JPH1194612A - Flow rate measuring device - Google Patents

Flow rate measuring device

Info

Publication number
JPH1194612A
JPH1194612A JP25451697A JP25451697A JPH1194612A JP H1194612 A JPH1194612 A JP H1194612A JP 25451697 A JP25451697 A JP 25451697A JP 25451697 A JP25451697 A JP 25451697A JP H1194612 A JPH1194612 A JP H1194612A
Authority
JP
Japan
Prior art keywords
flow rate
flow
rate measuring
change
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25451697A
Other languages
Japanese (ja)
Other versions
JP3632396B2 (en
Inventor
Kenzo Ochi
謙三 黄地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP25451697A priority Critical patent/JP3632396B2/en
Publication of JPH1194612A publication Critical patent/JPH1194612A/en
Application granted granted Critical
Publication of JP3632396B2 publication Critical patent/JP3632396B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the power consumption without lowering the flow measuring accuracy, by setting up driving conditions for driving a flow-rate measuring means according to output of a change detecting means. SOLUTION: A hot-wire type flow-rate measuring part 10 causes a heating element in a channel 11 to generate heat by signal of a flow measurement starting means 12, measures temperature change thereof, and outputs its measured result to a signal processing mean 13. Since flow velocity of fluid is found by using a characteristic that the larger the flow velocity in the channel is, the more the heat generated in the heating element is lost, the temperature change becomes smaller, and a flow rate computing means 14 computes the flow rate of a fluid flowing in the channel 11 by using the flow velocity, the cross section area of the channel 11, sampling period, and the like. The sampling period is normally set up to be several seconds to several tens seconds from the viewpoint of lower power consumption. Driving conditions for driving the flow-rate measuring part are set up by a condition set-up means 16 by using an output signal of a pressure sensor 15 as a change detecting means for detecting change of fluid condition.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、流体の流量を熱線
あるいは超音波などを用いて計測する外部同期型の流量
計測装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an external synchronous type flow rate measuring device for measuring a flow rate of a fluid using a hot wire or an ultrasonic wave.

【0002】[0002]

【従来の技術】従来、この種の外部同期型流体計測装置
は、図8に示すような熱線式流体流量計がよく知られて
いる。半導体などの基台1の表面上に、エッチングなど
の微細加工技術で凹部2を設け、その上に電気絶縁性薄
膜3をブリッジ状に形成し、さらにその上に、複数個の
温度特性の優れた測温抵抗体4,5を、それぞれが熱的
に絶縁されるよう電気絶縁性薄膜3にスリット6を構成
し、さらに測温抵抗体4,5の近傍の電気絶縁性薄膜3
上に流体の温度を検知する測温抵抗体からなる流体温度
検出素子7を設け、熱線式流体流量計としていた。矢印
8の方向から流体を流し、測温抵抗体4,5に定電流源
からの一定電流を、一定時間流し、加熱昇温するととも
に、測温抵抗体4,5を、流体の上流,下流になるよう
に配置し、流体の流速に依存した冷却効果によるそれぞ
れの測温抵抗体4,5の抵抗値からそれぞれの温度を計
測し、その温度差から、流体の流速を計測しようとする
ものであった(特公平6−25684号公報参照)。
2. Description of the Related Art Conventionally, as this type of external synchronous type fluid measuring device, a hot-wire type fluid flow meter as shown in FIG. 8 is well known. A concave portion 2 is formed on the surface of a base 1 such as a semiconductor by a fine processing technique such as etching, and an electrically insulating thin film 3 is formed thereon in a bridge shape. A slit 6 is formed in the electrically insulating thin film 3 so that the resistance thermometers 4 and 5 are thermally insulated from each other.
A fluid temperature detecting element 7 composed of a temperature measuring resistor for detecting the temperature of the fluid is provided on the upper portion, and a hot wire type fluid flow meter is used. A fluid is allowed to flow from the direction of the arrow 8, a constant current from a constant current source is allowed to flow through the resistance temperature detectors 4 and 5 for a predetermined time, and the temperature is increased by heating. And each temperature is measured from the resistance value of each of the resistance temperature detectors 4 and 5 due to the cooling effect depending on the flow velocity of the fluid, and the flow velocity of the fluid is measured from the temperature difference. (See Japanese Patent Publication No. 6-25684).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来の外部同期型の流量計測装置では、消費電力を抑える
ため、間欠サンプリングを実施しており、正確な流量計
測をする場合には、サンプリング回数を増やし計測する
ため、消費電力が大きくなるという課題があった。例え
ば、発熱部を有する熱線式流体流量計の場合には、計測
時間10[msec]、計測電流10[mA]、計測回
数を1[回/sec]と仮定して計算すると、約900
0[mA・Hr]となり、通常よく用いられるリチウム
電池などであれば、約5000[mA・Hr]の容量で
あるため、約10年間の動作が保証できなくなる。
However, in the above-mentioned conventional externally-synchronized flow rate measuring apparatus, intermittent sampling is performed in order to suppress power consumption. There is a problem that power consumption increases due to increased measurement. For example, in the case of a hot-wire type fluid flow meter having a heat-generating portion, if the calculation is performed on the assumption that the measurement time is 10 [msec], the measurement current is 10 [mA], and the number of times of measurement is 1 [times / sec], about 900
0 [mA · Hr], and if a lithium battery or the like that is usually used has a capacity of about 5000 [mA · Hr], operation for about 10 years cannot be guaranteed.

【0004】また、間欠サンプリングの間に、流体が流
れ始めると、流量を正確に計測できないという課題もあ
った。このため、ガスメータのような異常使用時の流路
遮断などの保安機能を兼ねた流量計測装置では、低消費
電力の電池駆動で、かつ、安全性確保のため正確な流量
計測を短時間で実現することが課題となっていた。ま
た、使用開始直後の流量パターンが機器固有のパターン
を示す大型給湯機などの場合、外部同期型の流量計で
は、前記流量パターンを正確に計測することが困難であ
った。
Another problem is that if the fluid starts flowing during intermittent sampling, the flow rate cannot be measured accurately. For this reason, with a flow meter that also has a safety function such as shutting off the flow path when abnormal use is used, such as a gas meter, it uses a battery with low power consumption and realizes accurate flow measurement in a short time to ensure safety Was a challenge. In addition, in the case of a large water heater or the like in which the flow pattern immediately after the start of use is a pattern unique to the device, it has been difficult to accurately measure the flow pattern with an external synchronous type flow meter.

【0005】[0005]

【課題を解決するための手段】本発明の流量計測装置は
上記課題を解決するため、流体流量を計測する流量計測
手段と、圧力センサあるいはガスセンサなどの流体状態
の変化を検出する変化検出手段と、前記変化検出手段の
出力に応じ、前記流量計測手段を駆動する駆動条件を設
定する条件設定手段とを備えたものである。この構成に
より、通常計測時は、一定間隔、例えば、数秒から十数
秒のサンプリング間隔で流量を計測しているが、圧力変
化などが発生した時は、それと同期し、数秒あるいはそ
れ以下のサンプリング間隔で流量を計測するように設定
して計測することができる。このため、流量計測精度を
落とすことなく、かつ低消費電力を実現することができ
る。また、流量の立上がりと同期して流量計測を開始す
ることができるため、流量も正確に計測することができ
る。
In order to solve the above problems, a flow rate measuring device according to the present invention includes a flow rate measuring means for measuring a fluid flow rate, and a change detecting means for detecting a change in a fluid state such as a pressure sensor or a gas sensor. And condition setting means for setting driving conditions for driving the flow rate measuring means according to the output of the change detecting means. With this configuration, during normal measurement, the flow rate is measured at a fixed interval, for example, a sampling interval of several seconds to several tens of seconds, but when a pressure change or the like occurs, it is synchronized with that, and the sampling interval is several seconds or less. Can be set to measure the flow rate. Therefore, low power consumption can be realized without lowering the flow rate measurement accuracy. In addition, since the flow measurement can be started in synchronization with the rise of the flow, the flow can also be accurately measured.

【0006】[0006]

【発明の実施の形態】本発明は、流体流量を計測する流
量計測手段と、圧力センサあるいはガスセンサなどの流
体状態の変化を検出する変化検出手段と、前記変化検出
手段の出力に応じ、前記流量計測手段を駆動する駆動条
件を設定する条件設定手段を備えた構成とした。この構
成により、通常計測時は、一定間隔、例えば、数秒から
10秒のサンプリング間隔で流量を計測しているが、圧
力変化などが発生した時は、それと同期し、数秒あるい
はそれ以下のサンプリング間隔で流量を計測するように
設定して計測することができる。このため、流量計測精
度を落とすことなく、低消費電力を実現することができ
る。また、同期して流量計測を開始することができるた
め、流量も正確に計測することができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention relates to a flow rate measuring means for measuring a fluid flow rate, a change detecting means for detecting a change in a fluid state, such as a pressure sensor or a gas sensor, The configuration is provided with condition setting means for setting driving conditions for driving the measuring means. With this configuration, during normal measurement, the flow rate is measured at a fixed interval, for example, a sampling interval of several seconds to 10 seconds. However, when a pressure change or the like occurs, the flow is measured in synchronization with the sampling interval, and a sampling interval of several seconds or less. Can be set to measure the flow rate. Therefore, low power consumption can be realized without lowering the flow rate measurement accuracy. In addition, since the flow measurement can be started in synchronization, the flow can also be accurately measured.

【0007】また、本発明は、流体流量を計測する流量
計測手段と、弁の開閉操作などの流体状態を変化させる
変化発生手段と、前記変化発生手段の動作に応じ、前記
流量計測手段を駆動する駆動条件を設定する条件設定手
段とを備えた構成とした。この構成により、大型給湯機
などの弁の開閉動作あるいは、点火動作などと同期し
て、流量を最適なサンプリング間隔で計測することがで
きる。従って、使用開始直後から数十秒間の流量変化お
よび圧力変化などを、詳細に計測することができるの
で、使用器具を特定することが可能となり、保安機能を
高めることができる。また、ガス充填時など、コックの
開放(充填開始)と同時に計測開始することができるの
で、充填量などを正確に計測することもできる。
Further, the present invention provides a flow rate measuring means for measuring a fluid flow rate, a change generating means for changing a fluid state such as a valve opening / closing operation, and a drive means for driving the flow rate measuring means in accordance with the operation of the change generating means. And a condition setting means for setting a driving condition to be performed. With this configuration, the flow rate can be measured at an optimal sampling interval in synchronization with the opening / closing operation of a valve of a large water heater or the like, or the ignition operation. Therefore, since a change in flow rate and a change in pressure for several tens of seconds immediately after the start of use can be measured in detail, it is possible to specify a device to be used and to enhance the security function. In addition, since the measurement can be started at the same time when the cock is opened (filling starts), such as at the time of gas filling, the filling amount and the like can be accurately measured.

【0008】また本発明は、流体の流れる流路内に、加
熱素子と、前記加熱素子による温度変化を検知する温度
センサとを備えた計測手段としたので、数十ミリ秒とい
う短いサンプリング間隔を実現することができ、高精度
に流量を計測することができる。また、外部信号と同期
して、容易に計測することができる。
Further, according to the present invention, since a measuring device including a heating element and a temperature sensor for detecting a temperature change by the heating element is provided in the flow path of the fluid, a sampling interval as short as several tens of milliseconds is required. The flow rate can be measured with high accuracy. In addition, measurement can be easily performed in synchronization with an external signal.

【0009】また、本発明は、流体の流れる流路の上流
側と下流側とに超音波を送受信する一対の超音波送受信
器を設け、上流側から下流側および下流側から上流側へ
の超音波伝搬時間を計測し、前記時間差から流体の流速
を演算し、流量を計測する超音波流量計測手段で構成し
たので、広範囲の流量を、外部信号と同期して計測する
ことができ、低消費電力で、かつ、高精度なガスメータ
を実現することができる。
Further, the present invention provides a pair of ultrasonic transceivers for transmitting and receiving ultrasonic waves upstream and downstream of a flow path through which a fluid flows, wherein the ultrasonic transmitter and receiver transmit ultrasonic waves from the upstream side to the downstream side and from the downstream side to the upstream side. Since it is configured with an ultrasonic flow rate measuring unit that measures the sound wave propagation time, calculates the flow velocity of the fluid from the time difference, and measures the flow rate, a wide range of flow rate can be measured in synchronization with an external signal, and low consumption is achieved. A high-precision gas meter using electric power can be realized.

【0010】また、本発明は、圧力などの状態変化直
後、あるいは、弁開動作直後は、サンプリング周期を短
く、時間とともに、あるいは流量変化が小さくなるにつ
れて、サンプリング周期を長くする駆動条件を設定する
ことができる構成とした。このため、必要なときだけ、
サンプリング時間を短くし、流量を計測することができ
るので、過渡状態の流量変化をも、低消費電力で精度よ
く計測することができる。
Further, according to the present invention, immediately after a change in state such as pressure, or immediately after a valve is opened, a sampling cycle is shortened, and a driving condition is set such that the sampling cycle is lengthened with time or as the flow rate change becomes smaller. It was configured to be able to. Therefore, only when necessary,
Since the sampling time can be shortened and the flow rate can be measured, a change in the flow rate in a transient state can be accurately measured with low power consumption.

【0011】また、本発明は、圧力センサなどの流体状
態変化検出手段の出力と、流量計測手段の流量計測結果
とから、下流側の流路状態を判別する判別手段とを備え
た構成とした。この構成により、流体状態が変化した直
後から、圧力の時間変化と流量の時間変化とを正確に計
測でき、下流側の流路状態を確実に判別することがで
き、流路の安全を確保する事ができる。
Further, the present invention has a structure provided with a discriminating means for discriminating the state of the flow path on the downstream side from the output of the fluid state change detecting means such as a pressure sensor and the flow rate measurement result of the flow rate measuring means. . With this configuration, immediately after the fluid state changes, the time change of the pressure and the time change of the flow rate can be accurately measured, the state of the flow path on the downstream side can be reliably determined, and the safety of the flow path is ensured. Can do things.

【0012】また、本発明は、圧力値が大きく、流量が
大きい場合には、下流側には機器が取り付けられてお
り、ガスを使用中と判別することができ、下流側の安全
を確保することができる。
Further, according to the present invention, when the pressure value is large and the flow rate is large, a device is mounted on the downstream side, it can be determined that the gas is in use, and the safety on the downstream side is ensured. be able to.

【0013】また、本発明は、圧力値が小さく、流量が
大きい場合には、下流側では、負荷なしでガスが放出中
と判別する構成としたため、遮断弁などに遮断命令を送
信することが可能となり、下流側の危険を未然に防止す
ることが可能となる。
Further, according to the present invention, when the pressure value is small and the flow rate is large, it is determined that the gas is being discharged without load on the downstream side, so that a shutoff command can be transmitted to a shutoff valve or the like. This makes it possible to prevent danger on the downstream side.

【0014】また、本発明は、圧力値が大きく、流量が
小さい場合、機器を介してガスを極く微量の使用中ある
いは漏洩と判別する構成としたため、長時間にわたって
この状態が維持されれば、種火程度の極く微量のガス使
用中、あるいは漏洩の可能性ありと表示あるいは報知す
ることが可能なため、下流側の危険性を未然防止するこ
とができる。
Further, in the present invention, when the pressure value is large and the flow rate is small, it is determined that a very small amount of gas is used or leaked through the device, so that if this state is maintained for a long time, Since it is possible to display or notify that a very small amount of gas, such as a pilot flame, is being used, or that there is a possibility of leakage, it is possible to prevent danger on the downstream side.

【0015】また、本発明は、圧力値が大きく、流量が
ゼロの場合、下流側が完全閉止状態と判別する構成とし
たため、下流側の安全を短時間で確保することができ
る。
Further, in the present invention, when the pressure value is large and the flow rate is zero, the downstream side is determined to be in a completely closed state, so that safety on the downstream side can be secured in a short time.

【0016】[0016]

【実施例】以下、本発明の実施例を図面にもとづいて説
明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0017】(実施例1)図1は、本発明の実施例1に
おける流量計9のブロック図を示す。10は流路11内
に設けられた流量計測手段としての熱線型流量計測部を
示す。熱線型流量計測部10は、流量計測開始手段12
の信号により、流路11内の発熱体を発熱させ、その温
度変化を計測し、その計測結果を信号処理手段13に出
力する。流路内の流速が大きいほど、発熱体で発生した
熱はより強く冷却されるため、温度変化が小さくなると
いう特性から流体の流速を求め、さらに流路11の断面
積、あるいはサンプリング周期などを用い、流量演算手
段14において、流路11を流れる流体の流量を演算す
る。通常の場合、低消費電力の観点から、サンプリング
周期は数秒から十数秒に設定される。また、15は流体
状態の変化を検出する変化検出手段としての圧力センサ
を示す。圧力センサ15の出力信号により、流量計測部
を駆動する駆動条件が、条件設定手段16において設定
される。
FIG. 1 is a block diagram of a flow meter 9 according to a first embodiment of the present invention. Reference numeral 10 denotes a hot wire type flow rate measuring unit provided as flow rate measuring means provided in the flow path 11. The hot wire type flow measurement unit 10 includes a flow measurement start unit 12.
The heat generation element in the flow path 11 is caused to generate heat by the signal of (1), the temperature change is measured, and the measurement result is output to the signal processing means 13. The larger the flow velocity in the flow path, the more the heat generated by the heating element is cooled. Therefore, the flow velocity of the fluid is determined from the characteristic that the temperature change is reduced, and the cross-sectional area of the flow path 11 or the sampling period is further determined. The flow rate calculating means 14 calculates the flow rate of the fluid flowing through the flow path 11. Normally, the sampling period is set to several seconds to several tens of seconds from the viewpoint of low power consumption. Reference numeral 15 denotes a pressure sensor as a change detecting means for detecting a change in the fluid state. The driving condition for driving the flow rate measuring unit is set by the condition setting unit 16 based on the output signal of the pressure sensor 15.

【0018】このような構成において、例えば、図2に
示すような流体状態および流量変化が生じた場合、すな
わち、図2において、横軸は経過時間を示し、縦軸は圧
力17および流量18などの特性値の時間変化を示す。
なお、図中のTO は圧力変化が発生した時点を示す。1
9は通常時の、数秒から数十秒間隔の計測開始の同期信
号を示す。この場合、流量が立上がった時点を検知でき
ないため、大流量のガスが使用開始されても、その時点
での流量値を計測できないので、計測値に大きな誤差が
発生することになる。また流量を正確に計測できないた
め、保安上の点からも好ましい状態から逸脱してしまう
場合も有り得る。例えば、本発明の場合には、流量(1
8)の増大を、圧力センサの出力(17)を、例えば
0.2秒間隔で監視することにすると、流体の状態の変
化(圧力)から流量の変化を検出することができるの
で、その信号に基づき、例えば、流量計計測を、20で
示すように、通常数秒から数十秒間隔で計測を開始して
いたのを、例えば、1秒間間隔で開始するよう変更する
ことも可能となり、流量計測の精度が向上する。またこ
の場合には、流量の増加開始時点を、0.2秒の誤差で
確実に検出することができるため、例えば、配管の折損
などで大流量のガスが放出されても、即座に検出するこ
とができるので、保安性能も向上する。
In such a configuration, for example, when the fluid state and the flow rate change as shown in FIG. 2 occur, that is, in FIG. 2, the horizontal axis indicates the elapsed time, and the vertical axis indicates the pressure 17 and the flow rate 18. Of the characteristic values of FIG.
It should be noted that T O in the figure indicates a point in time when a pressure change occurs. 1
Reference numeral 9 denotes a synchronization signal for starting measurement at an interval of several seconds to several tens of seconds in a normal state. In this case, since the point in time when the flow rate rises cannot be detected, even if the gas with a large flow rate is started to be used, the flow rate value at that time cannot be measured, so that a large error occurs in the measured value. In addition, since the flow rate cannot be accurately measured, there may be a case where the state deviates from a preferable state in terms of security. For example, in the case of the present invention, the flow rate (1
By monitoring the increase (8) of the output (17) of the pressure sensor at intervals of, for example, 0.2 seconds, a change in the flow rate can be detected from a change (pressure) in the state of the fluid. On the basis of, for example, the flow meter measurement, as shown at 20, the measurement was normally started at intervals of several seconds to several tens of seconds, for example, it can be changed to start at intervals of 1 second, Measurement accuracy is improved. Further, in this case, since the start point of the increase in the flow rate can be reliably detected with an error of 0.2 seconds, even if a large flow rate gas is released due to, for example, a broken pipe, the detection is immediately performed. Security performance is also improved.

【0019】この場合、より消費電力の少ない、圧力セ
ンサなどを頻繁に動作させ、より消費電力の大きい熱線
型流量計測部を最適回数動作させることにより、低消費
電力を実現しつつ、計測精度および保安性能の確保を達
成できることになる。例えば、歪みゲージなどで構成さ
れる圧力センサであれば、計測に必要な時間を2[ms
ec]、計測に必要な電流を10[μA]、計測回数を
5[回/sec]と仮定すると、10年間の動作に必要
な電流容量は、約9[mA・Hr]となり、通常よく用
いられるリチウム電池などであれば、約5000[mA
・Hr]の容量があり、充分実現できる容量となる。
In this case, the pressure sensor and the like, which consume less power, are frequently operated, and the hot wire type flow rate measuring unit, which consumes more power, is operated an optimum number of times. Security performance can be ensured. For example, in the case of a pressure sensor composed of a strain gauge or the like, the time required for measurement is 2 [ms].
ec], assuming that the current required for measurement is 10 [μA] and the number of measurements is 5 [times / sec], the current capacity required for operation for 10 years is about 9 [mA · Hr], which is commonly used. About 5000 [mA]
[Hr], which is a sufficiently achievable capacity.

【0020】(実施例2)図3は、本発明の実施例2に
おける流量計21のブロック図を示す。実施例1と異な
るところは、圧力センサなどの流体状態変化検出手段の
代わりに、流体状態変化発生手段として、給湯機などの
ガス器具のコック22を設けた点にある。さらに、駆動
条件を設定する条件設定手段17を、前記コック22と
連動させた点にある。このため、コック22の開閉と同
期して、駆動条件を設定することが可能となる。すなわ
ち、通常の場合、低消費電力の観点から、サンプリング
周期は数秒から十数秒に設定し、コック22が開放され
た時から、例えば、0.5秒間隔で計測を開始すれば、
充分な計量精度が実現できる。また、コック22の閉止
と同期して、通常のサンプリング周期にもどせば、低消
費電力を実現しつつ、高精度な流量計測が実現できる。
また、コック22の開閉と同期して流量計測を開始する
ことが可能であるため、例えば、着火時の流量パターン
も詳細に計測することが可能となる。このため、大型の
給湯機においては、それぞれ固有の着火時の流量パター
ンを確認することができ、どのような種類の大型給湯機
が着火したかを確定することも可能となる。また、この
ような構成であるため、例えば、ガスボンベなどにガス
を充填する場合にも、コックの開放と同期して、短い時
間で流量計測を繰返すことが可能となるので、充填量を
正確に計測することができる。
(Embodiment 2) FIG. 3 is a block diagram of a flow meter 21 according to Embodiment 2 of the present invention. The difference from the first embodiment is that a cock 22 of a gas appliance such as a water heater is provided as a fluid state change generating means instead of the fluid state change detecting means such as a pressure sensor. Furthermore, a condition setting means 17 for setting driving conditions is linked to the cock 22. Therefore, it is possible to set the driving conditions in synchronization with the opening and closing of the cock 22. That is, in the normal case, from the viewpoint of low power consumption, the sampling cycle is set to several seconds to several tens of seconds, and when the cock 22 is opened, for example, if measurement is started at 0.5 second intervals,
Sufficient weighing accuracy can be realized. In addition, if the normal sampling period is returned in synchronization with the closing of the cock 22, high-precision flow measurement can be realized while realizing low power consumption.
In addition, since the flow measurement can be started in synchronization with the opening and closing of the cock 22, the flow pattern at the time of ignition, for example, can be measured in detail. Therefore, in a large-sized water heater, it is possible to confirm a flow pattern at the time of ignition specific to each, and it is also possible to determine what kind of large-sized water heater has ignited. In addition, because of such a configuration, for example, even when filling a gas cylinder or the like with a gas, it is possible to repeat the flow rate measurement in a short time in synchronization with the opening of the cock, so that the filling amount can be accurately determined. Can be measured.

【0021】(実施例3)図4は、本発明の実施例3に
おける流量計23のブロック図を示す。実施例1と異な
るところは、熱線型流量計測部10の代わりに、超音波
流量計測部を、上流側の超音波送受信器24と、下流側
の超音波送受信器25とを設け、送受信を切換える切換
手段26を設けたところにある。この構成において、例
えば、計測開始信号が12から切換手段26に与えられ
ると、切換手段26は、上流側の超音波送受信器24を
送信器として動作させ、下流側の送受信器25に向けて
超音波を流路内に送信させる。下流側の送受信器25
は、受信器として動作し、送信された超音波を受信し、
上流側から下流側にむけて送信された超音波の伝搬時間
を計時する。次に、切換手段26は、下流側の送受信器
25を送信器として動作させるとともに、上流側の送受
信器2を受信器として動作させる。
(Embodiment 3) FIG. 4 is a block diagram of a flow meter 23 according to Embodiment 3 of the present invention. The difference from the first embodiment is that, instead of the hot wire type flow measurement unit 10, an ultrasonic flow measurement unit is provided with an upstream ultrasonic transceiver 24 and a downstream ultrasonic transceiver 25 to switch between transmission and reception. The switching means 26 is provided. In this configuration, for example, when a measurement start signal is given from 12 to the switching unit 26, the switching unit 26 operates the upstream ultrasonic transceiver 24 as a transmitter and sends the signal to the downstream transceiver 25. Sound waves are transmitted into the flow path. Downstream transceiver 25
Operates as a receiver, receives transmitted ultrasound,
The propagation time of the ultrasonic wave transmitted from the upstream side to the downstream side is measured. Next, the switching means 26 causes the downstream transceiver 25 to operate as a transmitter and the upstream transceiver 2 to operate as a receiver.

【0022】このようにして、下流側から上流側に向け
て送信された超音波の伝搬時間を計時する。これらの計
時された超音波の伝搬時間は、信号処理手段13にあた
えられる。また、流量演算手段14では、それらの時間
差から平均流速を、また、サンプリング周期,流路の有
効断面積などから流体の流量を演算する。一般に、超音
波流量計測は、計量範囲が広く、計測精度が高いが、消
費電力が若干高いといわれる。従って、実施例1と同様
に、より消費電力の少ない、圧力センサなどを頻繁に動
作させ、流体の状態を頻繁に監視し、より消費電力の大
きい精度の高い超音波流量計測部を最適回数動作させる
ことにより、低消費電力を実現しつつ、広い計量範囲に
わたって、計測精度および保安性能の確保を達成できる
ことになる。
In this way, the propagation time of the ultrasonic wave transmitted from the downstream side to the upstream side is measured. The measured propagation times of the ultrasonic waves are given to the signal processing means 13. The flow rate calculating means 14 calculates the average flow velocity from the time difference, and calculates the flow rate of the fluid from the sampling period, the effective area of the flow path, and the like. Generally, ultrasonic flow measurement has a wide measurement range and high measurement accuracy, but is said to consume slightly higher power. Therefore, as in the first embodiment, the pressure sensor and the like that consume less power are frequently operated, the state of the fluid is frequently monitored, and the ultrasonic flow rate measuring unit that consumes more power and is operated at the optimum number of times is operated. By doing so, it is possible to achieve measurement accuracy and security performance over a wide measurement range while realizing low power consumption.

【0023】(実施例4)図5は、本発明の実施例4に
おける計測開始信号の時間変化を示す。実施例1の流量
計測開始信号、図2の20と異なる点は、図5の26で
示すように、圧力センサからの圧力特性値の変化17と
同期し、変化直後は、計測開始信号を密に、時間ととも
に計測開始信号を疎に出力するように設定するところに
ある。この構成により、変化直後は、より蜜に流量計測
を繰返し、時間とともに疎に流量計測を繰返すことにな
り、より高精度な流量計測が、より低消費電力で実現す
ることができる。なお、上記説明において計測の時間間
隔を時間とともに変化させたが、例えば、圧力センサの
特性値17の変化幅と連動させても良い。また、流量値
18の変化幅と連動させても良い。この場合には、流量
計測の頻度は、変化の大きい時には高く、変化の小さい
時には小さくなり、非常に合理的になる。したがって、
低消費電力で、高精度な流量計測が実現できる。
(Embodiment 4) FIG. 5 shows a time change of a measurement start signal in Embodiment 4 of the present invention. The flow rate measurement start signal of the first embodiment is different from 20 in FIG. 2 in that it is synchronized with the change 17 in the pressure characteristic value from the pressure sensor as indicated by 26 in FIG. Then, the measurement start signal is set to be output sparsely with time. With this configuration, immediately after the change, the flow rate measurement is repeated more closely, and the flow rate measurement is repeated sparsely with time, so that a more accurate flow rate measurement can be realized with lower power consumption. In the above description, the measurement time interval is changed with time. However, for example, the measurement time interval may be linked with the change width of the characteristic value 17 of the pressure sensor. Also, the change width of the flow rate value 18 may be linked. In this case, the frequency of the flow rate measurement is high when the change is large, and is low when the change is small, which is very rational. Therefore,
High power flow measurement with low power consumption.

【0024】(実施例5)図6は、本発明の実施例5に
おける流量計測装置27を示す。実施例2と異なるとこ
ろはガス器具などのコック22に代えて、遮断弁などの
弁28を設け、かつ、下流側の保安を判別する判別手段
29を設けたところにある。なお、弁28は流量計測部
の上流側、あるいは下流側のどちらにあっても良いもの
である。この構成において、例えば、流量計測部の下流
側に設けられた遮断弁などの弁28が何らかの原因で動
作し、遮断したとすると、流量計測部まではガスが供給
されているので、圧力センサ15にはガスの圧力が印加
された状態である。この場合、弁28の下流側の配管端
末が閉止状態でないと、弁28を開放することができな
い。もし、配管端末が開放状態で弁28を開けると、ガ
スが配管端末から自由に放出され非常に危険な状態とな
る。従って、配管端末がどのような状態にあるかを判別
することが、非常に重要になる。この場合、本発明で
は、弁28の開放と同時に、圧力センサ15の出力値お
よび流量演算部14の出力値を、それぞれ判別手段29
へ与える。判別手段29では、次のように判別する。
(Embodiment 5) FIG. 6 shows a flow rate measuring device 27 according to Embodiment 5 of the present invention. The difference from the second embodiment lies in that, instead of the cock 22 such as a gas appliance, a valve 28 such as a shutoff valve is provided, and a determination means 29 for determining security on the downstream side is provided. Note that the valve 28 may be located on either the upstream side or the downstream side of the flow rate measuring unit. In this configuration, for example, if a valve 28 such as a shut-off valve provided on the downstream side of the flow measuring unit operates for some reason and shuts off, gas is supplied to the flow measuring unit. Is a state in which the gas pressure is applied. In this case, the valve 28 cannot be opened unless the downstream pipe end of the valve 28 is in a closed state. If the valve 28 is opened with the piping end open, the gas will be released freely from the piping end, resulting in a very dangerous condition. Therefore, it is very important to determine the state of the piping terminal. In this case, according to the present invention, at the same time when the valve 28 is opened, the output value of the pressure sensor 15 and the output value of the
Give to. The determination means 29 makes the following determination.

【0025】例えば、(1)圧力変化あるいは圧力低下
が小さく、圧力値が予め設定された値よりも大きく、か
つ、流れる流量値が比較的大きい場合には、配管端末に
ガス消費量の大きいガス機器、例えば、大型ガス給湯機
などの機器が接続され、その機器を介してガスが放出さ
れていると判断できる。従って、この場合には、例え
ば、大型機器のコックを閉止するよう報知することも可
能となる。また、(2)圧力変化あるいは圧力低下が大
きく、圧力値が予め設定された値よりも小さく、かつ、
流れる流量値が比較的大きい場合には、配管端末が開放
状態、例えば、折損などが考えられる。この場合には、
大流量のガスが放出危険と報知するか、あるいは、弁2
8を急いで閉止するようにすることも可能となる。ま
た、(3)圧力変化あるいは圧力低下が小さく、圧力値
が予め設定された値よりも大きく、かつ、流れる流量値
が比較的小さい場合には、配管端末にガス消費量の小さ
いガス機器、例えば、小型ガス給湯機などの機器が接続
され、その機器を介してガスが微量、例えば、種火に使
用される程度のガスが放出されていると判断できる。
For example, (1) when the pressure change or pressure drop is small, the pressure value is larger than a preset value, and the flowing flow value is relatively large, the gas having a large gas consumption is supplied to the pipe terminal. It can be determined that a device, for example, a device such as a large gas water heater, is connected and gas is being released through the device. Therefore, in this case, for example, it is possible to notify that the cock of the large device is closed. (2) The pressure change or pressure drop is large, the pressure value is smaller than a preset value, and
If the value of the flowing flow rate is relatively large, the pipe terminal may be in an open state, for example, broken. In this case,
If a large flow of gas reports a danger of release, or valve 2
8 can be closed quickly. (3) When the pressure change or pressure drop is small, the pressure value is larger than a preset value, and the flowing flow rate value is relatively small, a gas device with a small gas consumption at a pipe terminal, for example, A device such as a small gas water heater is connected, and it can be determined that a very small amount of gas, for example, a gas used for pilot fire is released through the device.

【0026】従って、この場合には、ガスが微量放出さ
れていると報知したり、あるいは、漏洩していると報知
することも可能となる。また、(4)圧力変化あるいは
圧力低下が小さく、圧力値が予め設定された値よりも大
きく、かつ、流れる流量値がゼロの場合には、配管端末
が閉止状態であると判別することができる。従って、こ
の場合には、弁28を開放しても、下流側の安全性を確
保できたと判断することができる。以上説明した
(1),(2),(3)および(4)の場合を図示する
と、図7となる。すなわち、同図において、横軸にガス
流量を、縦軸にガス圧を示す。図中に記号、(1),
(2),(3)および(4)は、それぞれ上記で説明し
た場合の領域を示す。また、図中の破線は、それぞれの
領域の境界を示す。このように、流量と圧力とをモニタ
することにより、配管端末の安全を確認することができ
る。
Therefore, in this case, it is possible to notify that a small amount of gas is released or to notify that gas is leaking. (4) When the pressure change or the pressure drop is small, the pressure value is larger than a preset value, and the flowing flow value is zero, it can be determined that the pipe terminal is in the closed state. . Therefore, in this case, it can be determined that safety on the downstream side has been ensured even if the valve 28 is opened. FIG. 7 shows the cases (1), (2), (3) and (4) described above. That is, in the figure, the horizontal axis shows the gas flow rate, and the vertical axis shows the gas pressure. Symbols in the figure, (1),
(2), (3) and (4) show the areas in the case described above, respectively. The broken lines in the figure indicate the boundaries between the respective regions. As described above, by monitoring the flow rate and the pressure, the safety of the piping terminal can be confirmed.

【0027】[0027]

【発明の効果】以上の説明から明らかなように本発明の
流量計測装置によれば次の効果が得られる。
As is clear from the above description, the following effects can be obtained according to the flow rate measuring device of the present invention.

【0028】(1)検出手段の出力に応じ、駆動条件を
設定することができるので、例えば、通常計測時は、5
秒程度の一定間隔で計測するが、圧力変化などが発生し
た時は、それと同期し、例えば、1秒あるいはそれ以下
の測定間隔で計測することができる。このため、計測精
度を劣化させないで、消費電力を低減することができ
る。
(1) Since driving conditions can be set in accordance with the output of the detecting means, for example, 5
The measurement is performed at a constant interval of about seconds, but when a pressure change or the like occurs, the measurement can be performed in synchronization with the change, for example, at a measurement interval of 1 second or less. Therefore, power consumption can be reduced without deteriorating measurement accuracy.

【0029】(2)弁の開閉操作などの動作に応じ、計
測条件を設定することができるので、例えば、大型給湯
機など使用直後の流量を正確に計測することができ、器
具の特定が容易となる。また、ガス充填時など、コック
の開放と同時に計測開始することができるので、充填量
などを正確に計測できる。
(2) Since the measurement conditions can be set according to the operation such as the opening and closing operation of the valve, the flow rate immediately after use, for example, in a large water heater, can be accurately measured, and the specification of the appliance is easy. Becomes In addition, since the measurement can be started at the same time when the cock is opened, such as at the time of gas filling, the filling amount and the like can be accurately measured.

【0030】(3)流量計測を熱線型流量計で行うの
で、外部信号と同期して、短時間で流量を、低消費電力
で計測することができる。
(3) Since the flow rate is measured by the hot wire type flow meter, the flow rate can be measured in a short time with low power consumption in synchronization with an external signal.

【0031】(4)流量計測を超音波流量計で行うの
で、外部信号と同期して、短時間で広範囲な流量を、低
消費電力で計測することができる。
(4) Since the flow rate is measured by an ultrasonic flow meter, a wide range of flow rate can be measured in a short time with low power consumption in synchronization with an external signal.

【0032】(5)流体の状態変化直後は、サンプリン
グ周期を短く、時間とともにサンプリング周期を長くし
て計測するので、過渡状態の流量変化をも、低消費電力
で精度よく計測することができる。
(5) Immediately after the fluid state change, the sampling cycle is shortened, and the sampling cycle is lengthened with time, so that the flow rate change in the transient state can be accurately measured with low power consumption.

【0033】(6)圧力センサなどの出力と、流量計測
結果とから、下流側の流路状態を判別することができる
ので、下流側の流路の安全を確保することができる。
(6) The state of the downstream flow path can be determined from the output of the pressure sensor and the like and the flow rate measurement result, so that the safety of the downstream flow path can be ensured.

【0034】(7)圧力値が大きく、流量が大きい場
合、機器を介してガスを使用中と判別することができる
ので、機器で使用中あるいは、機器バルブ開放などと報
知することができ、安全性が向上する。
(7) If the pressure value is large and the flow rate is large, it can be determined that the gas is in use via the device, so that it can be notified that the gas is being used by the device or the valve of the device is open. The performance is improved.

【0035】(8)圧力値が小さく、流量が大きい場
合、端末の負荷なしでガス放出中と判別することができ
るので、下流側のガス配管が折損と判別することができ
るので、弁を閉止し、安全性を向上することも可能とな
る。
(8) If the pressure value is small and the flow rate is large, it is possible to determine that gas is being discharged without any load on the terminal, so that it is possible to determine that the gas pipe on the downstream side is broken and close the valve. In addition, safety can be improved.

【0036】(9)圧力値が大きく、流量が小さい場
合、機器を介してガスを極微量の使用中あるいは漏洩と
判別する事ができるので、機器で種火程度の微量ガスを
使用中あるいは漏洩と報知することができ安全性が向上
する。
(9) When the pressure value is large and the flow rate is small, it is possible to determine that a very small amount of gas is being used or leaked through the device. The safety can be improved.

【0037】(10)圧力値が大きく、流量がゼロの場
合、下流側が完全閉止状態と判別することができ、下流
側の安全性を確保,確認することができる。
(10) When the pressure value is large and the flow rate is zero, it is possible to determine that the downstream side is in a completely closed state, and it is possible to secure and confirm the safety of the downstream side.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1における流量計測装置のブロ
ック構成図
FIG. 1 is a block diagram of a flow rate measuring device according to a first embodiment of the present invention.

【図2】同装置における圧力変化,流量変化を示す特性
FIG. 2 is a characteristic diagram showing a pressure change and a flow rate change in the same device.

【図3】本発明の実施例2における流量計測装置のブロ
ック構成図
FIG. 3 is a block diagram of a flow rate measuring device according to a second embodiment of the present invention.

【図4】本発明の実施例3における流量計測装置のブロ
ック構成図
FIG. 4 is a block diagram of a flow rate measuring device according to a third embodiment of the present invention.

【図5】本発明の実施例4における圧力変化,流量変化
を示す特性図
FIG. 5 is a characteristic diagram showing a pressure change and a flow rate change in Embodiment 4 of the present invention.

【図6】本発明の実施例5における流量計測装置のブロ
ック構成図
FIG. 6 is a block diagram of a flow rate measuring device according to a fifth embodiment of the present invention.

【図7】同装置におけるガス圧とガス流量の関係を説明
する特性図
FIG. 7 is a characteristic diagram illustrating the relationship between gas pressure and gas flow rate in the apparatus.

【図8】従来の流量計測装置を示す図FIG. 8 is a diagram showing a conventional flow measurement device.

【符号の説明】[Explanation of symbols]

10 流量計測手段 15 変化検出手段 16 条件設定手段 17 圧力変化 18 流量変化 22 コック 24,25 超音波送受信器 26 切換手段 28 弁 29 判別手段 Reference Signs List 10 Flow rate measuring means 15 Change detecting means 16 Condition setting means 17 Pressure change 18 Flow rate change 22 Cock 24,25 Ultrasonic transceiver 26 Switching means 28 Valve 29 Discriminating means

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 流体流量を計測する流量計測手段と、圧
力センサあるいはガスセンサなどの流体状態の変化を検
出する変化検出手段と、前記変化検出手段の出力に応
じ、前記流量計測手段を駆動する駆動条件を設定する条
件設定手段とからなる流量計測装置。
1. A flow rate measuring means for measuring a fluid flow rate, a change detecting means such as a pressure sensor or a gas sensor for detecting a change in a fluid state, and a drive for driving the flow rate measuring means in accordance with an output of the change detecting means. A flow rate measuring device comprising condition setting means for setting conditions.
【請求項2】 流体流量を計測する流量計測手段と、弁
の開閉操作などの流体状態を変化させる変化発生手段
と、前記変化発生手段の動作に応じ、前記流量計測手段
を駆動する駆動条件を設定する条件設定手段とからなる
流量計測装置。
2. A flow rate measuring means for measuring a fluid flow rate, a change generating means for changing a fluid state such as a valve opening / closing operation, and a driving condition for driving the flow rate measuring means in accordance with an operation of the change generating means. A flow rate measuring device comprising condition setting means for setting.
【請求項3】 流量計測手段は、加熱素子と、前記加熱
素子による温度変化を検知する温度センサとからなる熱
線型流量計測手段である請求項1または2記載の流量計
測装置。
3. The flow rate measuring device according to claim 1, wherein the flow rate measuring means is a hot wire type flow rate measuring means comprising a heating element and a temperature sensor for detecting a temperature change caused by the heating element.
【請求項4】 流量計測手段は、流体の流れる流路の上
流側と下流側とに超音波を送受信する一対の超音波送受
信器を設け、上流側から下流側および下流側から上流側
への超音波伝搬時間を計測し、前記時間差から流体の流
速を演算し流量を計測する超音波流量計測手段である請
求項1または2記載の流量計測装置。
4. The flow rate measuring means is provided with a pair of ultrasonic transceivers for transmitting and receiving ultrasonic waves at an upstream side and a downstream side of a flow path through which a fluid flows, and a pair of ultrasonic transmitters and receivers from upstream to downstream and from downstream to upstream. The flow rate measuring device according to claim 1, wherein the flow rate measuring device is an ultrasonic flow rate measuring unit that measures an ultrasonic propagation time, calculates a flow velocity of the fluid from the time difference, and measures a flow rate.
【請求項5】 流体状態の変化直後はサンプリング周期
を短く、時間とともにサンプリング周期を長くする駆動
条件を設定してなる請求項1または2記載の流量計測装
置。
5. The flow rate measuring device according to claim 1, wherein a driving condition for shortening the sampling cycle immediately after the change of the fluid state and increasing the sampling cycle with time is set.
【請求項6】 圧力センサなどの流体状態の変化検出手
段の出力と、流量計測手段の流量計測結果とから、下流
側の流路状態を判別する判別手段とからなる請求項1記
載の流量計測装置。
6. The flow rate measurement device according to claim 1, further comprising a determination means for determining a flow path state on the downstream side based on an output of the fluid state change detection means such as a pressure sensor and a flow rate measurement result of the flow rate measurement means. apparatus.
【請求項7】 圧力値が大きく、流量が大きい場合、機
器を介してガスを使用中と判別する請求項6記載の流量
計測装置。
7. The flow rate measuring apparatus according to claim 6, wherein when the pressure value is large and the flow rate is large, it is determined that the gas is in use via the device.
【請求項8】 圧力値が小さく、流量が大きい場合、端
末の負荷なしでガス放出中と判別する請求項6記載の流
量計測装置。
8. The flow rate measuring device according to claim 6, wherein when the pressure value is small and the flow rate is large, it is determined that gas is being released without a load on the terminal.
【請求項9】 圧力値が大きく、流量が小さい場合、機
器を介してガスを極微量の使用中あるいは漏洩と判別す
る請求項6記載の流量計測装置。
9. The flow rate measuring apparatus according to claim 6, wherein when the pressure value is large and the flow rate is small, it is determined that a very small amount of gas is being used or leaked via the device.
【請求項10】 圧力値が大きく、流量がゼロの場合、
下流側が完全閉止状態と判別する請求項6記載の流量計
測装置。
10. When the pressure value is large and the flow rate is zero,
7. The flow measuring device according to claim 6, wherein the downstream side is determined to be in a completely closed state.
JP25451697A 1997-09-19 1997-09-19 Flow measuring device Expired - Fee Related JP3632396B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25451697A JP3632396B2 (en) 1997-09-19 1997-09-19 Flow measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25451697A JP3632396B2 (en) 1997-09-19 1997-09-19 Flow measuring device

Publications (2)

Publication Number Publication Date
JPH1194612A true JPH1194612A (en) 1999-04-09
JP3632396B2 JP3632396B2 (en) 2005-03-23

Family

ID=17266138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25451697A Expired - Fee Related JP3632396B2 (en) 1997-09-19 1997-09-19 Flow measuring device

Country Status (1)

Country Link
JP (1) JP3632396B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001241984A (en) * 2000-03-01 2001-09-07 Matsushita Electric Ind Co Ltd Gas safety device
JP2002071423A (en) * 2000-06-16 2002-03-08 Yazaki Corp Method and equipment for flow rate measurement, and electronic gas meter
JP2002236040A (en) * 2001-02-08 2002-08-23 Matsushita Electric Ind Co Ltd Flow rate measuring apparatus
JP2002243512A (en) * 2001-02-16 2002-08-28 Matsushita Electric Ind Co Ltd Flow rate measuring device
JP2007024752A (en) * 2005-07-20 2007-02-01 Matsushita Electric Ind Co Ltd Gas meter unit
JP2008275465A (en) * 2007-04-27 2008-11-13 Matsushita Electric Ind Co Ltd Flow measuring apparatus, program of the same, flow measuring method, and fluid supply system
JP2018005672A (en) * 2016-07-05 2018-01-11 サーパス工業株式会社 Flow rate adjustment device
WO2018105239A1 (en) * 2016-12-06 2018-06-14 ソニーセミコンダクタソリューションズ株式会社 Sensing system and sensor device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001241984A (en) * 2000-03-01 2001-09-07 Matsushita Electric Ind Co Ltd Gas safety device
JP2002071423A (en) * 2000-06-16 2002-03-08 Yazaki Corp Method and equipment for flow rate measurement, and electronic gas meter
JP4542680B2 (en) * 2000-06-16 2010-09-15 矢崎総業株式会社 Flow rate measuring method and apparatus, and electronic gas meter
JP2002236040A (en) * 2001-02-08 2002-08-23 Matsushita Electric Ind Co Ltd Flow rate measuring apparatus
JP2002243512A (en) * 2001-02-16 2002-08-28 Matsushita Electric Ind Co Ltd Flow rate measuring device
JP2007024752A (en) * 2005-07-20 2007-02-01 Matsushita Electric Ind Co Ltd Gas meter unit
JP2008275465A (en) * 2007-04-27 2008-11-13 Matsushita Electric Ind Co Ltd Flow measuring apparatus, program of the same, flow measuring method, and fluid supply system
JP2018005672A (en) * 2016-07-05 2018-01-11 サーパス工業株式会社 Flow rate adjustment device
WO2018105239A1 (en) * 2016-12-06 2018-06-14 ソニーセミコンダクタソリューションズ株式会社 Sensing system and sensor device
US11393328B2 (en) 2016-12-06 2022-07-19 Sony Semiconductor Solutions Corporation Sensing system and sensor device

Also Published As

Publication number Publication date
JP3632396B2 (en) 2005-03-23

Similar Documents

Publication Publication Date Title
KR100446268B1 (en) Gas leak detection system
JP3632396B2 (en) Flow measuring device
JP3562712B2 (en) Flow measurement device
CZ239093A3 (en) Flow meter
JP4307679B2 (en) Gas security device
JPH11287688A (en) Flow measuring device
JPH1164055A (en) Flow-measuring instrument
JP2000146662A (en) Device for measuring quantity of flow
JP2004144642A (en) Flow rate measuring instrument, and its control method
JP4867037B2 (en) Gas leak detection device
JP4568970B2 (en) Gas security device
JP2000180223A (en) Flow rate measuring apparatus
JP5077273B2 (en) Flow measuring device
JP2004069532A5 (en)
JP5195553B2 (en) Flow measuring device
JP5516182B2 (en) Gas shut-off device
JP2004069532A (en) Measurement device
JP4083367B2 (en) Gas security device
JP4779198B2 (en) Gas security device
JP2001330493A (en) Gas cutting-off apparatus
JP3913434B2 (en) Gas security device
JP2000250633A (en) Fluid mass flow rate controller
JPH10293054A (en) Flowmeter
JP4122611B2 (en) Gas security device
JP3783831B2 (en) Flow rate measuring method, flow rate measuring apparatus, and gas meter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040227

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040510

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20040721

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20040827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041213

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080107

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees