JP3599969B2 - How to create an acceleration / deceleration pattern - Google Patents

How to create an acceleration / deceleration pattern Download PDF

Info

Publication number
JP3599969B2
JP3599969B2 JP25203097A JP25203097A JP3599969B2 JP 3599969 B2 JP3599969 B2 JP 3599969B2 JP 25203097 A JP25203097 A JP 25203097A JP 25203097 A JP25203097 A JP 25203097A JP 3599969 B2 JP3599969 B2 JP 3599969B2
Authority
JP
Japan
Prior art keywords
acceleration
deceleration
deceleration pattern
pattern
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25203097A
Other languages
Japanese (ja)
Other versions
JPH1195826A (en
Inventor
昭彦 高橋
聡 野條
快彦 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP25203097A priority Critical patent/JP3599969B2/en
Publication of JPH1195826A publication Critical patent/JPH1195826A/en
Application granted granted Critical
Publication of JP3599969B2 publication Critical patent/JP3599969B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、ロボットの動作部の駆動源の速度制御に用いる加減速パターンの作成方法に関する。
【0002】
【従来の技術】
従来、この種の加減速パターンとしては、いわゆる直線加減速パターン(図2(a)参照)と、例えば正弦曲線加減速パターン(図2(e)参照)などの曲線加減速パターンとが知られている。ところで、直線加減速パターンに従う速度制御では、例えばサーボモータなどの駆動源の加減速時のトルクは加減速開始時から終了時までほぼ一定であり、トルクを加減速開始時及び終了時に瞬時に変化させるようになっているため、加減速開始時及び終了時に駆動源やロボット等に大きなショックが加わったり、振動が発生したりし易い。これに対して、正弦曲線加減速パターンに従う速度制御では、駆動源のトルクが、始動時等の加減速開始時から次第に増減し、所定の極値に達するとその後次第にもとに戻るよう変化されるため、駆動源のトルクが加減速開始時及び終了時に瞬時に変化されることがなく、駆動源や動作部に加わるショックを小さくできると共に振動の発生を抑制でき、有利である。
【0003】
【発明が解決しようとする課題】
ところが、正弦曲線加減速パターンなどの曲線加減速パターンに従って速度制御を行うには、加減速時間及び加減速前後の速度差が同じ場合、直線加減速パターンに従って速度制御を行う場合に比べて、加速度最大時には最大約1.57倍のトルクが必要になるため、より大きなトルクが得られる駆動源が必要になってロボット装置が大型化したり、高価になったりする。
【0004】
本発明は、駆動源の出力性能が最大限活用され、駆動源や動作部に加減速開始時及び終了時に加わるショックを可及的に小さくなると共に振動を発生しにくくなる加減速パターンの作成方法を提供することを課題とする。
【0005】
【課題を解決するための手段】
上記課題を達成するため本発明は、ロボットの動作部の駆動源の速度制御に用いる加減速パターンの作成方法において、直線加減速に用いられる直線加減速パターンを用いる場合に必要な最大トルクをTr 1 、曲線加減速に用いられる曲線加減速パターンを用いる場合に必要な最大トルクをTr 2 、駆動源の加減速時に許容されるトルク上限値をTr max として、係数Kを次式、K=(Tr max −Tr 1 )/(Tr 2 −Tr 1 )で設定し、前記直線加減速パターンを表す関数をF(t)1、前記曲線加減速パターンを表す関数をF(t)2として、加減速パターンを表す関数F(t)3を次式、F(t)3=K×(F(t)2−F(t)1)+F(t)1で求める。
【0006】
尚、曲線加減速パターンは、速度の変化の割合が速度変化開始点から次第に大きくなり、速度変化終了点に近づくに連れて小さくなるように変化し、速度変化開始点と終了点との間に1つの変曲点を有するものであり、例えば正弦曲線加減速パターンがこれに該当する。
【0007】
関数F(t)3では、駆動源のトルクの一部が、曲線加減速パターンに従って変化される。曲線加減速パターンに従う制御は、加減速開始時及び終了時に瞬時に駆動源のトルクの大きさが変化するような制御ではなく、駆動源のトルクの大きさが漸次増加しあるいは減少するような制御である。従って、上記関数F(t)3により作成された加減速パターンを用いれば、加減速開始時及び終了時のトルクの変化の大きさが、曲線加減速パターンに従って変化されるトルク分だけ小さくなり、駆動源や動作部に加わるショックが小さくなると共に振動が発生しにくくなる。また、関数F(t)3を用いて作成した加減速パターンを用いることで所望の性能が得られれば、より大きなトルクが得られる駆動源を用いる必要がなくなり、ロボット装置の大型化やコストアップを防止できる。
【0008】
【発明の実施の形態】
図1を参照して1は制御部2により制御されるロボットであり、動作部として旋回動作するアーム1aを備える。該アーム1aは駆動源たるサーボモータ(以下、単にモータと記す)1bにより旋回されて所定位置に移動されるようになっており、モータ1bは制御部2から出力される信号に基づいてアンプ3から出力される電力により回転される。
【0009】
制御部2は、CPUと、モータ1bの回転速度の加減速制御に用いられる加減速パターンが記憶されている記憶手段4と、図示しないキーボードやティーチングボックス等の入力手段やCRT等の出力手段との間での信号のやり取りに用いられるインターフェース5と、モータ1bとの間での信号のやり取りに用いられるサーボインターフェース6とを備える。このうち記憶手段4には、経過時間に比例して速度が増減する直線加減速パターン(図2(a)参照)と、時間経過に伴い速度が正弦曲線を描くように増減する、曲線加減速パターンたる正弦曲線加減速パターン(図2(e)参照)とが記憶されている。
【0010】
尚、加速前の速度をV1 、加速後の速度をV2 、そして加速時間をTとすると、例えば直線加速パターンや正弦曲線加速パターンは、時間tをパラメータとする次の関数F(t)1´,F(t)2´

Figure 0003599969
で表される。
【0011】
このように構成される制御部2では、CPUにおいて記憶手段4から読み出した所定の加減速パターンに従って指令速度を求め、該指令速度を示す指令速度信号をサーボインターフェース6に出力する。サーボインターフェース6には、指令速度信号の他に、モータ1bより検出される実速度を示す実速度信号と、図示しない電流センサにより検出されるモータ1bの実電流値を示す実電流信号とが入力されており、サーボインターフェース6では、指令速度と実速度とを比較して実速度が指令速度になるようなトルクをモータ1bに生じさせる電流値(指令電流値)を示す信号(指令電流信号)を生成すると共に、指令電流値と実電流値とを比較して実電流値が指令電流値になるような電圧値(指令電圧値)を示す信号(指令電圧信号)を生成し、生成した両信号をアンプ3に出力する。これらの信号を基にアンプ3から所定の電力がモータ1bに供給される。このような動作をアーム1aが所定の旋回位置に移動するまで繰り返す。
【0012】
ところで、モータ1bの回転速度を加減速制御する場合、上述したように、正弦曲線加減速パターンに従う方が直線加減速パターンに従うよりショックや振動が発生しにくく有利であるが、加減速時間及び加減速前後の速度差が同じ場合、直線加減速パターンに従うよりも、加速度最大時には最大で約1.57倍のトルクが必要になるため、より大きなトルクが得られるモータが必要になったりする。
【0013】
そこで、本実施形態では、直線加減速パターンを示す関数をF(t)1、正弦曲線加減速パターンを示す関数をF(t)2、加速度最大時に必要なトルクが駆動源の加減速時に許容されるトルク上限値を越えないように定めた係数をK(0<K<1)とする関数F(t)3=K×(F(t)2−F(t)1)+F(t)1により加減速パターンを作成して記憶手段4に記憶させ、加減速制御のときにCPUに該関数F(t)3で作成された加減速パターンを読み出させて指令速度値を求めさせることとした。尚、上記の関数F(t)1,F(t)2,F(t)3はいずれも時間tをパラメータとする関数である。また、係数Kはインターフェース5に接続されるキーボード等の入力手段から設定するようになっており、係数Kを設定すると加減速パターンが作成され記憶手段4に記憶される。
【0014】
図2の(a)〜(e)は、係数Kの値を各表の上側に表示した値にした場合に作成される加減速パターンP1 〜P5 である。尚、各表に合わせて表示したグラフG1 〜G5 はトルクの変化を示している。図示するように、係数Kを0にして作成した加減速パターンP1 は直線加減速パターンに一致し、係数Kを1にして作成した加減速パターンP5 は正弦曲線加減速パターンに一致している。
【0015】
つまり、関数F(t)3により作成される加減速パターンは、図3(a)に示すように、係数Kを大きくするほど正弦曲線加減速パターンに近づく。そして係数Kはモータ1bのトルクのうち、正弦曲線加減速パターンに従って変化されるトルクの割合に一致する。また、図3(b)に示されるように、係数Kを大きくするほど加速開始時及び終了時のトルクの変化量E1 〜E5 が小さくなり、加速開始時及び終了時のショックや振動が減少する。これらの点からすれば係数Kは大きいほど好ましいが、係数Kを大きくすると、図3(b)に示されるように、加速度最大時に必要なトルクが大きくなるため、係数Kは、加速度最大時に必要なトルクがトルク上限値を越えない範囲でしか大きくできない。
【0016】
したがって、加速度最大時に必要なモータのトルクが、該モータの性能として加減速時に許容されるトルク上限値に一致するように係数Kを定めて作成した加減速パターンを用いれば、モータの出力性能が最大限利用され、加減速開始時及び終了時のトルク変化量を可及的に小さくすることができ、より大トルクが得られるモータを用いなくても加減速開始時及び終了時にモータやロボットのアームに加わるショックや振動を小さくすることができる。
【0017】
また、直線加減速パターンを用いる場合に必要な最大トルクをTr1 、正弦曲線加減速パターンを用いる場合に必要な最大トルクをTr2 、モータの性能として加減速時に許容されるトルク上限値をTrmax とする次式
K=(Trmax −Tr1 )/(Tr2 −Tr1 )
を用いてモータの出力性能が最大限利用される係数Kを定めることができる。例えば、これらのトルクTr1 ,Tr2 ,Trmax が図3(b)に示される値であれば、係数Kは0.5に定まる。
【0018】
尚、図3(a)及び(b)では、説明上、速度及びトルクの変化を示すパターン形状を誇張して描いたため、実際に用いられるパターン形状と必ずしも一致するものではなく、また図3(b)では、トルク変動時に現れるいわゆるオーバシュートを除いてグラフ形状を比較している。
【0019】
【発明の効果】
以上のように本発明によれば、駆動源の出力を最大限活用して、駆動源や動作部に加減速開始時及び終了時に加わるショックがより小さく、振動がより発生しにくい加減速パターンを作成することができる。
【図面の簡単な説明】
【図1】本発明が適用されるロボットの一実施形態を示すブロック図
【図2】(a)〜(e)は、係数Kの値を変えて、本発明の方法により作成した加減速パターン形状と、トルクの変化を示すグラフ形状とを示す図
【図3】(a)は、図2に示される加減速パターン形状を重ね合わせたものの要部を示す図、(b)は、図2に示されるトルクの変化を示すグラフ形状を重ね合わせたものの要部を示す図
【符号の説明】
1 ロボット
1a アーム(動作部)
1b サーボモータ(駆動源)
2 制御部
3 アンプ
G1 〜G5 トルクパターン
P1 直線加減速パターン
P5 正弦曲線加減速パターン(曲線加減速パターン)[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for creating an acceleration / deceleration pattern used for controlling the speed of a drive source of an operating unit of a robot.
[0002]
[Prior art]
Conventionally, as this kind of acceleration / deceleration pattern, a so-called linear acceleration / deceleration pattern (see FIG. 2A) and a curved acceleration / deceleration pattern such as a sine curve acceleration / deceleration pattern (see FIG. 2E) are known. ing. By the way, in the speed control according to the linear acceleration / deceleration pattern, for example, the torque at the time of acceleration / deceleration of a drive source such as a servomotor is almost constant from the start to the end of acceleration / deceleration, and the torque changes instantaneously at the start and end of acceleration / deceleration. Therefore, at the start and end of acceleration / deceleration, a large shock is likely to be applied to the drive source, the robot, and the like, and vibration is likely to occur. On the other hand, in the speed control according to the sine curve acceleration / deceleration pattern, the torque of the drive source gradually increases and decreases from the start of acceleration / deceleration such as at the time of starting, and changes to return to the original state after reaching a predetermined extreme value. Therefore, the torque of the drive source is not instantaneously changed at the start and end of the acceleration / deceleration, so that the shock applied to the drive source and the operation unit can be reduced, and the generation of vibration can be advantageously suppressed.
[0003]
[Problems to be solved by the invention]
However, when speed control is performed in accordance with a curve acceleration / deceleration pattern such as a sine curve acceleration / deceleration pattern, when the acceleration / deceleration time and the speed difference before and after acceleration / deceleration are the same, the acceleration is higher than when speed control is performed in accordance with the linear acceleration / deceleration pattern. At the maximum, a torque of about 1.57 times is required at the maximum, so that a drive source capable of obtaining a larger torque is required, which increases the size and cost of the robot apparatus.
[0004]
The present invention provides a method for creating an acceleration / deceleration pattern in which the output performance of a drive source is utilized to the utmost, a shock applied to a drive source and an operation unit at the start and end of acceleration / deceleration is reduced as much as possible, and vibration is hardly generated. The task is to provide
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a method for creating an acceleration / deceleration pattern used for speed control of a drive source of an operating unit of a robot, wherein the maximum torque required when a linear acceleration / deceleration pattern used for linear acceleration / deceleration is used is Tr. 1. The coefficient K is given by the following equation, where Tr 2 is the maximum torque required when the curve acceleration / deceleration pattern used for curve acceleration / deceleration is used, and Tr max is the torque upper limit allowed during acceleration / deceleration of the drive source. set with Tr max -Tr 1) / (Tr 2 -Tr 1), the linear acceleration a function representing the pattern F (t) 1, a function representing the curve acceleration and deceleration pattern as F (t) 2, pressurized The function F (t) 3 representing the deceleration pattern is obtained by the following equation: F (t) 3 = K × (F (t) 2-F (t) 1) + F (t) 1.
[0006]
Note that the curve acceleration / deceleration pattern changes so that the rate of speed change gradually increases from the speed change start point, and decreases as the speed change end point approaches, between the speed change start point and the end point. It has one inflection point, for example, a sinusoidal acceleration / deceleration pattern.
[0007]
In the function F (t) 3, a part of the torque of the driving source is changed according to the curve acceleration / deceleration pattern. The control according to the curve acceleration / deceleration pattern is not a control in which the magnitude of the torque of the drive source changes instantaneously at the start and end of the acceleration / deceleration, but a control in which the magnitude of the torque of the drive source gradually increases or decreases. It is. Therefore, if the acceleration / deceleration pattern created by the function F (t) 3 is used, the magnitude of the torque change at the start and end of the acceleration / deceleration becomes smaller by the torque changed according to the curve acceleration / deceleration pattern, Shock applied to the driving source and the operating unit is reduced, and vibration is less likely to occur. Further, if desired performance is obtained by using the acceleration / deceleration pattern created by using the function F (t) 3, it is not necessary to use a drive source capable of obtaining a larger torque, and the robot apparatus becomes larger and costs increase. Can be prevented.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Referring to FIG. 1, reference numeral 1 denotes a robot controlled by a control unit 2, which includes an arm 1a that performs a turning operation as an operation unit. The arm 1a is turned and moved to a predetermined position by a servomotor (hereinafter simply referred to as a motor) 1b as a drive source. The motor 1b is driven by an amplifier 3 based on a signal output from the control unit 2. It is rotated by the electric power output from.
[0009]
The control unit 2 includes a CPU, storage means 4 for storing acceleration / deceleration patterns used for acceleration / deceleration control of the rotation speed of the motor 1b, input means (not shown) such as a keyboard and teaching box, and output means such as a CRT. And a servo interface 6 used for exchanging signals with the motor 1b. The storage means 4 stores a linear acceleration / deceleration pattern in which the speed increases / decreases in proportion to the elapsed time (see FIG. 2 (a)), and a curve acceleration / deceleration in which the speed increases / decreases in a sinusoidal manner with time. A sine curve acceleration / deceleration pattern (see FIG. 2E) serving as a pattern is stored.
[0010]
Assuming that the speed before acceleration is V1, the speed after acceleration is V2, and the acceleration time is T, for example, a linear acceleration pattern or a sinusoidal acceleration pattern has the following function F (t) 1 ′ using time t as a parameter. , F (t) 2 '
Figure 0003599969
It is represented by
[0011]
In the control unit 2 configured as described above, the CPU obtains a command speed in accordance with a predetermined acceleration / deceleration pattern read from the storage unit 4 and outputs a command speed signal indicating the command speed to the servo interface 6. In addition to the command speed signal, the servo interface 6 receives an actual speed signal indicating the actual speed detected by the motor 1b and an actual current signal indicating the actual current value of the motor 1b detected by a current sensor (not shown). The servo interface 6 compares the command speed with the actual speed, and a signal (command current signal) indicating a current value (command current value) that causes the motor 1b to generate a torque such that the actual speed becomes the command speed. And a signal (command voltage signal) indicating a voltage value (command voltage value) such that the actual current value becomes the command current value by comparing the command current value with the actual current value. The signal is output to the amplifier 3. Based on these signals, predetermined power is supplied from the amplifier 3 to the motor 1b. Such an operation is repeated until the arm 1a moves to a predetermined turning position.
[0012]
In the case of controlling the rotation speed of the motor 1b to accelerate or decelerate, as described above, it is more advantageous to follow a sine curve acceleration / deceleration pattern than to follow a linear acceleration / deceleration pattern, as it is less likely to generate shock or vibration. When the speed difference before and after deceleration is the same, a torque of about 1.57 times at the maximum is required at the time of the maximum acceleration as compared with the linear acceleration / deceleration pattern. Therefore, a motor that can obtain a larger torque is required.
[0013]
Therefore, in the present embodiment, the function indicating the linear acceleration / deceleration pattern is F (t) 1, the function indicating the sine curve acceleration / deceleration pattern is F (t) 2, and the torque required when the acceleration is maximum is allowed when the drive source accelerates / decelerates. F (t) 3 = K × (F (t) 2-F (t) 1) + F (t) where K (0 <K <1) is a coefficient determined so as not to exceed the upper limit value of the torque to be performed. (1) creating an acceleration / deceleration pattern and storing it in the storage means (4), and causing the CPU to read out the acceleration / deceleration pattern created by the function F (t) 3 during acceleration / deceleration control to obtain a command speed value. And The above functions F (t) 1, F (t) 2, and F (t) 3 are functions using time t as a parameter. The coefficient K is set from input means such as a keyboard connected to the interface 5. When the coefficient K is set, an acceleration / deceleration pattern is created and stored in the storage means 4.
[0014]
FIGS. 2A to 2E show acceleration / deceleration patterns P1 to P5 created when the value of the coefficient K is set to a value displayed above each table. Graphs G1 to G5 displayed in accordance with each table show changes in torque. As shown, the acceleration / deceleration pattern P1 created with the coefficient K set to 0 matches the linear acceleration / deceleration pattern, and the acceleration / deceleration pattern P5 created with the coefficient K set to 1 matches the sine curve acceleration / deceleration pattern.
[0015]
In other words, the acceleration / deceleration pattern created by the function F (t) 3 approaches the sinusoidal acceleration / deceleration pattern as the coefficient K increases, as shown in FIG. The coefficient K matches the ratio of the torque of the motor 1b that is changed according to the sinusoidal curve acceleration / deceleration pattern. Further, as shown in FIG. 3B, the larger the coefficient K, the smaller the torque change amounts E1 to E5 at the start and end of the acceleration, and the shock and vibration at the start and the end of the acceleration are reduced. . From these points, it is preferable that the coefficient K is as large as possible. However, as the coefficient K is increased, as shown in FIG. The torque can only be increased within a range where the torque does not exceed the torque upper limit.
[0016]
Therefore, if the acceleration / deceleration pattern created by defining the coefficient K so that the torque of the motor required at the time of the maximum acceleration matches the torque upper limit allowed during acceleration / deceleration as the performance of the motor is used, the output performance of the motor is improved. It is used to the maximum extent, the amount of torque change at the start and end of acceleration and deceleration can be made as small as possible, and the motor and robot can be used at the start and end of acceleration and deceleration without using a motor that can obtain a larger torque. Shock and vibration applied to the arm can be reduced.
[0017]
Also, the maximum torque required when using the linear acceleration / deceleration pattern is Tr1, the maximum torque required when using the sine curve acceleration / deceleration pattern is Tr2, and the upper limit of the torque that is permitted during acceleration / deceleration as the motor performance is Trmax. The following equation K = (Trmax−Tr1) / (Tr2−Tr1)
Can be used to determine a coefficient K that maximizes the output performance of the motor. For example, if these torques Tr1, Tr2, Trmax are the values shown in FIG. 3B, the coefficient K is determined to be 0.5.
[0018]
In FIGS. 3A and 3B, the pattern shape showing the change in speed and torque is exaggerated for the sake of explanation, and therefore does not always match the actually used pattern shape. In b), the graph shapes are compared except for the so-called overshoot that appears when the torque fluctuates.
[0019]
【The invention's effect】
As described above, according to the present invention, an acceleration / deceleration pattern in which the shock applied to the drive source and the operation unit at the start and end of acceleration / deceleration is smaller and vibration is less likely to be generated by making the most of the output of the drive source. Can be created.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an embodiment of a robot to which the present invention is applied. FIGS. 2A to 2E show acceleration / deceleration patterns created by a method of the present invention by changing the value of a coefficient K; FIG. 3 (a) is a diagram showing a main part of the acceleration / deceleration pattern shape shown in FIG. 2 which is superimposed, and FIG. The figure which shows the principal part of what superimposed the graph shape which shows the change of the torque which is shown in [the explanation of the mark]
1 Robot 1a arm (moving part)
1b Servo motor (drive source)
2 Control unit 3 Amplifiers G1 to G5 Torque pattern P1 Linear acceleration / deceleration pattern P5 Sine curve acceleration / deceleration pattern (curve acceleration / deceleration pattern)

Claims (1)

ロボットの動作部の駆動源の速度制御に用いる加減速パターンの作成方法において、直線加減速に用いられる直線加減速パターンを用いる場合に必要な最大トルクをTr 1 、曲線加減速に用いられる曲線加減速パターンを用いる場合に必要な最大トルクをTr 1 、駆動源の加減速時に許容されるトルク上限値をTr max として、係数Kを次式
K=(Tr max −Tr 1 )/(Tr 2 −Tr 1
で設定し、
前記直線加減速パターンを表す関数をF(t)1、前記曲線加減速パターンを表す関数をF(t)2として、加減速パターンを表す関数F(t)3を次式
F(t)3=K×(F(t)2−F(t)1)+F(t)1
で求めることを特徴とする加減速パターンの作成方法。
In the method for creating an acceleration / deceleration pattern used for controlling the speed of the drive source of the robot operating unit, the maximum torque required when a linear acceleration / deceleration pattern used for linear acceleration / deceleration is used is Tr 1 , and a curve acceleration / deceleration used for curve acceleration / deceleration is used. When the maximum torque required when the deceleration pattern is used is Tr 1 , and the upper limit of the torque allowed during acceleration / deceleration of the driving source is Tr max , the coefficient K is expressed by the following equation.
K = (Tr max -Tr 1) / (Tr 2 -Tr 1)
Set with
The linear acceleration a function representing the pattern F (t) 1, the function representing the curve acceleration and deceleration pattern as F (t) 2, the function F representing the acceleration and deceleration patterns (t) 3 and the following equation F (t) 3 = K × (F (t) 2-F (t) 1) + F (t) 1
A method for creating an acceleration / deceleration pattern, characterized in that:
JP25203097A 1997-09-17 1997-09-17 How to create an acceleration / deceleration pattern Expired - Fee Related JP3599969B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25203097A JP3599969B2 (en) 1997-09-17 1997-09-17 How to create an acceleration / deceleration pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25203097A JP3599969B2 (en) 1997-09-17 1997-09-17 How to create an acceleration / deceleration pattern

Publications (2)

Publication Number Publication Date
JPH1195826A JPH1195826A (en) 1999-04-09
JP3599969B2 true JP3599969B2 (en) 2004-12-08

Family

ID=17231615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25203097A Expired - Fee Related JP3599969B2 (en) 1997-09-17 1997-09-17 How to create an acceleration / deceleration pattern

Country Status (1)

Country Link
JP (1) JP3599969B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007086904A (en) * 2005-09-20 2007-04-05 Brother Ind Ltd Acceleration trajectory generation device
JP5151128B2 (en) * 2006-11-30 2013-02-27 日本精工株式会社 Electric steering device

Also Published As

Publication number Publication date
JPH1195826A (en) 1999-04-09

Similar Documents

Publication Publication Date Title
JP3900789B2 (en) Motor speed / acceleration determination method, acceleration / deceleration generation method, acceleration / deceleration control method, acceleration / deceleration control device, and motor control device
JP4553158B2 (en) Motor control apparatus and method
JP2009072833A (en) Direct instructing device of robot
JP2002215239A (en) Method and device for controlling travel of vehicle system
JP3599969B2 (en) How to create an acceleration / deceleration pattern
WO1994019732A1 (en) Device for reducing oscillations of a robot
US10579044B2 (en) Computer readable information recording medium, evaluation method, and control device
JP2003108230A5 (en)
JPH0616246B2 (en) Positioning control device
WO2023013168A1 (en) Control device, control method, and program
CN107873122A (en) Motor control system
EP0441983A1 (en) Method of controlling robot
JP4210921B2 (en) Command generation method and apparatus for servo control device
JPH10143249A (en) Control system, acceleration pattern setting method, and parameter setting method therefor
JP2000306115A5 (en)
JP7469063B2 (en) Learning device, control device, and learning method
JPH09141581A (en) Robot control device
JPH07111647B2 (en) Robot arm control method
JP2000252318A (en) Movement controller for object
JPH05150825A (en) Controller for robot
JPH09198144A (en) Speed control method and device for mobile object
JP2002082721A (en) Driving controller for robot
KR0183657B1 (en) Acceleration/deceleration trace generation method
WO1994012916A1 (en) Acceleration/deceleration control method for servo motor
JPH04299715A (en) Motor motion controller

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040915

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees