration-deceleration pattern producing method - Google Patents

Acceleration-deceleration pattern producing method

Info

Publication number
JPH1195826A
JPH1195826A JP9252030A JP25203097A JPH1195826A JP H1195826 A JPH1195826 A JP H1195826A JP 9252030 A JP9252030 A JP 9252030A JP 25203097 A JP25203097 A JP 25203097A JP H1195826 A JPH1195826 A JP H1195826A
Authority
JP
Japan
Prior art keywords
acceleration
deceleration
deceleration pattern
torque
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9252030A
Other languages
Japanese (ja)
Other versions
JP3599969B2 (en
Inventor
Akihiko Takahashi
昭彦 高橋
Satoshi Nojo
聡 野條
Yoshihiko Suzuki
快彦 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP25203097A priority Critical patent/JP3599969B2/en
Publication of JPH1195826A publication Critical patent/JPH1195826A/en
Application granted granted Critical
Publication of JP3599969B2 publication Critical patent/JP3599969B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Numerical Control (AREA)
  • Manipulator (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an acceleration-deceleration pattern producing method for the speed control of a drive source by which the output performance of the drive source of the operation part of a robot is utilized as much as possible. SOLUTION: A function for indicating a linear acceleration-deceleration pattern P1 used for linear acceleration-deceleration is defined as F(t)1, the function for indicating a sine curve acceleration-deceleration pattern P5 used for sine curve acceleration-deceleration is defined as F(t)2, a coefficient determined so as not to make torque (maximum torque of G1-G5) required when acceleration is maximum exceed a torque upper limit value Trmax allowed in an acceleration-deceleration of a servo motor 1b is defined as K(0<K<1) and the function F(t)3 for indicating the acceleration-deceleration pattern is found by an equation F(t)3=K×(F(t)2-F(t)1)+F(t)1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ロボットの動作部
の駆動源の速度制御に用いる加減速パターンの作成方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for creating an acceleration / deceleration pattern used for controlling the speed of a drive source of an operating unit of a robot.

【0002】[0002]

【従来の技術】従来、この種の加減速パターンとして
は、いわゆる直線加減速パターン(図2(a)参照)
と、例えば正弦曲線加減速パターン(図2(e)参照)
などの曲線加減速パターンとが知られている。ところ
で、直線加減速パターンに従う速度制御では、例えばサ
ーボモータなどの駆動源の加減速時のトルクは加減速開
始時から終了時までほぼ一定であり、トルクを加減速開
始時及び終了時に瞬時に変化させるようになっているた
め、加減速開始時及び終了時に駆動源やロボット等に大
きなショックが加わったり、振動が発生したりし易い。
これに対して、正弦曲線加減速パターンに従う速度制御
では、駆動源のトルクが、始動時等の加減速開始時から
次第に増減し、所定の極値に達するとその後次第にもと
に戻るよう変化されるため、駆動源のトルクが加減速開
始時及び終了時に瞬時に変化されることがなく、駆動源
や動作部に加わるショックを小さくできると共に振動の
発生を抑制でき、有利である。
2. Description of the Related Art Conventionally, as this kind of acceleration / deceleration pattern, a so-called linear acceleration / deceleration pattern (see FIG. 2A)
And, for example, a sinusoidal acceleration / deceleration pattern (see FIG. 2E).
Such a curve acceleration / deceleration pattern is known. By the way, in the speed control according to the linear acceleration / deceleration pattern, for example, the torque at the time of acceleration / deceleration of a drive source such as a servomotor is almost constant from the start to the end of acceleration / deceleration, and the torque changes instantaneously at the start and end of acceleration / deceleration. Therefore, at the start and end of acceleration / deceleration, a large shock is likely to be applied to the drive source, the robot, and the like, and vibration is likely to occur.
On the other hand, in the speed control according to the sinusoidal acceleration / deceleration pattern, the torque of the drive source is gradually increased or decreased from the start of acceleration / deceleration such as at the time of starting, and is changed back to the original value after reaching a predetermined extreme value. Therefore, the torque of the drive source is not instantaneously changed at the start and end of the acceleration / deceleration, so that the shock applied to the drive source and the operation unit can be reduced, and the generation of vibration can be advantageously suppressed.

【0003】[0003]

【発明が解決しようとする課題】ところが、正弦曲線加
減速パターンなどの曲線加減速パターンに従って速度制
御を行うには、加減速時間及び加減速前後の速度差が同
じ場合、直線加減速パターンに従って速度制御を行う場
合に比べて、加速度最大時には最大約1.57倍のトル
クが必要になるため、より大きなトルクが得られる駆動
源が必要になってロボット装置が大型化したり、高価に
なったりする。
However, to perform speed control in accordance with a curve acceleration / deceleration pattern such as a sine curve acceleration / deceleration pattern, if the acceleration / deceleration time and the speed difference before and after acceleration / deceleration are the same, the speed is controlled in accordance with the linear acceleration / deceleration pattern. At the time of the maximum acceleration, a torque of about 1.57 times at the maximum is required as compared with the case where the control is performed. Therefore, a driving source capable of obtaining a larger torque is required, and the robot apparatus becomes large-sized or expensive. .

【0004】本発明は、駆動源の出力性能が最大限活用
され、駆動源や動作部に加減速開始時及び終了時に加わ
るショックを可及的に小さくなると共に振動を発生しに
くくなる加減速パターンの作成方法を提供することを課
題とする。
The present invention provides an acceleration / deceleration pattern in which the output performance of a drive source is utilized to the utmost, a shock applied to the drive source and an operation unit at the start and end of acceleration / deceleration is reduced as much as possible, and vibration is hardly generated. It is an object of the present invention to provide a method for creating a document.

【0005】[0005]

【課題を解決するための手段】上記課題を達成するため
本発明は、ロボットの動作部の駆動源の速度制御に用い
る加減速パターンの作成方法において、直線加減速に用
いられる直線加減速パターンを表す関数をF(t)1、曲線
加減速に用いられる曲線加減速パターンを表す関数をF
(t)2、加速度最大時に必要なトルクが駆動源の加減速時
に許容されるトルク上限値を越えないように定めた係数
をK(0<K<1)として、加減速パターンを表す関数
F(t)3を次式、F(t)3=K×(F(t)2−F(t)1)+F
(t)1で求める。
According to the present invention, there is provided a method for creating an acceleration / deceleration pattern used for controlling the speed of a drive source of an operating unit of a robot. The function representing the curve acceleration / deceleration pattern used is F (t) 1, and the function representing the curve acceleration / deceleration pattern used for curve acceleration / deceleration is F (t) 1.
(t) 2, a function F representing an acceleration / deceleration pattern, where K (0 <K <1) is a coefficient determined so that the torque required at the time of maximum acceleration does not exceed the torque upper limit allowed during acceleration / deceleration of the drive source. (t) 3 is expressed by the following equation: F (t) 3 = K × (F (t) 2-F (t) 1) + F
(t) Determined by 1.

【0006】尚、曲線加減速パターンは、速度の変化の
割合が速度変化開始点から次第に大きくなり、速度変化
終了点に近づくに連れて小さくなるように変化し、速度
変化開始点と終了点との間に1つの変曲点を有するもの
であり、例えば正弦曲線加減速パターンがこれに該当す
る。
The curve acceleration / deceleration pattern changes so that the rate of change in speed gradually increases from the speed change start point and decreases as approaching the speed change end point. And one inflection point between them, for example, a sinusoidal acceleration / deceleration pattern.

【0007】関数F(t)3では、駆動源のトルクの一部
が、曲線加減速パターンに従って変化される。曲線加減
速パターンに従う制御は、加減速開始時及び終了時に瞬
時に駆動源のトルクの大きさが変化するような制御では
なく、駆動源のトルクの大きさが漸次増加しあるいは減
少するような制御である。従って、上記関数F(t)3によ
り作成された加減速パターンを用いれば、加減速開始時
及び終了時のトルクの変化の大きさが、曲線加減速パタ
ーンに従って変化されるトルク分だけ小さくなり、駆動
源や動作部に加わるショックが小さくなると共に振動が
発生しにくくなる。また、関数F(t)3を用いて作成した
加減速パターンを用いることで所望の性能が得られれ
ば、より大きなトルクが得られる駆動源を用いる必要が
なくなり、ロボット装置の大型化やコストアップを防止
できる。
In the function F (t) 3, a part of the torque of the driving source is changed according to a curve acceleration / deceleration pattern. The control according to the curve acceleration / deceleration pattern is not a control in which the magnitude of the torque of the drive source changes instantaneously at the start and end of the acceleration / deceleration, but a control in which the magnitude of the torque of the drive source gradually increases or decreases. It is. Therefore, if the acceleration / deceleration pattern created by the function F (t) 3 is used, the magnitude of the change in torque at the start and end of acceleration / deceleration is reduced by the torque changed according to the curve acceleration / deceleration pattern, Shock applied to the drive source and the operating unit is reduced, and vibration is less likely to occur. Also, if desired performance is obtained by using the acceleration / deceleration pattern created by using the function F (t) 3, there is no need to use a drive source capable of obtaining a larger torque, which increases the size and cost of the robot apparatus. Can be prevented.

【0008】[0008]

【発明の実施の形態】図1を参照して1は制御部2によ
り制御されるロボットであり、動作部として旋回動作す
るアーム1aを備える。該アーム1aは駆動源たるサー
ボモータ(以下、単にモータと記す)1bにより旋回さ
れて所定位置に移動されるようになっており、モータ1
bは制御部2から出力される信号に基づいてアンプ3か
ら出力される電力により回転される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to FIG. 1, reference numeral 1 denotes a robot controlled by a control unit 2, which has an arm 1a which performs a turning operation as an operation unit. The arm 1a is turned by a servomotor (hereinafter simply referred to as a motor) 1b as a drive source and is moved to a predetermined position.
b is rotated by the power output from the amplifier 3 based on the signal output from the control unit 2.

【0009】制御部2は、CPUと、モータ1bの回転
速度の加減速制御に用いられる加減速パターンが記憶さ
れている記憶手段4と、図示しないキーボードやティー
チングボックス等の入力手段やCRT等の出力手段との
間での信号のやり取りに用いられるインターフェース5
と、モータ1bとの間での信号のやり取りに用いられる
サーボインターフェース6とを備える。このうち記憶手
段4には、経過時間に比例して速度が増減する直線加減
速パターン(図2(a)参照)と、時間経過に伴い速度
が正弦曲線を描くように増減する、曲線加減速パターン
たる正弦曲線加減速パターン(図2(e)参照)とが記
憶されている。
The control unit 2 includes a CPU, a storage means 4 for storing acceleration / deceleration patterns used for acceleration / deceleration control of the rotation speed of the motor 1b, an input means (not shown) such as a keyboard and a teaching box, and a CRT and the like. Interface 5 used to exchange signals with output means
And a servo interface 6 used for exchanging signals with the motor 1b. The storage means 4 stores a linear acceleration / deceleration pattern in which the speed increases / decreases in proportion to the elapsed time (see FIG. 2 (a)), and a curve acceleration / deceleration in which the speed increases / decreases as time elapses in a sine curve. A sine curve acceleration / deceleration pattern as a pattern (see FIG. 2E) is stored.

【0010】尚、加速前の速度をV1 、加速後の速度を
V2 、そして加速時間をTとすると、例えば直線加速パ
ターンや正弦曲線加速パターンは、時間tをパラメータ
とする次の関数F(t)1´,F(t)2´ F(t)1´=V1 +( V2 −V1)×t/T …… 直線加速パターン F(t)2´=V1 +((V2 −V1)/2) ×sin((t/T) −1/2) π …… 正弦曲線加速パターン で表される。
Assuming that the speed before acceleration is V1, the speed after acceleration is V2, and the acceleration time is T, for example, a linear acceleration pattern or a sinusoidal acceleration pattern has the following function F (t) using time t as a parameter. ) 1 ', F (t) 2' F (t) 1 '= V1 + (V2-V1) .times.t / T Linear acceleration pattern F (t) 2' = V1 + ((V2-V1) / 2 ) × sin ((t / T) −1/2) π... Sinusoidal acceleration pattern

【0011】このように構成される制御部2では、CP
Uにおいて記憶手段4から読み出した所定の加減速パタ
ーンに従って指令速度を求め、該指令速度を示す指令速
度信号をサーボインターフェース6に出力する。サーボ
インターフェース6には、指令速度信号の他に、モータ
1bより検出される実速度を示す実速度信号と、図示し
ない電流センサにより検出されるモータ1bの実電流値
を示す実電流信号とが入力されており、サーボインター
フェース6では、指令速度と実速度とを比較して実速度
が指令速度になるようなトルクをモータ1bに生じさせ
る電流値(指令電流値)を示す信号(指令電流信号)を
生成すると共に、指令電流値と実電流値とを比較して実
電流値が指令電流値になるような電圧値(指令電圧値)
を示す信号(指令電圧信号)を生成し、生成した両信号
をアンプ3に出力する。これらの信号を基にアンプ3か
ら所定の電力がモータ1bに供給される。このような動
作をアーム1aが所定の旋回位置に移動するまで繰り返
す。
In the control unit 2 configured as described above, the CP
At U, a command speed is obtained according to a predetermined acceleration / deceleration pattern read from the storage means 4, and a command speed signal indicating the command speed is output to the servo interface 6. In addition to the command speed signal, an actual speed signal indicating the actual speed detected by the motor 1b and an actual current signal indicating the actual current value of the motor 1b detected by a current sensor (not shown) are input to the servo interface 6. The servo interface 6 compares the command speed with the actual speed, and a signal (command current signal) indicating a current value (command current value) that causes the motor 1b to generate a torque such that the actual speed becomes the command speed. And a voltage value (command voltage value) that compares the command current value with the actual current value so that the actual current value becomes the command current value.
(Command voltage signal), and outputs both of the generated signals to the amplifier 3. Based on these signals, predetermined power is supplied from the amplifier 3 to the motor 1b. Such an operation is repeated until the arm 1a moves to a predetermined turning position.

【0012】ところで、モータ1bの回転速度を加減速
制御する場合、上述したように、正弦曲線加減速パター
ンに従う方が直線加減速パターンに従うよりショックや
振動が発生しにくく有利であるが、加減速時間及び加減
速前後の速度差が同じ場合、直線加減速パターンに従う
よりも、加速度最大時には最大で約1.57倍のトルク
が必要になるため、より大きなトルクが得られるモータ
が必要になったりする。
In the case of controlling the rotation speed of the motor 1b by acceleration / deceleration, as described above, it is more advantageous to follow a sine curve acceleration / deceleration pattern than to follow a linear acceleration / deceleration pattern, since shock and vibration are less likely to occur. If the time and the speed difference before and after the acceleration / deceleration are the same, a torque of about 1.57 times at the maximum is required at the maximum acceleration rather than according to the linear acceleration / deceleration pattern. I do.

【0013】そこで、本実施形態では、直線加減速パタ
ーンを示す関数をF(t)1、正弦曲線加減速パターンを示
す関数をF(t)2、加速度最大時に必要なトルクが駆動源
の加減速時に許容されるトルク上限値を越えないように
定めた係数をK(0<K<1)とする関数F(t)3=K×
(F(t)2−F(t)1)+F(t)1により加減速パターンを作
成して記憶手段4に記憶させ、加減速制御のときにCP
Uに該関数F(t)3で作成された加減速パターンを読み出
させて指令速度値を求めさせることとした。尚、上記の
関数F(t)1,F(t)2,F(t)3はいずれも時間tをパラメ
ータとする関数である。また、係数Kはインターフェー
ス5に接続されるキーボード等の入力手段から設定する
ようになっており、係数Kを設定すると加減速パターン
が作成され記憶手段4に記憶される。
Therefore, in the present embodiment, a function indicating a linear acceleration / deceleration pattern is F (t) 1, a function indicating a sine curve acceleration / deceleration pattern is F (t) 2, and the torque required at the time of maximum acceleration is applied to the acceleration of the drive source. A function F (t) 3 = K ×, where K (0 <K <1) is a coefficient determined so as not to exceed the torque upper limit value allowed during deceleration.
An acceleration / deceleration pattern is created from (F (t) 2−F (t) 1) + F (t) 1 and stored in the storage unit 4.
U is caused to read the acceleration / deceleration pattern created by the function F (t) 3 to determine the command speed value. The above functions F (t) 1, F (t) 2, and F (t) 3 are functions using time t as a parameter. The coefficient K is set from input means such as a keyboard connected to the interface 5. When the coefficient K is set, an acceleration / deceleration pattern is created and stored in the storage means 4.

【0014】図2の(a)〜(e)は、係数Kの値を各
表の上側に表示した値にした場合に作成される加減速パ
ターンP1 〜P5 である。尚、各表に合わせて表示した
グラフG1 〜G5 はトルクの変化を示している。図示す
るように、係数Kを0にして作成した加減速パターンP
1 は直線加減速パターンに一致し、係数Kを1にして作
成した加減速パターンP5 は正弦曲線加減速パターンに
一致している。
FIGS. 2A to 2E show acceleration / deceleration patterns P1 to P5 created when the value of the coefficient K is set to the value displayed above each table. Graphs G1 to G5 displayed in accordance with the respective tables show changes in torque. As shown, the acceleration / deceleration pattern P created with the coefficient K set to 0
1 corresponds to the linear acceleration / deceleration pattern, and the acceleration / deceleration pattern P5 created by setting the coefficient K to 1 matches the sine curve acceleration / deceleration pattern.

【0015】つまり、関数F(t)3により作成される加減
速パターンは、図3(a)に示すように、係数Kを大き
くするほど正弦曲線加減速パターンに近づく。そして係
数Kはモータ1bのトルクのうち、正弦曲線加減速パタ
ーンに従って変化されるトルクの割合に一致する。ま
た、図3(b)に示されるように、係数Kを大きくする
ほど加速開始時及び終了時のトルクの変化量E1 〜E5
が小さくなり、加速開始時及び終了時のショックや振動
が減少する。これらの点からすれば係数Kは大きいほど
好ましいが、係数Kを大きくすると、図3(b)に示さ
れるように、加速度最大時に必要なトルクが大きくなる
ため、係数Kは、加速度最大時に必要なトルクがトルク
上限値を越えない範囲でしか大きくできない。
That is, the acceleration / deceleration pattern created by the function F (t) 3 approaches the sinusoidal acceleration / deceleration pattern as the coefficient K is increased, as shown in FIG. The coefficient K matches the ratio of the torque of the motor 1b that is changed according to the sinusoidal curve acceleration / deceleration pattern. As shown in FIG. 3B, the larger the coefficient K is, the more the torque change amounts E1 to E5 at the start and end of the acceleration are.
And shock and vibration at the start and end of acceleration are reduced. From these points, it is preferable that the coefficient K is as large as possible. However, as the coefficient K is increased, as shown in FIG. 3B, the torque required at the time of the maximum acceleration is increased. The torque can only be increased within a range where the torque does not exceed the torque upper limit.

【0016】したがって、加速度最大時に必要なモータ
のトルクが、該モータの性能として加減速時に許容され
るトルク上限値に一致するように係数Kを定めて作成し
た加減速パターンを用いれば、モータの出力性能が最大
限利用され、加減速開始時及び終了時のトルク変化量を
可及的に小さくすることができ、より大トルクが得られ
るモータを用いなくても加減速開始時及び終了時にモー
タやロボットのアームに加わるショックや振動を小さく
することができる。
Therefore, if the acceleration / deceleration pattern created by defining the coefficient K so that the torque of the motor required at the time of the maximum acceleration matches the torque upper limit allowable at the time of acceleration / deceleration as the performance of the motor is used, The output performance is maximized, the amount of torque change at the start and end of acceleration / deceleration can be made as small as possible, and the motor can be used at the start and end of acceleration / deceleration without using a motor that can obtain a larger torque. And the shock and vibration applied to the robot arm can be reduced.

【0017】また、直線加減速パターンを用いる場合に
必要な最大トルクをTr1 、正弦曲線加減速パターンを
用いる場合に必要な最大トルクをTr2 、モータの性能
として加減速時に許容されるトルク上限値をTrmax と
する次式 K=(Trmax −Tr1 )/(Tr2 −Tr1 ) を用いてモータの出力性能が最大限利用される係数Kを
定めることができる。例えば、これらのトルクTr1 ,
Tr2 ,Trmax が図3(b)に示される値であれば、
係数Kは0.5に定まる。
The maximum torque required when the linear acceleration / deceleration pattern is used is Tr1, the maximum torque required when the sine curve acceleration / deceleration pattern is used is Tr2, and the upper limit of the torque allowed during acceleration / deceleration as the performance of the motor is Tr2. Using the following equation as Trmax, K = (Trmax−Tr1) / (Tr2−Tr1), it is possible to determine the coefficient K at which the output performance of the motor is maximally used. For example, these torques Tr1,
If Tr2 and Trmax are the values shown in FIG.
The coefficient K is determined to be 0.5.

【0018】尚、図3(a)及び(b)では、説明上、
速度及びトルクの変化を示すパターン形状を誇張して描
いたため、実際に用いられるパターン形状と必ずしも一
致するものではなく、また図3(b)では、トルク変動
時に現れるいわゆるオーバシュートを除いてグラフ形状
を比較している。
In FIGS. 3A and 3B, for the sake of explanation,
Since the pattern shape indicating the change in speed and torque is exaggerated, the pattern shape does not always match the actually used pattern shape. In FIG. 3B, a graph shape excluding a so-called overshoot appearing when the torque fluctuates. Are compared.

【0019】[0019]

【発明の効果】以上のように本発明によれば、駆動源の
出力を最大限活用して、駆動源や動作部に加減速開始時
及び終了時に加わるショックがより小さく、振動がより
発生しにくい加減速パターンを作成することができる。
As described above, according to the present invention, the shock applied to the drive source and the operation unit at the start and end of acceleration / deceleration is reduced by making full use of the output of the drive source, and vibration is generated more. A difficult acceleration / deceleration pattern can be created.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明が適用されるロボットの一実施形態を
示すブロック図
FIG. 1 is a block diagram showing an embodiment of a robot to which the present invention is applied.

【図2】 (a)〜(e)は、係数Kの値を変えて、本
発明の方法により作成した加減速パターン形状と、トル
クの変化を示すグラフ形状とを示す図
FIGS. 2A to 2E are diagrams showing an acceleration / deceleration pattern shape created by the method of the present invention by changing the value of a coefficient K, and a graph shape showing a change in torque.

【図3】 (a)は、図2に示される加減速パターン形
状を重ね合わせたものの要部を示す図、(b)は、図2
に示されるトルクの変化を示すグラフ形状を重ね合わせ
たものの要部を示す図
3A is a diagram showing a main part of the acceleration / deceleration pattern shape shown in FIG. 2 which is superimposed, and FIG.
The figure which shows the principal part of what superimposed the graph shape which shows the change of torque which is shown in

【符号の説明】[Explanation of symbols]

1 ロボット 1a アーム(動作部) 1b サーボモータ(駆動源) 2 制御部 3 アンプ G1 〜G5 トルクパターン P1 直線加減速パターン P5 正弦曲線加減速パターン(曲線加減速パターン) DESCRIPTION OF SYMBOLS 1 Robot 1a Arm (operation part) 1b Servomotor (drive source) 2 Control part 3 Amplifier G1-G5 Torque pattern P1 Linear acceleration / deceleration pattern P5 Sine curve acceleration / deceleration pattern (curve acceleration / deceleration pattern)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ロボットの動作部の駆動源の速度制御に
用いる加減速パターンの作成方法において、直線加減速
に用いられる直線加減速パターンを表す関数をF(t)1、
曲線加減速に用いられる曲線加減速パターンを表す関数
をF(t)2、加速度最大時に必要なトルクが駆動源の加減
速時に許容されるトルク上限値を越えないように定めた
係数をK(0<K<1)として、加減速パターンを表す
関数F(t)3を次式 F(t)3=K×(F(t)2−F(t)1)+F(t)1 で求めることを特徴とする加減速パターンの作成方法。
1. A method for creating an acceleration / deceleration pattern used for controlling the speed of a drive source of an operating unit of a robot, wherein a function representing a linear acceleration / deceleration pattern used for linear acceleration / deceleration is represented by F (t) 1,
A function representing a curve acceleration / deceleration pattern used for curve acceleration / deceleration is represented by F (t) 2, and a coefficient K (K () is defined so that the torque required at the time of maximum acceleration does not exceed the torque upper limit allowed at the time of acceleration / deceleration of the drive source. Assuming that 0 <K <1), a function F (t) 3 representing the acceleration / deceleration pattern is obtained by the following equation: F (t) 3 = K × (F (t) 2−F (t) 1) + F (t) 1 A method for creating an acceleration / deceleration pattern, characterized in that:
JP25203097A 1997-09-17 1997-09-17 How to create an acceleration / deceleration pattern Expired - Fee Related JP3599969B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25203097A JP3599969B2 (en) 1997-09-17 1997-09-17 How to create an acceleration / deceleration pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25203097A JP3599969B2 (en) 1997-09-17 1997-09-17 How to create an acceleration / deceleration pattern

Publications (2)

Publication Number Publication Date
JPH1195826A true JPH1195826A (en) 1999-04-09
JP3599969B2 JP3599969B2 (en) 2004-12-08

Family

ID=17231615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25203097A Expired - Fee Related JP3599969B2 (en) 1997-09-17 1997-09-17 How to create an acceleration / deceleration pattern

Country Status (1)

Country Link
JP (1) JP3599969B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007086904A (en) * 2005-09-20 2007-04-05 Brother Ind Ltd Acceleration trajectory generation device
JP2008137450A (en) * 2006-11-30 2008-06-19 Nsk Ltd Electric steering device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007086904A (en) * 2005-09-20 2007-04-05 Brother Ind Ltd Acceleration trajectory generation device
JP2008137450A (en) * 2006-11-30 2008-06-19 Nsk Ltd Electric steering device

Also Published As

Publication number Publication date
JP3599969B2 (en) 2004-12-08

Similar Documents

Publication Publication Date Title
US5331264A (en) Method and device for generating an input command for a motion control system
JP2001296912A (en) Motor velocity/acceleration decision method, acceleration/deceleration generation method, acceleration/deceleration control method, acceleration/ deceleration controller and motor controller
JPH08338280A (en) Variable droop-engine speed control system
US8024061B2 (en) Method and device to generate position profile in motion controller
CN110941242A (en) Motor control device
JP2008090513A (en) Numerical controller
JPH01186182A (en) Servo motor controlling system
JPH1195826A (en) Acceleration-deceleration pattern producing method
JPH0616246B2 (en) Positioning control device
JP2003044102A (en) Learning control method
JP3229926B2 (en) Motor position control device
JP2906766B2 (en) Servo motor control device
JPH0670567A (en) Automatic setting method of control gain for motor and detecting method of backlash
JP2003047269A (en) Servo controller
JPH06182682A (en) Speed control method for robot
KR0183657B1 (en) Acceleration/deceleration trace generation method
JP3189650B2 (en) Robot controller
Ersalı et al. Real time PID controlled speed regulation of a DC motor using LabVIEW
JPH04314108A (en) Controller for robot
KR0165436B1 (en) Position speed controlling method &amp; device
JPH05150825A (en) Controller for robot
JP3200956B2 (en) Motor control device
JP2021129420A (en) Learning device, control apparatus, and learning method
JPH02101508A (en) Acceleration/deceleration controller
JPH0553631A (en) Robot controller

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040915

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees