JP4779198B2 - Gas security device - Google Patents

Gas security device Download PDF

Info

Publication number
JP4779198B2
JP4779198B2 JP2000328575A JP2000328575A JP4779198B2 JP 4779198 B2 JP4779198 B2 JP 4779198B2 JP 2000328575 A JP2000328575 A JP 2000328575A JP 2000328575 A JP2000328575 A JP 2000328575A JP 4779198 B2 JP4779198 B2 JP 4779198B2
Authority
JP
Japan
Prior art keywords
gas
flow rate
measurement
pipe leak
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000328575A
Other languages
Japanese (ja)
Other versions
JP2002131108A (en
Inventor
裕史 藤井
紀夫 新村
敬雄 徳南
真人 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2000328575A priority Critical patent/JP4779198B2/en
Publication of JP2002131108A publication Critical patent/JP2002131108A/en
Application granted granted Critical
Publication of JP4779198B2 publication Critical patent/JP4779198B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、ガス流量を計測し、異常流量が計測された場合にはガス通路を遮断し、ガス使用上の安全性を確保するガス保安装置に関するものである。
【0002】
【従来の技術】
近年、ガスの使用量を計測するガスメータに、多量の流量が計測された場合や、通常ではありえないほどの長時間使用があった場合には、異常と判定してガス通路を遮断し、安全性を確保する保安装置が内蔵されたものが普及している。
【0003】
この種のガス保安装置の流量測定方式では、所定の時間内にメータを通過した体積より流量を測定する膜式メータが一般的である。従来のガス保安装置について図6基づき説明する。通常、ガスを使用するとメータの膜式流量計測部12にガスが流れ、一定体積流れる毎に信号が制御回路6に伝えられる。この信号を基にガスの積算流量を計算して、ガスの流れるパターンが異常かどうかを判定し、異常と判断した場合は遮断弁駆動回路4に遮断信号を出し、遮断弁3を遮断してガスを止める。さらに、保安機能として、所定の震度以上の地震が発生した場合に感震器7で揺れを検知して遮断弁3を遮断する機能や、ガス圧の異常を圧力センサ5で検知して警告を出したり、遮断弁3を遮断する機能を備えている。
【0004】
【発明が解決しようとする課題】
しかしながら、従来の膜式計測部を利用したガス保安装置では、ガス保安装置設置時やガス使用開始時の配管漏れチェックを実施する場合、漏れチェック用の圧力計が必要なうえ、漏れ確認に時間がかかるという課題があった。
【0005】
【課題を解決するための手段】
上記課題を解決するため本発明では電子式流量計測部でガスの流速を計測することによって、微小流量を瞬時に測定可能にし、ガス通路を遮断した場合の流量と比較することによって配管漏れのチェックをガス保安装置で実現できるようにする。
【0006】
【発明の実施の形態】
本発明のガス保安装置は、ガスの流速を測定することによって、瞬時流量を計測できる電子式流量計測部と、ガスの使用状態が正常であるか否かを判定する制御回路と、異常が発生した場合にガスを遮断する遮断弁と、ガス保安装置設置時にガス通路を遮断した時と開放した時の流量を計測して配管漏れをチェックする配管漏れチェック手段を備え、前記電子式流量計測部は、二つの送受信可能な超音波センサと所定の断面積の計測流路から構成され、前記二つの超音波センサ間の超音波の伝搬時間を測定することで瞬時流量を計測し、前記配管漏れチェック手段は、配管漏れチェック時の計測モードとして、伝搬時間を測定するためのクロック周波数を高くして分解能をあげることによって測定精度を向上させた高精度計測モードを備えることによって、配管の漏れチェックの精度を向上させたものである。
【0007】
【実施例】
以下、本発明の実施例について図面を用いて説明する。
【0008】
(実施例1)
図1は本発明の第1の手段に対応した実施例1のガス保安装置を示す構成図である。基本的な構成は従来例の説明と同じで、従来例と本実施例との差異は流量計測部として電子式流量計測部1を備え、制御回路に配管漏れチェック手段8を加えたことである。電子式流量計測部1は電気によって駆動されるセンサによって構成され、センサはガス保安装置内を流れる気体の流速が変化すると出力される電気的な信号が変化する構成になっている。電子式流量計測部では前記センサ信号の変化とガス保安装置内を流れる気体の流速の大きさの相関を予め確認しておくことによって、瞬時に気体の流速を測定することが可能になる。そして、ガス通路の断面積が既知であることより、ガス保安装置内を通過する気体の瞬時流量が計測できる。
【0009】
この電子式流量計測部で瞬時流量が計測できることを利用して、本実施例ではガス配管の微小漏れチェックを短時間で可能にする。配管漏れチェックの手順としては、まず外部からガス保安装置に配管漏れチェックの指示を与えることによって、制御回路6内の配管漏れチェック手段8が起動する。そして、配管漏れチェックの指示を受け付けた後、制御回路6からの指示で遮断弁3を閉じ、その状態で瞬時流量Aを計測する。次に、遮断弁を開放し、その状態で瞬時流量Bを計測する。ここで、配管漏れチェック手段8では瞬時流量Aと瞬時流量Bを比較し、二つの流量値が等しい場合は配管漏れ無しと判定し、二つの流量値が異なる場合は配管漏れ有りと判断して、液晶で構成された表示部2に配管漏れ有りの表示を出力する。このようにして本ガス保安装置ではガス配管の漏れの有無を短時間で確認できる。
【0010】
(実施例2)
図2は本発明の第2の手段に対応した実施例2のガス保安装置を示す構成図である。基本的な構成は本発明の実施例1の説明と同じで、本実施例では電子式計測部として、二つの送受信可能な超音波センサ9と所定の断面積の計測流路10から構成される超音波式計測部を備えている。超音波式計測部は、流体の流れる計測流路10に設置した超音波振動子9と、超音波振動子9を駆動する超音波センサ駆動回路11と、超音波センサ駆動回路11にスタート信号を出力し、二つの超音波センサ間と超音波が伝搬する時間を計測する制御回路6とから構成されている。本実施例では二つの超音波センサを切り替え、被測定流体の上流から下流と下流から上流へのそれぞれの超音波の伝搬時間を測定し、(式1)より速度vを求める。(但し、上流から下流への伝搬時間をt1、下流から上流の伝搬時間をt2とする)。
【0011】
v=L/2((1/t1)−(1/t2))・・・(式3)
この超音波式流量計測部では正流、逆流両方の瞬時流量が計測できることを利用して、本実施例ではガス保安装置の上流側と下流側両方の微小漏れチェックを短時間で可能にする。配管漏れチェックの手順としては、本発明の実施例1と同じである。ただし、遮断弁を閉じたときの瞬時流量をA、遮断弁を開放したときの瞬時流量をBとすると、A=Bの場合は配管漏れ無し、A>Bの場合はガス保安装置より上流側が配管漏れ、A<Bの場合はガス保安装置より下流側が配管漏れと判断するようになっている。また、図3のように配管漏れチェック時は通常の流量計測時より測定間隔に短い高精度計測モードを採用することによって、さらに配管漏れ検知の精度を向上させている。
【0012】
(実施例3)
図4は本発明の第3の手段に対応した実施例3のガス保安装置の計測フローを示す図である。
【0013】
超音波計測におけるシングアラウンド法とは、計測流体に対して同方向に超音波の送受信を所定の回数繰り返し、合計の伝搬時間を計ることによって、測定流体の流速を計測する分解能を向上させる方法である。本実施例では、高精度計測時と通常計測時でシングアラウンド回数(S回数)を変えることによって配管漏れチェック時の計測精度を向上させている。図4で、A>Bであり、高精度計測の場合のほうがシングアラウンド回数が多く設定でき、流量計測の分解能が高くなる。よって、配管漏れチェック時に高精度計測モードで計測することにより、配管漏れがより正確に確認できる。
【0014】
(実施例5)
図5は本発明の第4の手段に対応したガス保安装置の時間計測クロックの状態を示す図である。図より高精度計測モード時にクロック周波数を高くすることにより、超音波センサ間を超音波が伝搬する時間の計測の分解能が上がり、超音波の真の受信タイミングにより近くで受信を確認できる。このため、配管漏れチェック時に高精度計測モードで計測することにより、配管漏れがより正確に確認できる。
【0015】
【発明の効果】
以上のように本発明のガス保安装置によれば、微小流量が短時間で確認できるため、ガス保安装置のみで配管漏れが短時間で確認でき、測定回数もシングアラウンド回数も増やさずに計測精度が向上できるため、より少ない消費電流で高精度計測モードが実現できる。
【図面の簡単な説明】
【図1】 本発明の実施例1におけるガス保安装置を示す構成図
【図2】 本発明の実施例2におけるガス保安装置を示す構成図
【図3】 同ガス保安装置の計測タイミングを示す構成図
【図4】 本発明の実施例3におけるガス保安装置の計測フローを示す構成図
【図5】 本発明の実施例4におけるガス保安装置の時間計測クロックの状態を示す構成図
【図6】 従来のガス保安装置を示す構成図
【符号の説明】
1 電子式流量計測部
2 積算流量表示部
3 遮断弁
4 遮断弁駆動回路
5 圧力センサ
6 制御回路
7 感震器
8 配管漏れチェック手段
9 超音波センサ
10 計測流路
11 超音波センサ駆動回路
12 膜式流量計測部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gas security device that measures a gas flow rate and shuts off a gas passage when an abnormal flow rate is measured to ensure safety in using the gas.
[0002]
[Prior art]
In recent years, if a gas meter that measures the amount of gas used has been measured for a large flow rate or if it has been used for a long period of time that is not normal, it is judged as abnormal and the gas passage is shut off. The one with a built-in security device to ensure the safety is widespread.
[0003]
In this type of gas safety device flow rate measurement method, a membrane meter that measures the flow rate from the volume that has passed through the meter within a predetermined time is generally used. A conventional gas security device will be described with reference to FIG. Normally, when gas is used, the gas flows into the membrane flow rate measuring unit 12 of the meter, and a signal is transmitted to the control circuit 6 every time a certain volume flows. Based on this signal, the integrated gas flow rate is calculated to determine whether the gas flow pattern is abnormal. If it is determined that the gas flow is abnormal, a cutoff signal is sent to the cutoff valve drive circuit 4 and the cutoff valve 3 is shut off. Stop the gas. Furthermore, as a safety function, when an earthquake of a predetermined seismic intensity or higher occurs, the seismic device 7 detects a shake and shuts off the shut-off valve 3, and a gas sensor abnormality is detected by the pressure sensor 5 to give a warning. It has a function of taking out or shutting off the shut-off valve 3.
[0004]
[Problems to be solved by the invention]
However, with a conventional gas safety device that uses a membrane-type measuring unit, when performing a leak check on a pipe at the time of installing the gas safety device or at the start of gas use, a pressure gauge for leak check is required, and it takes time to check for leaks. There was a problem that it took.
[0005]
[Means for Solving the Problems]
In order to solve the above problems, in the present invention, the flow rate of gas is measured by an electronic flow rate measurement unit, thereby making it possible to instantaneously measure a minute flow rate, and checking for pipe leakage by comparing with the flow rate when the gas passage is shut off. Can be realized with a gas security device.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
This onset Ming Gas Safety device, by measuring the flow rate of the gas, and electronic flow measurement unit that can measure the instantaneous flow rate, and determining the control circuit whether the use condition of the gas is normal, abnormal The electronic flow measurement device comprises a shutoff valve that shuts off gas when it occurs, and a pipe leak check means that checks the pipe leak by measuring the flow rate when the gas passage is shut off and opened when the gas safety device is installed. The unit is composed of two ultrasonic sensors capable of transmitting and receiving and a measurement channel having a predetermined cross-sectional area, and measures the instantaneous flow rate by measuring the propagation time of the ultrasonic wave between the two ultrasonic sensors , and the pipe leak check means comprises a measurement mode when the pipe leak check, a high-precision measurement mode with improved measurement accuracy by increasing the high to the resolution of the clock frequency for measuring the propagation time And by, but with improved leak check of the accuracy of the pipe.
[0007]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
[0008]
Example 1
FIG. 1 is a block diagram showing a gas security device according to a first embodiment corresponding to the first means of the present invention. The basic configuration is the same as that of the conventional example, and the difference between the conventional example and the present example is that the electronic flow measuring unit 1 is provided as a flow measuring unit, and the pipe leakage check means 8 is added to the control circuit. . The electronic flow measuring unit 1 is configured by a sensor driven by electricity, and the sensor is configured such that an electrical signal output changes when the flow velocity of the gas flowing in the gas safety device changes. The electronic flow rate measurement unit can measure the gas flow rate instantaneously by checking in advance the correlation between the change in the sensor signal and the flow velocity of the gas flowing in the gas safety device. And since the cross-sectional area of the gas passage is known, the instantaneous flow rate of the gas passing through the gas safety device can be measured.
[0009]
Utilizing the fact that the instantaneous flow rate can be measured by this electronic flow rate measuring unit, in this embodiment, a minute leak check of the gas pipe can be performed in a short time. As a procedure for a pipe leak check, first, a pipe leak check means 8 in the control circuit 6 is activated by giving an instruction for a pipe leak check from the outside to the gas safety device. And after receiving the instruction | indication of a piping leak check, the shut-off valve 3 is closed by the instruction | indication from the control circuit 6, and the instantaneous flow volume A is measured in the state. Next, the shut-off valve is opened, and the instantaneous flow rate B is measured in that state. Here, the pipe leak check means 8 compares the instantaneous flow rate A and the instantaneous flow rate B. If the two flow values are equal, it is determined that there is no pipe leak, and if the two flow values are different, it is determined that there is a pipe leak. Then, a display indicating that there is a pipe leak is output to the display unit 2 composed of liquid crystal. In this way, in this gas safety device, the presence or absence of leakage in the gas pipe can be confirmed in a short time.
[0010]
(Example 2)
FIG. 2 is a block diagram showing a gas security device of Example 2 corresponding to the second means of the present invention. The basic configuration is the same as in the description of the first embodiment of the present invention. In this embodiment, the electronic measurement unit includes two ultrasonic sensors 9 capable of transmitting and receiving and a measurement channel 10 having a predetermined cross-sectional area. An ultrasonic measurement unit is provided. The ultrasonic measurement unit sends a start signal to the ultrasonic transducer 9 installed in the measurement flow path 10 through which the fluid flows, the ultrasonic sensor drive circuit 11 that drives the ultrasonic transducer 9, and the ultrasonic sensor drive circuit 11. The control circuit 6 is configured to output and measure the time during which the ultrasonic wave propagates between the two ultrasonic sensors. In this embodiment, the two ultrasonic sensors are switched, the propagation times of the ultrasonic waves from the upstream to the downstream and the downstream to the upstream of the fluid to be measured are measured, and the velocity v is obtained from (Equation 1). (However, the propagation time from upstream to downstream is t1, and the propagation time from downstream to upstream is t2.)
[0011]
v = L / 2 ((1 / t1)-(1 / t2)) (Formula 3)
By utilizing the fact that this ultrasonic flow rate measurement unit can measure both the normal flow and the reverse flow, in this embodiment, it is possible to check micro leaks on both the upstream side and the downstream side of the gas safety device in a short time. The procedure for the pipe leak check is the same as that of the first embodiment of the present invention. However, if the instantaneous flow rate when the shut-off valve is closed is A and the instantaneous flow rate when the shut-off valve is opened is B, there is no pipe leakage when A = B, and when A> B, the upstream side of the gas safety device is In the case of pipe leak, A <B, the downstream side of the gas safety device is judged to be pipe leak. Further, as shown in FIG. 3, the pipe leak detection accuracy is further improved by adopting a high-accuracy measurement mode having a measurement interval shorter than that at the time of normal flow rate measurement at the time of pipe leak check.
[0012]
(Example 3)
FIG. 4 is a diagram showing a measurement flow of the gas safety device according to the third embodiment corresponding to the third means of the present invention.
[0013]
The sing-around method in ultrasonic measurement is a method that improves the resolution of measuring the flow velocity of the measurement fluid by repeating transmission and reception of ultrasonic waves in the same direction for the measurement fluid a predetermined number of times and measuring the total propagation time. is there. In this embodiment, the measurement accuracy at the time of pipe leakage check is improved by changing the number of times of sing-around (number of S times) between high-precision measurement and normal measurement. In FIG. 4, A> B, and in the case of high-precision measurement, the number of times of single-around can be set, and the resolution of the flow rate measurement becomes high. Therefore, the pipe leak can be confirmed more accurately by measuring in the high-accuracy measurement mode at the time of the pipe leak check.
[0014]
(Example 5)
FIG. 5 is a diagram showing the state of the time measurement clock of the gas safety device corresponding to the fourth means of the present invention. As shown in the figure, by increasing the clock frequency in the high-accuracy measurement mode, the measurement resolution of the time during which the ultrasonic wave propagates between the ultrasonic sensors is increased, and reception can be confirmed closer to the true reception timing of the ultrasonic wave. For this reason, pipe leak can be more accurately confirmed by measuring in the high-accuracy measurement mode at the time of pipe leak check.
[0015]
【The invention's effect】
According to the gas safety system of the present onset light as described above, since the minute flow rate can be confirmed in a short time, it confirmed piping leakage in a short time only in gas safety device, without increasing nor sing around count measurement times Since measurement accuracy can be improved, a high-accuracy measurement mode can be realized with less current consumption.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a gas safety device in Embodiment 1 of the present invention. FIG. 2 is a block diagram showing a gas safety device in Embodiment 2 of the present invention. FIG. 3 is a configuration showing measurement timing of the gas safety device. FIG. 4 is a configuration diagram showing a measurement flow of a gas safety device according to Embodiment 3 of the present invention. FIG. 5 is a configuration diagram showing a state of a time measurement clock of the gas safety device according to Embodiment 4 of the present invention. Configuration diagram showing a conventional gas safety device [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Electronic flow measurement part 2 Accumulated flow display part 3 Shut-off valve 4 Shut-off valve drive circuit 5 Pressure sensor 6 Control circuit 7 Shock absorber 8 Pipe leak check means 9 Ultrasonic sensor 10 Measurement flow path 11 Ultrasonic sensor drive circuit 12 Film Type flow measurement unit

Claims (1)

ガスの流速を測定することによって、瞬時流量を計測できる電子式流量計測部と、ガスの使用状態が正常であるか否かを判定する制御回路と、異常が発生した場合にガスを遮断する遮断弁と、ガス保安装置設置時にガス通路を遮断した時と開放した時の流量を計測して配管漏れをチェックする配管漏れチェック手段を備え、
前記電子式流量計測部は、二つの送受信可能な超音波センサと所定の断面積の計測流路から構成され、前記二つの超音波センサ間の超音波の伝搬時間を測定することで瞬時流量を計測し、前記配管漏れチェック手段は、配管漏れチェック時の計測モードとして、伝搬時間を測定するためのクロック周波数を高くして分解能をあげ測定精度を向上させた高精度計測モードを備えたガス保安装置。
An electronic flow measurement unit that can measure the instantaneous flow rate by measuring the gas flow rate, a control circuit that determines whether the gas is in normal use, and a shut-off that shuts off the gas when an abnormality occurs Equipped with a valve and pipe leak check means to check the pipe leak by measuring the flow rate when the gas passage is shut off and opened when installing the gas safety device,
The electronic flow rate measuring unit is composed of two ultrasonic sensors capable of transmitting and receiving and a measurement channel having a predetermined cross-sectional area, and measures the propagation time of the ultrasonic wave between the two ultrasonic sensors to obtain an instantaneous flow rate. measured, the pipe leak check means, as the measurement mode when the pipe leak check, high precision measurement mode gas safety that example Bei a with improved measurement accuracy raised higher to resolution clock frequency for measuring the propagation time apparatus.
JP2000328575A 2000-10-27 2000-10-27 Gas security device Expired - Fee Related JP4779198B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000328575A JP4779198B2 (en) 2000-10-27 2000-10-27 Gas security device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000328575A JP4779198B2 (en) 2000-10-27 2000-10-27 Gas security device

Publications (2)

Publication Number Publication Date
JP2002131108A JP2002131108A (en) 2002-05-09
JP4779198B2 true JP4779198B2 (en) 2011-09-28

Family

ID=18805406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000328575A Expired - Fee Related JP4779198B2 (en) 2000-10-27 2000-10-27 Gas security device

Country Status (1)

Country Link
JP (1) JP4779198B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5585402B2 (en) * 2010-11-10 2014-09-10 パナソニック株式会社 Flow measuring device
CN106197582B (en) * 2016-07-28 2020-12-15 宁波天鑫仪表有限公司 Ultrasonic electronic gas meter

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0943024A (en) * 1995-07-27 1997-02-14 Tokyo Gas Co Ltd Gas meter
JP3393593B2 (en) * 1998-04-30 2003-04-07 矢崎総業株式会社 Gas leak detection device
JP4120063B2 (en) * 1998-10-26 2008-07-16 松下電器産業株式会社 Flow measuring device
JP4120062B2 (en) * 1998-10-26 2008-07-16 松下電器産業株式会社 Flow measuring device

Also Published As

Publication number Publication date
JP2002131108A (en) 2002-05-09

Similar Documents

Publication Publication Date Title
KR100446268B1 (en) Gas leak detection system
JP5305518B2 (en) Gas shut-off device
JP5140464B2 (en) Ultrasonic gas meter
JP4779198B2 (en) Gas security device
JP4163168B2 (en) Gas shut-off device
JP3632396B2 (en) Flow measuring device
JP4568970B2 (en) Gas security device
JPH11287688A (en) Flow measuring device
JP4307679B2 (en) Gas security device
JP3857959B2 (en) Flowmeter
JP4122611B2 (en) Gas security device
JP4120062B2 (en) Flow measuring device
JP3781670B2 (en) Gas piping leak inspection device
JP4197218B2 (en) Gas shut-off device
JP4178625B2 (en) Gas shut-off device
JP4083367B2 (en) Gas security device
JP6634536B1 (en) Meter device
JP2000213742A (en) Gas safety device
JP2001330487A (en) Membrane type gas meter
JP4534262B2 (en) Gas shut-off device
JP2006133238A (en) Flow rate measuring means
JP5972003B2 (en) How to use the gas meter
JP2010217073A (en) Flow measuring device
JP2997576B2 (en) Output method of unit flow rate signal for leakage inspection in fluidic gas meter
JPH05273012A (en) Inspecting method for return leakage in fluidic type gas meter with micro-flow sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070314

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070412

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110620

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4779198

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees